A Very High Charge, High Polarization Gradient-Doped Strained GaAs Photocathode

Stanford Linear Accelerator Center, Stanford, California 94309

R. Prepost

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706

Submitted to Nuclear Instruments and Method A

*This work was supported by Department of Energy contract DE–AC03–76SF00515(SLAC) and DE-FG02-95ER40896(Wisconsin).
A Very High Charge, High Polarization
Gradient-Doped Strained GaAs Photocathode

T. Maruyama,* A. Brachmann, J. E. Clendenin, T. Desikan
E. L. Garwin, R. E. Kirby, D.-A. Luh, and J. Turner
Stanford Linear Accelerator Center, Stanford, California 94309

R. Prepost
Department of Physics, University of Wisconsin, Madison, Wisconsin 53706

Abstract

A high-gradient-doping technique is applied to strained polarized photocathodes. The electron spin-polarization increases significantly as the highly-doped layer thickness is reduced. A 5.0 - 7.5 nm p-type surface layer doped to 5×10^{19} cm$^{-3}$ is found sufficient to overcome the surface charge limit. It is shown that the charge requirements of the Next Linear Collider can be met with a polarization approaching 80%.

PACS: 29.25.Bx; 73.50.Pz; 73.61.Ey; 79.60.-i

Keywords: Polarized electron source; GaAs photocathode

*Corresponding author. Tel.: 650-926-3398; fax: 650-926-3718. E-mail address: tvm@slac.stanford.edu (T. Maruyama)
I. INTRODUCTION.

Polarized electron sources based on photoemission from negative-electron-affinity (NEA) III-V semiconductor photocathodes have been widely used for linear electron accelerators. Since 1992 the SLAC 3-km linac has used polarized electrons exclusively, not only for the Stanford Linear Collider (SLC) and fixed-target experiments that require polarization, but also when polarization is not required, such as for filling the PEP II storage rings. Strained, medium-doped \((5 \times 10^{18} \text{ cm}^{-3})\), GaAs photocathodes were introduced for the polarized electron source [1] in 1993. These photocathodes are capable of producing up to \(1 \times 10^{11}\) electrons in a 2 ns pulse with 75-85\% polarization. However, they are susceptible to the surface charge limit (SCL): the total photoemitted charge in a short bunch saturates as the light intensity is increased. The SCL phenomenon was first observed using bulk GaAs [2], and several experimental studies have been made on strained GaAs [3], superlattice structures [4], and thin unstrained GaAs [5]. In reference [6] the SCL was attributed to a photovoltage effect in the band bending region, which momentarily increases the surface work function and thus suppresses emission.

The SCL poses a serious problem for operation of polarized electron sources at future linear colliders such as the Japan Linear Collider (JLC) and the Next Linear Collider (NLC) [7]. The NLC is presently designed to operate with a train of 190 micro-bunches, spaced 1.4 ns apart, and each micro-bunch is required to have as much as \(1.4 \times 10^{10} \text{ e}^-\) per pulse in 0.5 ns (full width) at the gun (4.4 A assuming a Gaussian charge distribution), totaling \(2.7 \times 10^{12} \text{ e}^-\) per train. The standard SLAC strained photocathodes saturate at a level of \(8 \times 10^{11} \text{ e}^-\) for a 300-ns pulse (0.4 A), well below the space charge limit of the gun. A recent study showed that the SCL problem can be reduced significantly by increasing the \(p\)-type doping concentration to at least \(2 \times 10^{19} \text{ cm}^{-3}\) [8]. However, increasing the doping level leads to some depolarization of the electron spin. To increase the doping level without spin depolarization, a high-gradient-doping technique has been explored. While a standard SLAC photocathode is uniformly doped at \(5 \times 10^{18} \text{ cm}^{-3}\), we have reduced the active layer
dopant density to 5×10^{17} cm$^{-3}$ while increasing the density of a 10-nm surface layer to 5×10^{19} cm$^{-3}$. The lower-than-standard doping level in the active layer avoids depolarization, while the high surface doping addresses the charge limit problem. A high-gradient-doping technique was applied first to a superlattice structure as a way to increase polarization [9], and more recently to address the SCL with a superlattice structure [4]. In the present paper we describe the first application of the high-gradient-doping technique to a strained-layer structure, and demonstrate for the first time that an NLC compatible charge with polarization approaching 80% is achievable.

