THE SPIN STRUCTURE FUNCTION \(g_2 \)

Stephen Rock for the Real Photon Collaboration

University of Mass, Amherst MA 01003

Abstract. We have measured the spin structure functions \(g_2 \) over the kinematic range \(0.02 \leq x \leq 0.8 \) and \(0.7 \leq Q^2 \leq 20 \text{ GeV}^2 \) by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH\(_3\) and \(^6\)LiD targets. Our measured \(g_2 \) approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements \(d_2^p \) and \(d_2^n \) are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range.

The deep-inelastic spin structure functions of the nucleons, \(g_1(x, Q^2) \) and \(g_2(x, Q^2) \), depend on the spin distribution of the partons and their correlations. The function \(g_1 \) can be primarily understood in terms of the quark parton model (QPM) and perturbative QCD with higher twist terms at low \(Q^2 \). The function \(g_2 \) is of particular interest since it has contributions from quark-gluon correlations and other higher twist terms at leading order in \(Q^2 \) which cannot be described perturbatively. By interpreting \(g_2 \) using the operator product expansion (OPE) [1, 2], it is possible to study contributions to the nucleon spin structure beyond the simple QPM.

The structure function \(g_2 \) can be written [3]:

\[
g_2(x, Q^2) = g_{2W}(x, Q^2) + \bar{g}_2(x, Q^2)
\]

where

\[
g_{2W}(x, Q^2) = -g_1(x, Q^2) + \int_x^1 \frac{g_1(y, Q^2)}{y} \, dy,
\]

\[
\bar{g}_2(x, Q^2) = -\int_x^1 \frac{\partial}{\partial y} \left(\frac{m}{M} h_T(y, Q^2) + \xi(y, Q^2) \right) \frac{dy}{y},
\]

\(x \) is the Bjorken scaling variable and \(Q^2 \) is the absolute value of the virtual photon four-momentum squared. The twist-2 term \(g_{2W} \) was derived by Wandzura and Wilczek [4] and depends only on \(g_1 \). The function \(h_T(x, Q^2) \) is an additional twist-2 contribution [3, 5] that depends on the transverse polarization density. The \(h_T \) contribution to \(\bar{g}_2 \) is suppressed by the ratio of the quark to nucleon masses \(m/M \) [5] and its effect is thus small for up and down quarks. The twist-3 part (\(\xi \)) comes from quark-gluon correlations. Low-precision measurements of \(g_2 \) exist for the proton and deuteron [6, 7, 8], as well as for the neutron [9, 10]. Here, we report new, precise measurements of \(g_2 \) for the proton and deuteron.
Electron beams with energies of 29.1 and 32.3 GeV and longitudinal polarization $P_b = (83.2 \pm 3.0)\%$ struck approximately transversely polarized NH$_3$ [12] (average polarization $< P_t > = 0.70$) or 6LiD ($< P_t > = 0.22$) targets. The beam helicity was randomly chosen pulse by pulse. Scattered electrons were detected in three independent spectrometers centered at 2.75°, 5.5°, and 10.5°. The two small-angle spectrometers were the same as in SLAC E155 [11], while the large-angle spectrometer had additional hodoscopes and a more efficient pre-radiator shower counter. Further information on the experimental apparatus can be found in references [11, 12, 13]. The approximately equal amounts of data taken with the two beam energies and opposites signs of target polarization gave consistent results.

The measured asymmetry, \tilde{A}_\perp, differs from A_\perp because the target polarizations were not exactly perpendicular to the beam line. We determined \tilde{A}_\perp using:

$$\tilde{A}_\perp = \frac{1}{f_{RC}} \left[C_1 f_{P_t} \left(\frac{A_{raw}}{P_b} - A_{EW} \right) + C_2 \sigma_p A_p \right] + A_{RC}$$

where A_{raw} is the measured counting rate asymmetry from the two beam helicities, including small corrections for pion and charge symmetric backgrounds, dead-time and tracking efficiency, and A_{EW} is the electroweak asymmetry. The target dilution factor, f, is the fraction of free polarizable protons (≈ 0.13) or deuterons (≈ 0.18). C_1 and C_2 are nuclear corrections. The quantities f_{RC} and A_{RC} are radiative corrections determined using a method similar to E143 [12]. The detailed results for A_{\perp} are shown in Ref. [14].

