Hadronic B decays at BABAR

Francesco Fabozzi
INFN – Sezione di Napoli
Complesso Universitario di Monte Sant’Angelo
Via Cintia, I-80126 Napoli, Italy
(on behalf of the BABAR Collaboration)

Abstract

We present preliminary results on hadronic decays of B mesons, based on data recorded at the $\Upsilon(4S)$ resonance with the BABAR detector at the PEP-II B-factory at SLAC. We measure branching fractions of many B decay modes, including decays to $J/\psi\phi K$, $J/\psi\pi^+\pi^-$ and $\eta_c K$ final states. We report the observation of the decay $B \to D_s^+\pi^-$ and the first measurement of the flavor-tagged D meson production in B^0 decays. Since their preliminary nature, the results presented in this paper are based on different data samples.

Invited talk presented at the XXXVIIth Rencontres de Moriond on QCD and Hadronic Interactions,

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309
Work supported in part by Department of Energy contract DE-AC03-76SF00515.
1 The \textit{BABAR} detector

The \textit{BABAR} detector [1] at the PEP-II asymmetric-energy \textit{B}-factory [2] at SLAC consists of a silicon vertex tracker (SVT) for precise decay vertex determination, a 40-layer drift chamber (DCH) for momentum and track angles measurement, a detector of internally reflected Cherenkov radiation (DIRC) for charged hadron identification, and a CsI(Tl) electromagnetic calorimeter (EMC) for photon reconstruction and electron identification. A superconducting solenoid provides a magnetic field of 1.5 T, and the iron of the flux return is instrumented with resistive plate chambers (IFR) to provide muon identification and neutral hadron reconstruction.

2 Hadronic \textit{B} decays to charmonium

Color suppressed transitions \(b \rightarrow c\bar{c}s(d) \) are responsible for hadronic \textit{B} decays to final states containing a charmonium. Theoretical predictions are based on the factorization hypothesis, that can be accurately tested with extensive and precise branching fraction determinations [3].

2.1 Rare \textit{B} decays to states with a \(J/\psi \)

The Cabibbo-suppressed decays \(B \rightarrow J/\psi \eta(\eta') \) are described by a \(b \rightarrow c\bar{c}d \) transition, as the observed decay \(B \rightarrow J/\psi \pi \). An upper limit on the decay \(B \rightarrow J/\psi \eta \) has been set by the L3 Collaboration [4], while there is no published result for the \(B \rightarrow J/\psi \eta' \) channel.

The decay \(B \rightarrow J/\psi \phi K \) is described by a \(b\bar{q} \rightarrow c\bar{c}s\bar{s}q \) transition, in which the \(s\bar{s} \) pair is produced from sea quarks or via gluon emission. This mode has been observed by the CLEO Collaboration [5] with a branching fraction of \(B(B \rightarrow J/\psi \phi K) = (8.8^{+3.5}_{-3.0} \pm 1.3) \times 10^{-5} \).

The decay \(B \rightarrow J/\psi \phi \), which has not yet been observed, is explained with the occurrence of \(c\bar{c}d\bar{d} \) rescattering into a \(c\bar{c}s\bar{s} \) state.

The above decay modes have been studied at \textit{BABAR}. The \(\eta \) is reconstructed in \(\gamma\gamma \) or \(\pi^+\pi^-\pi^0 \) final states and the \(\eta' \) in the \(\eta(\rightarrow \gamma\gamma)\pi^+\pi^- \) channel. The \(\phi \) is reconstructed in the \(K^+K^- \) final state. Table 1 shows the preliminary results \(^1\) obtained from the analysis of 50.9 fb\(^{-1} \) of data recorded at the \(\Upsilon(4S) \) resonance [6].

2.2 Measurement of \(B \rightarrow J/\psi \pi^+\pi^- \)

In the decay \(B \rightarrow J/\psi \pi^+\pi^- \), the \(\pi^+\pi^- \) pair comes from the \(B^0 \rightarrow J/\psi \rho^0(\rightarrow \pi^+\pi^-) \) channel or can be produced in a non-resonant state. The \(B^0 \rightarrow J/\psi \rho^0 \) mode is useful for the measurement of \(\sin2\beta \) and possible interference with higher order diagrams could produce a sizeable deviation of the branching fraction from the tree level expectation. An upper limit on this decay has been set by the CLEO Collaboration [7].

At \textit{BABAR}, the decay \(B^0 \rightarrow J/\psi \pi^+\pi^- \) is exclusively reconstructed and the signal yield is extracted from an unbinned maximum likelihood fit to the \(\pi^+\pi^- \) invariant mass of the selected candidates [8]. The preliminary result obtained from a sample of 51.7 fb\(^{-1} \) of data recorded at the \(\Upsilon(4S) \) resonance is \(B(B \rightarrow J/\psi \pi^+\pi^-) = (5.0 \pm 0.7 \pm 0.6) \times 10^{-5} \).