II. PHOTOCATHODES

The samples for the present experiment were grown by Bandwidth Semiconductor, LLC. [10] using metal-organic-chemical-vapor-deposition (MOCVD). Figure 1 shows the photocathode structure. A 0.25 μm-thick p-type GaAs buffer layer was grown on a (100) p-type GaAs substrate oriented 2° towards the (110) direction. In order to produce a strain-relieved GaAs$_{1-x}$P$_x$ layer on GaAs, a 2.5 μm-thick GaAs$_{1-x'}$P$_{x'}$ layer was grown with a linearly increasing phosphorus fraction from 0 to x to accommodate the lattice mismatch, followed by an additional 2.5 μm-thick GaAs$_{1-x}$P$_x$ layer with a fixed phosphorus fraction. The lattice-mismatched active photoemission layer was then grown on this layer. The active layer with thickness from 55 to 90 nm was GaAs or GaAs$_{0.95}$P$_{0.05}$. The lattice-mismatch between the active layer and the GaAs$_{1-x}$P$_x$ layer was 1%. The active layers were p-type doped with zinc to a value of 5×10^{17} cm$^{-3}$. On top of the active layer, the GaAs surface layer with thickness from 10 to 45 nm was grown with a doping concentration of 5×10^{19} cm$^{-3}$. In order to preserve an atomically clean surface the samples were anodized to form an oxide layer on the GaAs surface [11]. The oxide layer was later removed as described below. Table 1 summarizes the photocathodes used in the present experiment.
III. EXPERIMENTAL FACILITIES

A. Cathode Test System

Polarization and quantum efficiency (QE) [12] were first studied in the SLAC Cathode Test System (CTS) shown schematically in Figure 2. The CTS is an ultra-high vacuum system pumped by a combination of ion and non-evaporable getter (NEG) pumps. The system is equipped with a load-lock chamber through which samples can be introduced without venting the system vacuum. Polarization measurements are accomplished by an electron transport column, an electrostatic 90° spin-rotator and a 20 keV Mott polarimeter. The photon helicity is controlled by a linear-polarizer/liquid-crystal retarder combination.

Prior to installation in the system, the sample is degreased in a boiling solution of trichloroethane. After the protective oxide layer is removed in ammonium hydroxide, the sample is rinsed in distilled water and methanol. The cathode activation method used to obtain an NEA surface consists of heat cleaning to 600°C for 1 hour, cool-down for an hour, followed by application of cesium until the photo-yield peaks, and then cesium and nitrogen-trifluoride co-deposition until the photo-yield is again maximized. The heat-cleaning temperature is monitored via an infrared pyrometer. The cathode is activated while monitoring the photo-yield with a white light and a 670 nm diode laser. Once a red response is observed from the diode laser, the white light is turned off and the diode laser is used to complete the activation. The absolute QE is measured using the diode laser at a photon wavelength of 670 nm. A tungsten lamp and a monochromator are used to measure the relative QE as a function of photon wavelength, and these measurements are then normalized to the diode laser measurement at 670 nm.

B. SLAC Gun Test Laboratory

The SLAC Gun Test Laboratory (GTL) is used to study the production of intense, highly-polarized electron beams required for the NLC. The laboratory, shown schemati-
cally in Figure 3, is a replica of the first few meters of the SLAC injector beamline. The GTL beamline consists of an ultra-high-vacuum, high-voltage electrostatic gun, a load-lock chamber for cathode transfer and activation (not shown in Figure 3), and a beamline with magnetic components for electron beam transport and steering. An electrically isolated, optically coupled nanoammeter is used to measure the average photoemission current. The cathode is biased at -120 kV and maintained at a temperature of $0 \pm 2^\circ C$ by circulating cold nitrogen gas. With the cathode biased at -120 kV, the field gradient at the cathode is 1.8 MV/m, and the gun is capable of extracting a space-charge-limited current of 15 A from the 20 mm diameter cathode. A fast Faraday cup is used to measure the temporal profile of the beam with a time resolution of 0.5 ns. The Faraday cup has a 2 mm diameter hole through which a fraction of the beam is transported to the Mott chamber for polarization measurements. The vacuum in the gun is maintained at about 1×10^{-11} Torr by means of ion and nonevaporative getter pumping. A more detailed description of the gun and load-lock system can be found in reference [1].

