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I. INTRODUCTION

Consider a high-energy beam of charged particles of momentum range
P, * Ap. This beam has emerged from a momentum-analyzing magnet and is
traveling in the positive z-direction. For this beam there exists a de-
finlte correspondence between the particle momentum and one of the par-
ticle transverse coordinates. Let the particles traveling with the
average momentum P, have x = O, and the particles traveling with the
momentum p have x = x(p). Clearly, x 1s an_odd function of p - P,
in the limit of vanishing p - P,

This beam then passes through a long magnetic device called a
momentum slit. ILet the total cross section of the slit opening be de-
fined by - b <x<b and -a<y<a with a <<b. The purpose of
using this slit 1s to separate the particles in a very narrow momentum
range (pO + dp) from the rest of the beam. The function of this slit
may be described most simply by assuming an ideal magnetic field as

follows:

B, =B =0 everywhere (12)
(+ uOI a <x <b, -a <y <as

By(x,y) = 0 -a < x < a, -a<y<a (1b)
- uOI -b <x< -g, -a <y <a

The particles in the desired momentum range enter the central part of

the slit where the magnetic field vanishes; therefore these particles

will pass through the slit without being deflected. The particles having
momentum greater than P, + dp and less than po - dp enter the slit on
opposite sides of the field-free region where they experience a constant
transverse fleld. The polarity of the field 1s such that they will be
deflected continuously away from the central plane (x = O) as they tra-
vel forward. Thus the unwanted particles may be separated from the wanted

ones farther and farther by increasing the length of the momentum slit.



The component By of the above-described ideal field changes dis-
continuously with x at the plane surfaces x =% a. It is not possible
to exclte such an 1deal field unless current sheets are used at the sur-
faces of discontinuity. If this were allowed, this field could then be
excited by the use of four infinite sheets of current located at
x =% a and x =% b. The current In these sheets should flow in the
z-direction only. Let IZ denote the surface current in units of

amperes per meter. If

I = (2)
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the field inside the region of the slit will be as specified by
Egs. (1a) and (1b).

While the magnetic field does have the ideal configuration, the
slit region is not free of obstruction to the passage of the beam.
There are conducting planes x = % a 1nside this region. These planes
would intercept part of the wanted and the unwanted beams, giving rise
to heating, radioactivity and scattering.

To avold such difficulties the slit region should be free from any
obstructing material. Under this condition the magnetic field inside
the slit must be an analytic function of coordinates x and y. Hence
no region of non-vanishing volume inside the slit can be entirely field-
free. This, however, does not preclude the possibility that the field
in the central region of the slit may be made sufficiently small. In this
paper we will discuss the underlying principle for designing momentum slits,
in which an approximately ideal magnetic field may be excited without

resorting to conducting structures inside the area of the beam.



II. REPRESENTATION OF THE APERTURE FIELD IN TERMS OF MULTIPOLES

The transverse magnetic field in the momentum slit should have the

following symmetry characteristics:

(even in x

Bx(x,y) is 1 ; (3a)

odd in y

odd in X

By(x,y) is (3p)

even in y

The conditions on By follow from the requirement that the unwanted
charged particles are to be deflected in the x-~directions away from the
central plane x = 0. The conditions on B, follow from those on By

because V + B =0, i.e.,

OB OB
<X, I -o. ()
ox oy
From Eg. (4) and
§=VXKJ (5)

it is clear that B is derivable from a vector potential A which has
only one non-vanishing component Az. Since ﬁ satisfies the symmetry
conditions (3a) and (3b),

even in X |
A (xy) 1s : (6)
even in y

In any reglon of free space, any dc magnetic field 1s both
solenoldal and irrotational. Consequently the magnetic field inside
the slit should also be derivable from a scalar potential V¥(x,y).



We have

and

V3 = 0. (8)

In view of the conditions (3a) and (3b) it is found that

odd In x

‘V(X)Y) is . (9)
odd in y

Equation (5) is valid in general. The representation of B in terms of
the scalar potential is possible only in current-free regions. Herein
one representation or the other will be used, whichever seems to be more
convenient. Note that Az’ like V¥, satisfies the Laplace equation.

To consider the field near the center of the slit it is simpler to
use cylindrical coordinates (p,®,z) rather than Cartesian. The most
general solution of the Laplace equation for V(p,9) having the required

symmetry may be written as
[ve)
2m .,
¥(p,9) =Z 8,0 sin 2mp, (10)

m=1

Here the Sam's are constant coefficients.