\(^{1}\)Unless otherwise stated, charged conjugate modes are implied throughout the paper
Table 1: Preliminary branching fraction determinations for rare B decays to final states with a J/ψ. When the signal yield is not statistically significant, a 90% C.L. upper limit is reported.

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>Branching Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to J/\psi \eta(\to \gamma\gamma)$</td>
<td>$< 3.0 \times 10^{-5}$</td>
</tr>
<tr>
<td>$B^0 \to J/\psi \eta(\to \pi^+\pi^-\pi^0)$</td>
<td>$< 5.2 \times 10^{-5}$</td>
</tr>
<tr>
<td>$B^0 \to J/\psi \eta_{(combined)}$</td>
<td>$< 2.7 \times 10^{-5}$</td>
</tr>
<tr>
<td>$B^0 \to J/\psi \eta'(\to \eta(\gamma\gamma)\pi^+\pi^-)$</td>
<td>$< 6.4 \times 10^{-5}$</td>
</tr>
<tr>
<td>$B^+ \to J/\psi \phi K^+$</td>
<td>$(4.4 \pm 1.4 \pm 0.7) \times 10^{-5}$</td>
</tr>
<tr>
<td>$B^0 \to J/\psi \phi K^0$</td>
<td>$(10.2 \pm 3.8 \pm 1.8) \times 10^{-5}$</td>
</tr>
<tr>
<td>$B \to J/\psi \phi K$ (combined)</td>
<td>$(5.0 \pm 1.3 \pm 0.7) \times 10^{-5}$</td>
</tr>
<tr>
<td>$B^0 \to J/\psi \phi$</td>
<td>$< 0.95 \times 10^{-5}$</td>
</tr>
</tbody>
</table>

2.3 Measurement of $B \to \eta_c K$

The decay $B^0 \to \eta_c K_S$ can be used for a theoretically clean determination of $\sin(2\beta)$, in the same way as the “golden” mode $B^0 \to J/\psi K_S$. Previous studies of the neutral and charged decay modes were performed by the CLEO Collaboration [9].

At BABAR, the decay $B \to \eta_c K$ is exclusively reconstructed, with the η_c decaying in $K_S K^+\pi^\pm$, $K^+K^-\pi^0$ or $K^+K^-K^+K^-$ final states [10]. The preliminary results obtained from a data sample of 20.7 fb$^{-1}$ recorded at the $\Upsilon(4S)$ resonance are $B(B^+ \to \eta_c K^+) = (1.50 \pm 0.19 \pm 0.15 \pm 0.46) \times 10^{-3}$ and $B(B^0 \to \eta_c K^0) = (1.06 \pm 0.28 \pm 0.11 \pm 0.33) \times 10^{-3}$, where the third error contribution is due to the uncertainty on the value of $B(\eta_c \to K K \pi)$, as reported in the PDG [11].

3 Observation of $B^0 \to D_s^+ \pi^-$

One of the methods to determine the angle γ of the unitarity triangle [12] is the measurement of $\sin(2\beta + \gamma)$ from the time dependent CP-asymmetry of the decay $B^0 \to D^+\pi^-$ [13]. The asymmetry evolution depends on the parameter $\lambda_{D\pi} \equiv A(B^0 \to D^+\pi^-)/A(B^0 \to D^-\pi^+)$ which can be determined from the branching fraction measurement of $B^0 \to D_s^+\pi^-$ through the relation:

$$B(B^0 \to D_s^+\pi^-) \approx B(B^0 \to D^+\pi^-) \frac{f_D^2}{f_D^2} \left(\frac{B_s}{B_s}\right)^2 |\lambda_{D\pi}|^2.$$ \hspace{1cm} (1)

The above equation is valid in the limit of the tree diagram dominance for $D_s^+\pi^-$ and $D^+\pi^-$ modes.

At BABAR, the decay $B^0 \to D_s^+\pi^-$ is exclusively reconstructed, with the D_s^+ decaying in $\phi\pi^+$, $\bar{K}^*0 K^+$ or $K_S K^+$ final states. From the analysis of a data sample of 56.4 fb$^{-1}$ recorded at the
Table 2: Preliminary branching fraction measurements of flavor-tagged D meson production in B^0 decays. World data values for D meson production in B decays are reported for comparison. Here “B” is an admixture of charged and neutral B mesons at the $\Upsilon(4S)$.

