[SLAC] [SLAC Pubs and Reports]

SLAC-PUB-9246
Manifold Damping of Wakefields in High Phase Advance Linacs for the NLC

Abstract

Earlier RDDS (Rounded Damped Detuned Structures) [1,2], designed, fabricated and tested at SLAC, in collaboration with KEK, have been shown to damp wakefields successfully. However, electrical breakdown has been found to occur in these structures and this makes them inoperable at the desired gradient. Recent results [3] indicate that lowering the group velocity of the accelerating mode reduces electrical breakdown events. In order to preserve the filling time of each structure a high synchronous phase advance (150 degrees as opposed to 120 used in previous NLC designs) has been chosen. Here, damping of the wakefield is analyzed. Manifold damping and interleaving of structure cell frequencies is discussed. These wakefields impose alignment tolerances on the cells and on the structure as a whole. Tolerance calculations are performed and these are compared with analytic estimations

(Equations render on Windows, Mac OS, AIX, Linux, Solaris, and IRIX with the techexplorer plug-in.)

Full Text

PDF

Compressed PostScript

Not available for this document.

Notes

The PDF file can be best viewed using Adobe Reader 4.0 or greater.

More Information

Full bibliographic data for this document, including its complete author list, is (or soon will be) available from SLAC's SPIRES-HEP Database.

Please report problems with this file to posting@slac.stanford.edu. The SLAC preprint inventory is provided by the SLAC Technical Publications Department.
Page generated 31 Jul 2002 @ 10:03 PDT by htmlme.pl