From V we obtain

By = - My YSZm 2mp®™ ™ sin(em - 1)9; (11a)



2m=-1
B = - s 2 o - Vo 11b
by 2 ™ cos(2m - 1) (11b)

Now denote

Wg{fEE}:S{(zn-l) p{(en-l) sin t(2n - 1)o. (12)
n=1

Equation (12) represents the scalar potential in the aperture of a

regular 2{~pole magnet. For example,

Vv =85 p® sin 29 + S p® sin 69 + .
4 2 6

1s the regular guadrupole potential.® In terms of these multipole ex-

pressions Eq. (lO) may be written as

We,0) =) v p. (13)
y=1

(L=2")

Both ¥ and ¢ vanish on the planes x =0 and y = 0. The
derivative oy /o ianishes on the planes x =% y, but Oy/0p does
not vanish on %hese planes. It seems to be appropriate to call ¢ the
potential function of an irregular quadmupole to distinguish it from that
of a regular quadrupole In general, if the first non-vanishing term

of ¥ is p£ sin 4p but OY/d9 does not have the same symmetries

tAlbert Septier, "Strong-Tocusing Lenses," Advances in Electronics
and Electron Physics, (Academic Press, New York, 1961), Vol. XIv, p. &7.




as Oy {/U@’ then ¥ may be called the potential function of an irre-
gular 2{~pole

Let W'y denote an irregular 2£~pole potential.
2

1

ji sin {q@ (lh)

Here 4 is an even integer because of the symmetry conditions. The
series of V' differs from the corresponding series of 2 in having
the non—vaniihing coefficients Skq with a g = 2n. Evideitly, each
individual term in the series of ¥ in Eg. (10) may be represented by

a series in terms of V!

2{)

namely,

2m ~ —_ '
82m p sin 2ms }jw .

({~2m+2v)

(15)

Hence, the function ¢ itself may also be so represented.

¥(p,®) —SW’ (16)
({_EV)

Because of less stringent symmetry requirements, the expansion of
¥ given by Eq. (16) in terms of irregular multipoles is often easier

to use than the corresponding expansion given by Eqg. (13) in terms of

regular multipoles.



ITI. GSUPERPOSITION OF MULTIPOLE FIELDS

The series of | discussed in the last section converges rapidly
in the central region of the slit where p is small. In this region
only the first few multipole terms are important. The higher-order terms
contribute little becausc the effects of many positive and negative poles
are cancelled almost completely near the axis of symmetry. To obtain an
approximately ideal field in the slit, it is necessary to make the first
few multipole terms vanish.

The first term is a quadrupole. This gives rise to a non-vanishing
derivative Bﬁ/&p independent of p. There can be no quadrupole term
if aﬁ/ﬁp vanishes on the axis p = 0. This condition may be obtained
by superposing two quadrupoles W;(p,w) and W;(p,@in/Q), because from
Eq. (14)

[ee]

V1(0,9) + ¥ (o,0t0/2) =2 ) 8 oY sin o, (1)
4 4 4q
q=1

The resultant potential is an irregular octupole V'. The corresponding
8

derivative Sﬁ/ap varies as p~ when p — O.

Now consider a different octupole V" having the same symmetries.
8

o]

¥ o= 2>ﬁs" 6*% sin hao.
8 [+ 4q
g=1
Evidently, it is possible to make 8" = 3' %Dy varying the relative
4 4
strength of the two octupoles. By subtracting one from the other we

obtain

8

0*% gin hqo. (18)

y'o- " =2 ) (st - g"
8 8 q:—é\ 4q 4q

™~




The dominant term of the resulting potential is a 16-pole. In this
manner the first three terms (quadrupole, octupole, and dodecapole)
have been suppressed from appearing in the potential function of the
slit. This is possible provided that the potentials V' (p,P#n/2) and
¥" are compatible with the symmetry of the physical sy:tem.

7 Several multipole systems are described in the Appendix to 1llus-
trate how the different kinds of multipole fields may be excited. For
the sake of simplicity, all these systems are made of plane current
sheets. Fomulas for calculating the fileld pertaining to each system
are presented.

An alternative way of suppressing the first few terms proceeds as
follows. TFirst subtract W;(p,miﬂ/E) from W;(p,@) to obtain a regular

gquadrupole, namely,

o3

v (0,9) - ¥ (o, 0tn/2) =2 )

q:

S p*472 sin(kq - 2)o. (19)

From this subtract another regular quadrupole which has the same first

term. The resulting potential ¥(p,®) may be written as

Wos0) = ) 8,0, 043 sinlli + 2. (20)
=1

The dominant term of this potential 1s a dodecapole. If symmetry con-
ditions permit, the latter term may similarly be suppressed. Then the
result would be a potential whose dominant term is a 16-pole, as in the

previous case.