The cathode is activated in the GTL load-lock chamber. The cathode preparation and activation procedures are similar to those used for the CTS. The heat-cleaning temperature is measured at the back surface of the cathode holder using a thermocouple. The temperature at the cathode surface is estimated to be about $600^\circ C$ when the thermocouple temperature is $800^\circ C$. Cathodes are typically heat-cleaned and activated twice before being moved into the gun. Once the cathode is moved into the gun, the cathode QE can be restored by application of cesium without further heat-cleaning or exposure to nitrogen trifluoride. The cathode lifetime is continuously monitored using a 750 nm diode laser running at 1.5 Hz and a lock-in amplifier to detect the modulated current of the nanoammeter.

C. Laser Systems

The NLC multi-bunch structure electron beam will be produced with a laser system having the same multi-bunch structure. The laser is required to have $3.5 \mu J$ in each 0.5 ns
micro-bunch totaling 665 µJ for 190 bunches. Since such a laser system is not available, two presently available laser systems are used to simulate the NLC beam conditions.

Figure 4 shows the laser system used for the present experiment. A flashlamp-pumped Ti:Sapphire laser (Flash-Ti) operated at 60 Hz produces a 10 µs long pulse as shown in Figure 5. To produce a pulse equivalent to one NLC train, a 300-ns long pulse is sliced out of the 10 µs pulse using a crossed-polarizer pair and a Pockels cell (Slicer P.C.). When a pulse is sliced at t ≈ 7.5 µs (Slice 1 in Figure 5), the pulse has a flat top shape, but the maximum energy is limited to 100 µJ/pulse. To increase the energy, a pulse is also sliced at t ≈ 1.5 µs (Slice 2 in Figure 5). The maximum laser energy increases to 300 µJ/pulse, but the temporal shape is no longer flat. An additional polarizer and a Pockels cell (Intensity P.C.) are used to control the laser intensity. The wavelength of the laser is set by a retardation plate at the Brewster angle.

The second laser system (YAG-Ti) employs a commercial frequency-doubled Nd:YAG laser operated at 60 Hz to pump a Ti:sapphire cavity to produce a 4-ns long pulse. The Ti:sapphire cavity is Q-switched and cavity-dumped by an intracavity Pockels cell. The slicer that produces a 2-ns pulse and the intensity controller are bypassed for this experiment. The laser energy is about 20 µJ/pulse.

The lasers are circularly polarized through a quarter-wave retardation generated by a Pockels cell (Helicity P.C.). For both lasers, the energy is measured using a joule meter, the spot size on the cathode is varied by a telescope, and the beam spatial profile is analyzed by a CCD camera. Figure 6 shows the measured beam profile of the multi-mode Flash:Ti laser.
IV. HIGH-GRADIENT-DOPED GaAs

A. Sample Preparation

Since a high overall doping concentration would depolarize electron spin, the thickness of the highly-doped layer must be minimized. To study empirically how the polarization is affected by the highly-doped layer, the spin-polarization was measured for samples with different highly-doped layer thicknesses. The samples obtained from the vendor were grown on 50 mm diameter GaAs wafers with GaAs surface layers of different thickness as shown in Table I. An anodization/stripping technique was then used to prepare samples of different surface layer thickness for polarization and QE measurements. The anodization/stripping technique consisted of a self-terminating anodization at a given voltage forming an oxide layer [11] and a stripping of the resulting oxide layer in an ammonium hydroxide solution followed by rinsing in distilled water and methanol. Using this technique, the GaAs surface layer can be removed at the rate of 1.5 nm/V as described in the next section. For example, a sample from wafer #4505 was sequentially anodized at 5 V, 8.4 V, 1.9 V and 1.9 V, resulting in nominal surface layer thickness of 19.6 nm, 7.1 nm, 4.3 nm, and 1.4 nm based on an original surface layer thickness of 27 nm. A sample from wafer #4506, with an original surface layer thickness of 45 nm, was anodized once at 5 V resulting in a nominal surface layer thickness of 37.5 nm.