<table>
<thead>
<tr>
<th>BABAR Measurements</th>
<th>World Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decay Mode</td>
<td>Branching Fraction</td>
</tr>
<tr>
<td>$\bar{B}^0 \rightarrow D^0$</td>
<td>(50.3 ± 3.0 ± 3.7)%</td>
</tr>
<tr>
<td>$\bar{B}^0 \rightarrow D^+$</td>
<td>(32.8 ± 2.5 ± 3.5)%</td>
</tr>
<tr>
<td>$\bar{B}^0 \rightarrow D^0 + D^+$</td>
<td>(83.1 ± 6.4)%</td>
</tr>
<tr>
<td>$\bar{B}^0 \rightarrow \bar{D}^0$</td>
<td>(7.6 ± 1.7 ± 1.1)%</td>
</tr>
<tr>
<td>$\bar{B}^0 \rightarrow D^-$</td>
<td>(2.7 ± 1.2 ± 0.6)%</td>
</tr>
</tbody>
</table>

$\Upsilon(4S)$ resonance, the number of observed signal events is $N_{D_s\pi} = 14.9 \pm 4.1$ with a statistical significance of 3.5σ. The preliminary branching fraction is $B(B^0 \rightarrow D_s^+\pi^-) \times B(D_s^+ \rightarrow \phi\pi^+) = (1.11 \pm 0.37 \pm 0.24) \times 10^{-6}$. Using the value of $B(D_s^+ \rightarrow \phi\pi^+)$ in the PDG, which has a 25% uncertainty, a branching fraction $B(B^0 \rightarrow D_s^+\pi^-) = (3.1 \pm 1.0 \pm 1.0) \times 10^{-5}$ is obtained.

4 D meson production in B^0 decays

Inclusive branching fractions of charged and neutral B mesons to charmed hadrons will help to solve the longstanding n_c puzzle [14]: the mean number of charm quarks per B decay obtained from direct counting does not agree with theoretical estimates based on branching fraction measurements of semileptonic decays.

The analysis of D meson production in B^0 decays at BABAR is based on the exclusive reconstruction of one B meson coming from the decay of the $\Upsilon(4S)$ ($\equiv B^0_{\text{reco}}$) in a semileptonic ($D^* l \nu$, with $l = e, \mu$) or hadronic mode ($D^{(*)}\pi^-, D^{(*)}\rho^-, D^{(*)}a_1^-$). The recoil system is then analyzed to search for a neutral (charged) D in the $D^0 \rightarrow K\pi$ ($D^\pm \rightarrow K\pi\pi$) channel. The inclusive branching fractions $B(B^0 \rightarrow D)$ and $B(B^0 \rightarrow D^\pm)$ are determined from a fit to the invariant mass distribution of the selected D candidates.

In the inclusive decays $\bar{B}^0 \rightarrow D^0$ and $\bar{B}^0 \rightarrow D^+$ the charm quark comes directly from the decaying b quark, and the D meson is said to be of “right-sign”. On the contrary, the D meson in the inclusive decays $\bar{B}^0 \rightarrow D^0$ and $\bar{B}^0 \rightarrow D^-$ is said to be of “wrong-sign”. The fraction w of decays with a “wrong-sign” D is determined by comparing the flavor of the B^0_{reco} with that of the D, after correcting for the B mixing probability χ_d:

$$\chi_{\text{obs}} = \chi_d + w \times (1 - 2 \chi_d).$$

If Δt is the time difference between the decays of the two B mesons, events with $|\Delta t| > 2.5 ps$ are discarded. Indeed, they do not contribute significantly to w measurement because $\chi_d(|\Delta t| > 2.5 ps) = 1/2$. The requirement on $|\Delta t|$ increases the sensitivity to w, thereby improving the statistical error. It improves also the systematic error since the reduced contribution from the B mixing.
Preliminary measurements of $\mathcal{B}(B^0 \rightarrow D)$ and $\mathcal{B}(B^0 \rightarrow D^{\pm})$ are based on a sample of 30.4 fb$^{-1}$, while the fractions w are determined from a sample of 51.1 fb$^{-1}$, all recorded at the $\Upsilon(4S)$ resonance. These determinations are combined to obtain the first measurements of flavor tagged D^0 and D^{\pm} production in B^0 decays. Preliminary results are shown in Table 2. They agree with existing measurements of flavor tagged D meson production in a $\Upsilon(4S)$ environment. The flavor of the spectator quark in the parent B appears to have a negligible effect in the production of “wrong-sign” D mesons. The increase in the central value of the measured branching fractions goes in the direction of a better agreement with theoretical predictions. However, in order to solve the n_c puzzle other inclusive branching fraction measurements are needed.

References