8-



Iv. SIMPLE EXAMPLES OF MOMENTUM SLITS

Again consider the system discussed in the introductory section. 1In
order that the slit opening may be free from obstructing conductors, the
two strips of current sheets located at x =% a, having - a <y < a, must
be cut off. For the purpose of calculation, cutting off two strips carry-
ing current I dis the same as installing two strips carrying current
minus I 1in the same location. Thus, after cutting off these strips,
the magnetic field will be equal to the original® field plus another field

produced by the following strips of currents:

I, =-1 onx =£%a, -a <y < a. (21a)
As described in the Appendix, these surface currents constitute an
irregular quadrupole. If this quadrupole is rotated by ﬂ/2 radians,

another quadrupole is obtained for which

I, =-1 ony =¢%a, -a < x < a. (21p)
By installing this rotated guadrupole with the first quadrupole,

we obtain an irregular octupole according to Eq. (17). This octupole
system is the same as shown in Fig. A.4 1in the Appendix, with h = a.

Then consider an octupole specified as follows:

( x=%ta, a<y<a+w
I, =1 on Jx=%*a, -(a+w)<y<-a (22)
\ y=%*a -(a+w)<x<-a
jy=%2a, a<x<a+w
{
This is the same as shown in Fig. A.8 with h =a and o = -1.

(See Appendix.) By properly choosing the two parameters «Q and w, the
dominant term of the potential function of this lrregular octupole may
certainly be made equal to that of the other octupocle specified by

Egqs. (21a) and (21b). Thus, according to Eg. (18), the octupole poten-
tial can be eliminated by superposing these two systems in the opposite

sense.



Taking w = a/e and « = -1.19 and using the formulas given in the
Appendix, the Tield components BX and By for unit value of uOI have
been calculated. These guantities are shown in Figs. la, 1b, and lc as
functions of x for constant values of y. It can be seen from these
curves that the field in the central region of the slit, p € a, is indeed
very small.

Now consider a simple example of an iron slit system. For this case
there 1g difficulty in Jjustifying the possibility of eliminating the do-
decapole term from symmetry arguments alone. However, even if this were
not possible, a dodecapole term should already be small enough to be
negligible for practical purposes. We thus adopt the second procedure dis-
cussed in the last section by considering a regular quadrupole magnet
shown in Fig. 2.

The potential in the aperture Qx}g a,]ngla) of this magnet may be
represented by the series of Eq. (19). To eliminate the dominant term
of thi: quadrupole potential, another regular quadrupole system may be

used. This leads to the consilderation of the following system of current

sheets:
( +I on x = % a, a<y<a+w
Izs / +I onx =% a, (a+w) <y < -a (23)
-Iony =ta, -(a+w)<x<-a
~Iony =% a, a<x<a+w
\

This system 1s the same as shown in Fig. A.7 with h = a.

The calculation of the aperture field in the proximity of the mag-
netic iron cores is complicated by the fact that not only the currents
but also the magnetization in the iron can affect the field in the
aperture. Furthermore the magnetization varies with the currents. With-
out actually calculating the field it 1s possible, however, to ascertain
that, when the above-described current sheets are installed in position
in the magnet system shown by the dotted lines in Fig. 2, these surface
currents together with the attendant change in the magnetization do in-
deed constitute a regular quadrupole. This is obvious because the two
systems, before and after the introduction of the current sheets, are

both regular quadrupcles of the same symmetry. Having w fixed at some

-10-



T - 0.8

71¢. la--The magnetic field components shown are produced
by two octupole current systems spec ified by
Tgs. (21a), (21b) and (22) with w = a/2 and
a = - L.15.
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-+ - 0.8

Fig. 1b--B, (x,%) and By x,g.) are shown in units of u_I.
The source system is the same as specified in Fig. 1la.

- 12 -



4 - 0.8

3a f 3a' . .
FIG. lc—~BX @5 T and By\x, ﬁff are shown in units of p l.

The source system is the same as specified in Fig. la.

- 13 -
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FIG. 2--The dotted lines around the pole tips represent the current
sheets to be installed for correcting the aperture field.
In the absence of these current sheets the iron magnet system
is a regular gquadrupole.
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sultable value, the current I may be varied so that the first term

in the series of “4 vanlshes.