B. Secondary Ion Mass Spectroscopy

The doping concentration was designed to be 5×10^{17} cm$^{-3}$ in the active layer and 5×10^{19} cm$^{-3}$ in the surface layer. However, in actual wafers the concentration does not increase abruptly from 5×10^{17} cm$^{-3}$ to 5×10^{19} cm$^{-3}$. It is necessary to measure the actual dopant profile and then calibrate the anodization rate using the measured profile. Furthermore, the dopant diffusion during the heat-cleaning is a concern as a rapid diffusion would destroy the high-gradient-doping profile. The GaAs evaporation during the 600° C heat-cleaning
must be considered as well. The depth profile of the dopant concentration was measured by Secondary Ion Mass Spectroscopy (SIMS), which is made by sputtering a sample surface with a primary ion beam (typically cesium or argon ions) followed by mass spectrometry of the emitted secondary ions [13].

SIMS analyses were performed on three samples from wafer #4505: 1) an unused sample; 2) a sample heat-cleaned for 4.75 hours at 600°C; and 3) a sample anodized at 5 V and stripped. Figure 7 shows the depth profile of the zinc concentration for these three samples. Comparing Samples 1 and 3, the anodization rate was determined to be 1.5 nm/V. Comparing Samples 1 and 2, the GaAs evaporation rate was \(\approx 0.4 \) nm per 1 hour heat-cleaning at 600°C. The evaporation rate was significantly lower than the previously determined values [14]. This difference could be explained by the fact that the 12-mm-diameter cathode was not large enough to fill the field of view of the pyrometer. Consequently the pyrometer picked up radiation from the sample holder, which is typically at 800°C during heat-cleaning. The actual surface temperature was estimated to be about 560°C. The zinc diffusion seemed negligible as the zinc concentration profiles were the same between Samples 1 and 2. However, there was some indication of zinc diffusing out of the surface.

C. Polarization and Charge Measurements

The polarization and QE measurements were performed in the CTS. Each measurement consisted of anodization/stripping, introduction to the vacuum system through a load-lock, 1 hour heat-cleaning at 600°C, 1 hour cool-down, an activation with cesium and nitrogen trifluoride using co-deposition, then a QE measurement followed by polarization measurements. Figure 8 shows the polarization and QE as a function of wavelength for a sample from wafer #4505 with nominal surface surface layer thickness of (a) 19.6 nm, (b) 7.1 nm, (c) 4.3 nm and (d) 1.4 nm. Figure 9 shows the peak polarization as a function of the highly-doped layer thickness. The polarization increased significantly as the highly-doped layer thickness was reduced, reaching 80% polarization with about 7.5 nm of the highly-doped layer.
The CTS study has thus shown that it is possible to reach 80% polarization with about 7.5 nm of a highly-doped layer. The next question is whether 7.5 nm of highly-doped layer is thick enough to overcome the SCL problem. The GTL was used to study the charge performance. A sample from wafer #4505 was anodized at 13 V so that the thickness of the remaining high-doped layer was 7.5 nm. The sample was then heat-cleaned and activated twice in the load-lock system. The polarization was measured as a function of the Flash-Ti laser wavelength from 820 nm to 850 nm, yielding a peak polarization of 77% at 835 nm, consistent with the data shown in Figure 9. The QE at 835 nm was 0.09%, which was about a factor of two lower than the QEs expected for strained photocathodes. The charge measurements were performed using the laser wavelength of 835 nm. Figure 10 shows the temporal profiles of the emission current pulses measured using varying Flash-Ti laser energies. The laser pulse was sliced at Slice 1 in Figure 5. As the laser energy was increased, the temporal profile simply scaled without developing the leading edge spike typically observed in the surface-charge-limited photoemission [8]. Figure 11 shows the charge output as a function of the Flash-Ti laser energy. The observed charge output increases linearly with the laser energy, reaching 8×10^{11} e$^-$/pulse. Although the sample did not show any charge limit behavior, the QE was lower than expected. The low QE was thought to be due to the energy barrier in the conduction band [15].