The multiplicative uncertainties due to target and beam polarization and dilution factor combined are 5.1% (proton) and 6.2% (deuteron). are small compared to the statistical errors. We determined $g_2(x, Q^2)$ from \tilde{A}_\perp (dominant contribution) and the previously measured g_1.

The data cover the kinematic range $0.02 \leq x \leq 0.8$ and $0.7 \leq Q^2 \leq 20$ GeV2 with an average Q^2 of 5 GeV2. Tables of the complete results are in Ref. [14]. Figure 1 (left) shows the values of xg_2 as a function of Q^2 for several values of x along with results from E143 [12] and E155 [8]. The systematic error on xg_2 is much smaller than the statistical error. The former includes the systematic errors on A_\perp, the 5% normalization uncertainty of g_1, the 2% uncertainty of F_2, and the systematic errors of R. The data approximately follow the Q^2 dependence of g_{WW}^2 (solid curve), although for the proton, the data points are slightly lower than g_{WW}^2 at low and intermediate x, and higher at high x. The predictions of Stratmann [15] are closer to the data.

We obtained values at the average Q^2 for each x bin by using the Q^2-dependence of g_{WW}^2. Figure 1 (right) shows the averaged xg_2 of this experiment. The figure also has xg_{WW}^2 calculated using our parameterization of g_1. The combined new data for p disagree with g_{WW}^2 with a χ^2/dof of 3.1 for 10 degrees of freedom. For d the new data agree with g_{WW}^2 with a χ^2/dof of 1.2 for 10 dof. The data for g_2^p are inconsistent with zero (χ^2/dof=15.5) while g_2^d differs from zero only at $x \sim 0.4$. Also shown in Fig. 1 (right) is the bag model calculation of Stratmann [15] which is in good agreement with the data, chiral soliton models calculations [16, 17] which are too negative at $x \sim 0.4$, and the bag model calculation of Song [5] which is in clear disagreement with the data.
FIGURE 1. LEFT) $x g_2^p$ and $x g_2^d$ as a function of Q^2 for selected values of x from this experiment (solid), E143 [12] (open diamond) and E155 [8] (open square). Errors are statistical, the systematic errors are small. The curves show $x g_{WW}^p$ (solid) and the bag model of Stratmann [15] (dash-dot).

RIGHT) The Q^2-averaged structure function $x g_2$ from this experiment (solid circle), E143 [7] (open diamond) and E155 [8] (open square). The errors are statistical; systematic errors are shown as the width of the bar at the bottom. Also shown is our twist-2 g_{WW}^p at the average Q^2 of this experiment at each value of x (solid line), the bag model calculations of Stratmann [15] (dash-dot-dot) and Song [5] (dot) and the chiral soliton models of Weigel and Gamberg [16] (dash dot) and Wakamatsu [17] (dash).

The OPE allows us to write the hadronic matrix element in deep-inelastic scattering in terms of a series of renormalized operators of increasing twist [1, 2]. The moments of g_1 and g_2 for even $n \geq 2$ at fixed Q^2 can be related to twist-3 reduced matrix elements, d_n, and higher-twist terms which are suppressed by powers of $1/Q$. Neglecting quark mass terms:

$$d_n = 2 \frac{n + 1}{n} \int_0^1 dx x^n \langle \bar{g}_2(x, Q^2) \rangle.$$

The matrix element d_n measures deviations of g_2 from the twist-2 g_{WW}^p term. Note that some authors [2, 18] define d_n with an additional factor of two. We calculated d_2 with the assumption that \bar{g}_2 is independent of Q^2 in the measured region. This is not unreasonable since d_2 depends only logarithmically on Q^2 [1]. The part of the integral for x below the measured region was assumed to be zero because of the x^2 suppression. For $x \geq 0.8$ we used $\bar{g}_2 \propto (1 - x)^m$ where $m=2$ or 3, normalized to the data for $x \geq 0.5$. Because \bar{g}_2 is small at high x, the contribution was negligible for both cases. We obtained values of $d_2^p = 0.0025 \pm 0.0016 \pm 0.0010$ and $d_2^d = 0.0054 \pm 0.0023 \pm 0.0005$ at an average Q^2 of 5 GeV2. We combined these results with those from SLAC experiments on the neutron (E142 [9] and E154 [10]) and proton and deuteron (E143 [12] and E155 [8]).
to obtained average values $d_2^p = 0.0032 \pm 0.0017$ and $d_2^n = 0.0079 \pm 0.0048$. These are consistent with zero (no twist-3) to within two standard deviations. The values of the 2nd moments alone are: \(\int_0^1 dx x^2 g_2(x, Q^2) = -0.0072 \pm 0.0005 \pm 0.0003 \) (p) and $-0.0019 \pm 0.0007 \pm 0.0001$ (d).

Figure 2 shows the experimental values of d_2^p and d_2^n plotted along with theoretical models from left to right: bag models [5, 15, 19], QCD Sum Rules [20, 21, 22], Lattice QCD [18] and chiral soliton models [16, 17]. The Burkhardt-Cottingham (BC) sum rule [24] for g_2 at large Q^2, \(\int_0^1 g_2(x) dx = 0 \), was derived from virtual Compton scattering dispersion relations. It does not follow from the OPE since $n = 0$. Its validity depends on the lack of singularities for g_2 at $x = 0$, and a dramatic rise of g_2 at low x could invalidate the sum rule. We evaluated the BC integral in the measured region of $0.02 \leq x \leq 0.8$ at $Q^2 = 5$ GeV2. The results for the proton and deuteron are $-0.044 \pm 0.008 \pm 0.003$ and $-0.008 \pm 0.012 \pm 0.002$ respectively. Averaging with the E143 and E155 results which cover a slightly more restrictive x range gives -0.042 ± 0.008 and -0.006 ± 0.011. This does not represent a conclusive test of the

FIGURE 2. The twist-3 matrix element d_2 for the proton and neutron from the combined data from this and other SLAC experiments (E142 [9], E143 [12], E154 [10] and E155 [8]) (DATA). The region between the dashed lines indicates the experimental errors. Also shown are theoretical model values from left to right: bag models [5, 15, 19], QCD Sum Rules [20, 21, 22], Lattice QCD [18] and chiral soliton models [16, 17].
sum rule because the behavior of g_2 as $x \to 0$ is not known. However, if we assume that $g_2 = g_2^{WW}$ for $x < 0.02$, and use the relation $\int_0^x g_2^{WW}(y)dy = x[g_2^{WW}(x) + g_1(x)]$, there is an additional contribution of 0.020 (p) and 0.004 (d). This leaves a $\sim 2.8\sigma$ deviation from zero for the proton.

The Efremov-Leader-Teryaev (ELT) sum rule [25] involves the valence quark contributions to g_1 and g_2: $\int_0^1 x[g_1^p(x) + 2g_2^p(x)]dx = 0$. If the sea quarks are the same in protons and neutron this becomes $\int_0^1 x[g_1^n(x) + 2g_2^n(x)]dx = 0$. We evaluated this ELT integral in the measured region using the fit to g_1. The result at $Q^2 = 5$ GeV2 is $-0.013 \pm 0.008 \pm 0.002$, which is consistent with the expected value of zero. Including the data of E143 [12] and E155 [8] leads to -0.011 ± 0.008. The extrapolation to $x=0$ is not known, but is suppressed by a factor of x.

The values of the 1st moments at $Q^2 = 5$ GeV2 are: $\int_0^1 dx xg_2(x, Q^2) = -0.0157 \pm 0.0012 \pm 0.0005$ (p) and $-0.0037 \pm 0.0016 \pm 0.0002$ (d).

In summary, our results for g_2 follow approximately the twist-2 g_2^{WW} shape, but deviate significantly at some values of x. The twist-3 matrix elements d_2 are less than two standard deviations from zero. The data over the measured range are inconsistent with the BC sum rule and consistent with the ELT integral.

REFERENCES