We thus obtain a magnetic slit system for which the potential

function in the region p < a may be written as

¥(p, @) = Ss p® sin 60 + 5 p° sin 10p + ...... (24)
10

The first term of this function is a dodecapcle. It seems plausible
that this term may also be eliminated by properly shaping the pole

tips and by using sultable corrective currents. To determine whether
tﬁis is true, detalled analysis is needed. The solution for the general
case of the magnetostatic problem will be discussed in the following

section.
V. THE MAGNETOSTATIC PROBLEM OF IRON SLITS

In the system of an iron slit, the vector potential 2 at a cer-

tain point (x', y', z') is given by®

uﬂ:&(x')=u0f +dwuofmﬁ;l&h (25)
v(J) V(M)

®cee, e.g., J. A. Stratton, "Electromagnetic Theory," Chap. IV,
McGraw-Hill Co., Inc., New York (1941); W.K.H. Panofsky and M. Phillips,
"Classical Electricity and Magnetism," Chaps. 7 and 8, Addison-Wesley
Publishing Co., Inc., Cambridge, Massachusetts (1955).

-15-



Here, r is the distance between the field point (x') and the source
point (x):

R T T e <3 (262)
J
VE (1/bnr) = -8(x' - x) 8(y' -y) d(z' - z). (26b)

The first integral of Eq. (25) is taken over the total volume V(J) of
current carrying conductors, having permeability My and volume current
density J. The second integral is taken over the total volume V(M) of
iron cores, having permeability p and magnetization intensity ﬁ. The se
two regions V(J) and V(M) are assumed to have no common parts.” The
surfaces enclosing V(J) and V(M) will be denoted, respectively, by
S5(J) and 8(M). Both regions are surrounded by free space, which con-
stitutes the third region, having volume V(0) and surface S(0). The
region of the slit opening is contained in V(0).

Equation (25) is valid for any point (x') in all three regions. The
vector function K is continuous everywhere and can be differentiated
piecewise. Equation (25) tells us how to calculate A when J and M
are known. But the magnetization ﬁ is induced by 3; we must first
determine M in order to solve for A. Instead, both A and M may
be expressed in terms of one single unknown vector. Thus Eq. (25) is

differentiated to obtain V x Z,

&‘-LEV'XK(X')=f 3x5%d1+] {(1‘713){; :
° v(T) V(M) g

SA finite separation between Vv(J) and V(M) is assumed to exist
for the sake of simplicity. This entails no essential restriction and,
if desired, may be dispensed with by going to the limit of zero separation.

- 16 -



H—TE ﬁ(x‘):’mﬁ(x')+[ 3

Ho J -
v(J) (M)

X
<¥
[
Q.
el
+
N
=+
Q¥
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=
Qu
S

Here it may be noted that M(x') = O unless (x') is inside v(M).

Equation (27) is valid everywhere except on S(M) where B is discon-
. . > > > > >

tinuous. Since V * B =0, B =uH, and M ==<(u/uo) - %} H, Eq. (27)

may be rewritten as

brB(x") =\/p Fxvilars B -1) (7 - %) v
V() V(M)

=

This integral equation enables us to solve for " from given J  under

the following boundary conditions:

is continuous across S(J);

x (A_-%) =0 on s(M) ;
> >

(WH_ - uOH+) =0 on S(M).

fn R RN o v}

In the last two equations
the closed surface 8(M), -
side 8(M), and ﬁ+ is the magnetic field intensity just outside S(M).

n is the unit normal pointing outward from
B is the magnetic field intensity Jjust in-

The interpretation of 1. (28) is very simple. The first integral
in Eq. (28) gives the direct contribution of all the currents to the
magnetic field, as required by the Biot-Savart law. The second integral
of Eq. (28) accounts for the effects arising from the magnetization

induced by the currents. The latter effects may be described more

- 17 -
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clearly by transforming the second integral as follows:

/ (- 1) G YL ar
vim) °
- v - 1) v % dr + /ﬂ o) G-H)Y %»d@
v(M) s(M)

The volume integral on the right side of Eg. (30) gives the magnetic
field at point (x') due to the magnetic poles of volume density

V + B located in V(M). The surface integral in Eq. (30) gives the
magnetic field at point (x'") due to the magnetic poles of surface
density h - M on the surface S(M). Since there exists no isolated
magnetic pole, the sum of the magnetic poles in V(M) and on S(M)

must vanish. Indeed, we find that

VAR ﬁ at + E . ﬁ do =
W
V(M) s(M)

Let us denote

§(x, x') =gz VVI. (31)

This is a symmetric dyadic, because & (x, x') =G (x', x) follows from
A, (1/r) = SR (1/r). Further denote

F(x") = 11:}{/ jx%—]l:-dm (32)
v(J)

On introducing these notations, Eg. (28) becomes

ﬁ(w>=%wW+/w(i“ ) B (x) - & (%, x') dr. (33)
V(M)

- 18 -



This is the vector form of Hilbertts polar integral equation4. There are
several approximate methods for solving this equation. In particular,
the variational method seemé to offer special advantages. These methods
will not be discussed here because they arc auite invclved.

One particular case, however, 1s relatively simple. This is the
case where the permeability p can be considered constant. This case
is important because in many Instances the assumption of constant u 1is
applicable. Under this assumption V - i =0 Thus Eq. (33) may be

written as

B (x) =%(x')+(§:-1)f G- H) ¥ a0
s(M)

Now let the point (x') approach (t') on the surface S(M) through
the point (&' + €) from outside S(M), € being arbitrarily small,
and let ;' be the unit normal at (&') pointing outward from S(M)

and passing through (£' + €). Then we obtain from the foregoing equation

T
° s ()
Since
AR (e)n -V !
n ° E)nt - ————
s(M) brr(e, e + E%O
iR B+ BB R Vg @
=5 n ¢ Tr(E, ¢ ’

*D. Hilbert, "Grundziige einer allgemeinen Theorie der linearen
Integralgleichungen," Kap. XV, Chelsea Publishing Co., New York (1953);
W. V. Lovitt, "Linear Integral Equations,"” pp. 187-192, McGraw-Hill
Book Co., Inc., New York (1924).

- 19 -



Eg. (34) becomes

11 L\ Zrery T B BN AN A S I
é{ﬁ; + E)n B(t') = n T(er) + (u ;g/ﬁn B(&)n

By further denoting

K(E,&")

g(er)
h(e')

and

we obtain from Eg. (35)

il

i

n

{ \
;‘ ) 3' <\l/r(§)§')/>: \
1 b=l
an u+uo ?
at - (e,
Lol Ly Bee
5 uo+u)n B(t'),

n(e') =g(e') + A f h(e) K(g,6') do.

s(Mm)

¥ ey
(35)

(36)

(37)

This is an integral equation of the second kind ,5 which was first
Before Fredholm, the solution of this

solved rigorously by Fredholm.

equatlon obtained by the method of successive substitutions could only

be considered tentative.

From the asymmetric kernel K(g,g')

functions may be derived.

an Infinite number of iterated

Let these functions be denoted by

SE. T. Whittaker and G. N. Watson, "A Course of Modern Analysis,"
Chap. XI, Cambridge University Press, London (1945); M.V. Lovitt,

loc. cit. footnote L.

- 20 -



K (8,8'), m=1,2,3.

K (EE") =f

In terms of these functions Fredholm's solution of Eq. (37) may be

written as

n(e) =ale) +) A [ a(e) K (5,80) ao.
m=1 s(M)
Note that
g(t') do' =0
s(M)
and
n(e') dot = 0.
s(M)

Equation (40) is obvious.
be no isolated magnetic p

proved by integrating Eqg.

K (&,6') = K(&,&'),
1

s(M) i

<]

K (t,6 ) k(¢ ,&') do .
1 1 1 1

(38a)

(38v)

(39)

(ko)

(41)

Equation (L41) states the fact that there can

oles in existence.
(37) and using Eq. (LO).

- 21 -

The latter equation can be



Vi. SUMMARY AND DISCUSSION

The magnetic fileld in the central region of a momentum slit may be
expanded into a series of either regular or irregular 2{»poles, 22 being
even integers > 2. For regular 2{~poles, L = ZV; for irregular 2{»poles,
£ = 2v. The first few multipoles are the dominant terms. To design an
effective momentum slit it is necessary to eliminate several lower-order
terms. TFrom pure symmetry arguments it has been shown that in the case
of slit systems having no iron cores the first three terms ({,= 2, 4, and
6) may be eliminated, and that in the case of iron slit systems at least
the first two terms may be eliminated.

An example was given in Section IV illustrating how the aperture field
in an air-core slit system can be made small by using simple corrective
systems of surface currents. The return conductors of the corrective
systems are supposed to be far removed from the axis of symmetry. By
neglecting the effects of these return conductors, we have actually
calculated the field distribution inside the slit opening. The maximum
field in the region p < a is only about 3.6 x 107> of the maximum field
uOI outside this region. If uoI is taken to be 10 kilogauss, then
I ~ 8,000 amp/cm and the current in the corrective current sheets is of
the same order of magnitude as I. This current is too large to be
actually used, unless the current is pulsed with a duty cycle of about
0.002 or smaller. It is also possible to use superconducting current
sheets, though it seems at the present time to be not quite practical.

If iron cores are used and the maximum gap field is again 10 kilogauss,
the main exciting current will be much smaller, reduced by a factor of
about uo/u. The corrective currents, however, remain of the same order
of magnitude as 8,000 amp/cm. This follows from an approximate evaluation
of the line integral of ﬁ over a closed contour, which encircles one
strip of the corrective current and encloses an area, say,

(a -e)<x<(a+w+e) and 0<y<(a+e) (see Fig. 2). The
corrective system carries the equal and opposite currents, so there is

no need of special return conductors.

_ oo .



Current sheets are not practical systems. They are used for the sole
purpose of simplifying the calculation. Actual conducting planes may
have a thickness varying from 0.2 cm to 1 cm. The aperture of the slit
gystem may not always have a square cross section. It may be required
that the aperture width should be adjustable in order to vary the chosen
range of momentum. If the slit system 1s not sufficiently long in the
z-direction, the end effects may become important. The actual design of
an iron-core slit system wlll depend largely on such practical matters
as mentioned above. It may turn out that, because of some practical
restrictions, the dodecapole term of the aperture field is difficult to
eliminate. As pointed out before, this possible limitation should not
be of practical importance.

Section V was intended primarily for making detailed calculations
for designing iron momentum slits. Two integral equations were derived:
Equation (33) is valid in general; Equation (37) is valid for constant
u only. These equations should also be useful for calculating the

fringing fields in other kinds of dc iron magnets.

- 23 -



APPENDIX
MULTTPOLE SYSTEMS AND FIELDS

As discussed in Section II, the magnetic field in the slit opening
of a momentum analyzer must satisfy the symmetry conditions (3a) and (3b).
Several multipole systems which satisfy this requirement are described
below. To simplify the calculation of the magnetic field, all these

systems are assumed to consist of only plane sheets of currents.

1. IRREGULAR QUADRUPOLE (TYPE I)

.
h

I
i

|

e e

Fig. A.l. Two conducting planes are shown located at x =% a,
-h <y <h, and -» < 2z <w., Each plane carries a
current IZ = - 1 amp/m. They constitute an irre-
gular gquadrupole.

p I 2 2 )2 2
B o 12 (10g (et)® (up)® ) (a)® e () )
(a+x)®+ (n-y)? (a-x)® + (n-y)®
WL 1 h+y 1 h-y 1 h+y h
= - -0 -1 0ty St Ay - hty -1 by
By o tan s +otan arx - ten ooy - tan el (A.1v)
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The arctangents in Eq. (A.lb) are to be less than or equal to ﬂ/E
radians in magnitude.
Using cylindrical coordinates ( p,®, z) we obtain the multipole

expansions of the field components as follows:

( EUOI pam+1
T z f2m+1 (9) a2m+1 Sin(Zm + l)q); p < a;
m=0
Px T < (A.1c)
2u 1 L2Mm+L
\ T z F2m+]_ (6) om+1 Sln(gln + l)q), P > a sec 9.
m=0 p
oo
EUOI p2m_+1
n E: L omea (6) e cos(2m + 1), p < &;
m=0
By A.ld
y (a.14)
—au 1 52+
! }: F2m+1 (6) om+1 cos(2m + 1)9, p > a sec 0,
m=0 P
Here 6 = tan-l (h/a)) (A.le)
¢]
f (9) = COszrrl CP' COS(Em + 2) q)' d.CD' (A lf)
2m+1 , .
0
and
6
F2m+1 (6) =L/\Sec2m+2 @' cos 2mp' 4do'. (A.1g)
0

The first five multipole coefficients f2m+1(9) for the region p < a

are shown in Fig. A. 9 as functions of g, 8 < ﬂ/g, The coefficients
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F (6) for p >a sec 6 are related to f (8) by the simple
2m+1, 2m1
equation

4am+2 :
Fam_u(e) cos 0 = famu(@) (A.1n)
2. IRREGULAR QUADRUPOLE (TYFE II)
y
' ®
L] 1
@
e
? 0]
a
¥ : @
f— 1 —whe— b —»|
|
Fig. A.2.The system shown in Fig. A.l is rotated about
the z-axis by an angle of ﬂ/E radians.
B—E(ta'i?—‘-’iman'lﬂ-ta'lﬂ—tan'l}lt’i (A.2a)
x  2n y at+y a-y a-y’* -8
u T ) 2 )2 )2 _ 2'
B, = <1og (a4y)® + (n-x)® 0 (ay)” + (hox) 1 (A.20)
y (a+y)2 + (h+x)2 (a—y)2 + (h+x)2J
/ ©
—QuOI m p2m+1
- in(2 N
T Z (-) fgm+1(e) 2L stn(2m + 1)9, p < a;
m=0
B, =< (A.2c)

2 2m+1

pIC n )
T }j (-) L —— (6) 2m+1 sin(2m + 1)9, p > a sec @.
m=0 P

\
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ol = n p2m+1
J , (-) f2m+1(9) cos(2m + 1), p < a;

_2u
- aZITH"l

N
“

B =
y (A.23)
-EuOI - azm+1
}j (=) F2m+1(9) p——y cos(2m + 1)p, p > & sec 6
x :
m=0 e
3 REGULAR QUADRUPOLE
NA

Fig. A.3.Two irregular quadrupoles shown in Figs. A.1 and A.2 are super-
posed in the opposite sense to form a regular quadrupole.
I =-Tat x=%a, -h <y <h, and - ©» < 2 <oy I =+1
af y=ta, -h<x<h, and - ©» < 2 < . z

B = R.H.S. of <;3q. (A.1la) - Eq. (A.Qa)} . (A.32)
By = R.H.S. of <;Eq. (A.1b) - Egq. (A.2b)} . (A.3b)
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by T on p2m+1
o e . .
T ZJ f2m+1(0) oml sin(2m + 1)9, p < e;
n=0
(m=2n)
B = (A.3c)
X
hpOI aZEII’H-J_
> .
- }: F2m41(@) — sin(2m + 1)9, p > a sec @
n=0
(m=2n+1)
| b T o p2MHL
| - z f o (8) _Eme cos(2m + 1) 9, p < a;
i n=0
| (m=2n)
B = A.3d
y (A.3d)
..).H_LOI al a2m+1
~ E; F2m+l(9)-—zﬁizj cos(2m + 1)p, p >a sec O .
n=0
(m=;1’1+l)

4, IRREGULAR OCTUPOLE

®

¥ @
® :
|

—_———t - —- —t - X
0

Fig. A4, Two irregular gquadrupoles shown in Pigs. A.1 and A.2 are super-

posed in the same sense to form an irregular octupole. I = -1
at x=+ta, -h<y<h, and -» <z <o I =-I at z
y=+a, -h<x<h, and - <z < o, z
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B, = R.H.S. of Eq.{(A.la) + Eq. (A.Ea)} . (A.ka)
By = R.H.S. of Eq.{(A.lb) + Eq. (A.Eb)} . (A.Ub)
huoI = p2m+1
< E f2m+l(6) vy sin(2m + 1)9, p < &}
a
n=0
(m=2n+1)
(A.ke)

B T o S 2L
- EJ F2m+1(9) ey sin(2m + 1)p, p > a sec 0.
n=0 P

(m=2n)

[oe]

hpOI o2

n Ej f2m+1(6) JETe cos (2m + 1)p, p < a;
n=0
(m=2n+1)

(a.ha)

by 1 2 2m+1
o a
- — Ej F2m+l(9) penruy cos(2m + 1)p, p > a sec 6.
n=0 P
(m=2n)
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5. IRREGULAR QUADRUPOLE (TYPE III)

Fig. A.5. Four conducting plane strips are shown, located
at x =+ta, h<|yl <h+w, and - o <z < o,
Bach strip carries the current I_ = - I. They
constitute an irregular quadrupolg.

o I 2 2 2 2
B - o {10g (arx)+(hawty )= | log (a-x)%+(htw+y)
(a+x)?+(h+w-y )= (a-x)2+(h+w-y )=
- R.H.S. of Eq. (A.1la). (A.5a)
b T -1 htw+ -1 h+w- -1 htw+ h
B = - =2 (tan P B L opanTt 2T | opan”t 2T L panT?t 22y
v 21 + a+x a-x a-x
- R.H.S. of Eq. (A.1b), (A.5b)
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T L\ amt+a am+1 e

2n T = 2m+1
—-9—2 f (6)-_ . (8)) E—— sin(om + 1)o, p < 2;
m=0 1 j

B = (A-5C)

2u T omty
2 }ﬁ {F (¢)-TF (8)y 2 sin(2m + 1)9, o > a sec &,

© /., Y em+1l amt+1 2m+1
m=0 P
2u T kp2m+1
- < g -
. Z £, (8) femﬂ(ej ———cos (2m + e, p <a;
m=0 a
B = (A'Bd)
Yy
2uOI - : a2m+1
- — Ej F2m+1(§) - F2m+1(e) e cos(2m + 1)p, p > a sec E.
m=0 e
Here, 6 = tan"%(h/a) as before and
£ = tan~ [ (h+w)/al. (A.5e)
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o
.

TRREGULAR QUADRUPOLE (TYPE IV)

Fig. A.6, The system shown in Fig. A.5 is rotated about
the z-axis by an angle of =n/2 radians.

- R.H.S. of Eq. (A.2a). (A.6a)

!
n T [ 2 )2 )2 )21
° | 1og (aty)? + (hw-x)= log (a-y)= + (haw-x)=

B = !
y T \\ (a+y)® + (htw+x)® (a-y)® + (htwtx)?
i S
- R.H.S. of Eq. (A.2b). (A.6b)
o0
EUOI N . ) amt+a
Y (-) \ 2m+.1(é> - f2m+1(9) o 201 sin (2m + 1)9, o < a3
m=0 ¢ /
B = (A.6c)
'2;101 2 n | ) o 2T+ 1
i R : :
. >J (-) ¢ F2m+1(g) —F2m+1(9){' ey sin(2m + 1), p > a sec &.
n=0 « )P



e A (03 B conlem + L)y p < o
T e o
By i (A.64)
| e i e () e OV E caten s e, 6 > e s
- o { 2m+1 2m+1 j pem+1

REGULAR QUADRUPOLE

.l_@

i
1

Fig. A.7. Two irregular quadrupoles shown in Figs. A.5 and A.6
are superposed in the opposite sense to form a regular
quadrupole. I, = -ITatx=2%a, -h < |y| <h+w,
and -0 <z < o IZ=+Iaty=ia,h§|x| <h+w,
and -« < z < .

B = R.H.S. of {Eq. (A.5a) - Eq. (A.6a)} . (A.7a)
By = R.H.S. of {Eq. (A.5b) - Eq. (A.6b)} . (A.7p)
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[xe]

14},1 I 1 ,/ \ pzm+l
T } \f2m+1(5) h f2m+1(9){" 2 sin(2m + 1), p < 2;

‘1 m+ 1
n=0
(m=2n)
B_ = (n70)
MUOI ! \ o T L
/
b z ‘\ F2m+1(g’) —F2m+1(9)?/ omiy sin{em + L)o, p > a sec &.
n=0 ;P
(m=2n+l)
ll'u I h p2m+l
/’ - . < :
A Ej \ “m+1(5) fs +l(8)f L 2L cos(2m + 1)9, p < &
[ j
‘ (m=2n)
/
By =4 A.7T4d
Yoo ( )
b T ! L2+
- | - — g(2m + 1 > e .
I }J l 2m+1(§) F2m+l(9)f —— <O (2m Yp, p > a sec &
n=0 &
(m=2n+1)

&. IRREGULAR OCTUPOLE

@

@—l'jj—@

Fig. A.8 Two irregular quadrupoles shown in Figs. A.5 and
A.6 are superposed in the same sense to form an

irregular octupole. I, = -1l at x *a, h <|y|<h+ w,
and - o < z <o ly = - Taty =*a, h <Ix|[<h + w, and
- < 7z < o, - -

- 3),L -



B, = R.H.S. of {Eq. (A.5a) + Eq. (A.6a)}~ (A.Ba)

B, = R.H.S. of {Eq. (A.5b) + Eq. (A,6b)‘lr. (A.%b)
v
l*LL I I’ 2mtl
© - - B in(2m + 1 < a.
T >—‘ "\f2m+1(§) f2m+1(9)( e sin(2m )9, p <o
n=0 b
(m=2n+1)
B = (ABC)
X
lHJ T 2 ‘l\ a2m+l
Q - N > i > 5 ]
— ;{Fzmﬂ(g) rgmﬂ(e); — sin(2m + 1), p > a sec &
n=0 \ ) P
(m=2n)
”HOI - ] o ZH
{ - z f2m+1(§) - f2m+1(9)5/ peeey cos(2m + 1)o, p < a;’
| a
n=0 J
(m=2n+1)
B, =< (A.83)

b ot \ 2L
\ - % }i F2m+l(§) - F2m+1(9)f ey cos(2m + 1)p, p > a sec ¢.
n=0 - J P
(m=2n)

9, MULTIPOLE COEFFICTIENTS

Shown in Fig. A.9 are the multipole coefficients f2m+l(9) for

the first five integral values of m. The other multipole coefficients

Ezm—kl(e) may be calculated from f2m+l(9) according to Eq. (A.1h).
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0.5

04

fam+1(0)

0.2

o.l

I l 1 I 1 I ] | !

f2m+l(8) = Eﬁg:_f sin (2m + 1)6 cog
£, 1(0) = B, (8) cos™(s).
3 _
1}
o
3
\\’
3“ ]
23
3\
»
| | l
I0 2 30 4 o~80 9
6 —

FIG. A.9--Multipole coefficients f2m+l(9) for the region

¢ < a shown as functions of 6, 6 = tan~*(h/a).
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