V. HIGH-GRADIENT-DOPED STRAINED GaAsP

A. Charge measurements at the GTL

To remove the energy barrier in the conduction band, the active layer was changed to GaAs$_{0.95}$P$_{0.05}$. The 5% phosphorus raised the conduction band by 58 meV compensating the energy difference due to the high gradient doping. Figure 12 shows schematically the conduction bands expected for the two structures. The QE and polarization of a photocathode from wafer #5868 measured at low voltage in the CTS are shown in Figure 13. A QE of
0.2% and peak polarization of 80% were measured at room temperature. The wavelength at
the peak polarization was about 805 nm. The 40-nm blue shift with respect to a standard
strained GaAs cathode is due to the larger band gap energy of the GaAs$_{0.95}$P$_{0.05}$ active layer.
The higher QE can be attributed to the absence of a surface energy barrier resulting from
the larger band gap energy.

A sample from wafer #5868 was heat-cleaned and activated twice in the load-lock system,
and the charge measurements were made over a six week period. Figure 14 shows a typical
QE variation over ten days. The QE decreased by approximately 10% (δQE/QE) per day,
and the cathode was cesiated every third day. The QE (at 780 nm) after cesiation was
typically 0.4%. Figure 15 shows the charge output as a function of the Flash-Ti laser
energy. The two data sets were taken for the cathode before cesiation when the QE was the
lowest (0.3%) and after cesiation when the QE was the highest (0.4%). For both cases the
charge output was proportional to the laser energy, and no charge saturation was observed.

Since the charge output was limited by the laser energy, the slice timing was changed
to Slice 2 in Figure 5, and the photon density was increased by reducing the laser spot
size. However, as the laser spot size was reduced, the photoemission was limited by the
space charge limit effect of the gun. Figures 16 a) and 16 b) show the charge output as a
function of the laser spot size for the Flash-Ti and YAG-Ti, respectively. With a spot size
larger than about 10 mm for Flash-Ti and about 14 mm for YAG-Ti, the charge output was
limited by the laser energy. As the laser spot size was reduced, the charge output decreased
due to the space charge limit. The best operating diameter for achieving the highest photon
density was about 14 mm where the photoemission was not affected by the space charge
limit. The laser spot size of both lasers was set to 14 mm, and the Flash-Ti pulse length was
set to 270 ns. The charge output was measured as a function of the Flash-Ti laser energy.
The YAG-Ti laser was then overlaid on the Flash-Ti laser. While the YAG-Ti laser energy
was fixed at 20 μJ/pulse, the charge output was measured as the Flash-Ti laser energy was
increased. Figure 17 shows the charge output as a function of the Flash-Ti laser energy with
and without the YAG-Ti laser. The YAG-Ti laser by itself produced 2.3×10^{11} e$^-$/pulse,
equivalent to 9.2 A peak current (assuming a Gaussian pulse), twice the NLC requirement. The charge output was again linear up to the maximum laser energy, producing a maximum charge of 2.2×10^{12} e^- in 270 ns. If one assumes a linear scaling with spot size, this charge is equivalent to 4.5×10^{12} e^- (2.6 A) from a 20 mm diameter cathode.

B. Performance at the accelerator

A SLAC high energy experiment, E158, to measure parity violation in Møller scattering ($e^- e^- \rightarrow e^- e^-$) will use a 48 GeV polarized electron beam scattering off unpolarized electrons in a liquid hydrogen target [16]. The experiment requires a beam intensity of 8×10^{11} e^- in a 370 ns pulse at the gun. Since the beam intensity requirement is difficult to meet using the standard SLAC photocathodes, it was proposed to use the newly developed high-gradient-doped GaAsP photocathode described herein. A sample from wafer #5868 was installed in the SLAC polarized electron source and heat-cleaned and activated twice. The initial QE was 0.4% at 805 nm. The excitation light source was a flashlamp-pumped Ti:Sapphire laser, identical to the Flash-Ti laser described in Section III.A, and the 20 mm diameter photocathode was fully illuminated. Figure 18 shows the charge output as a function of the laser energy for a 100-ns long pulse. The charge output was linear up to the maximum laser energy, producing a maximum charge of 2.3×10^{12} e^- in 100 ns (3.7 A), which is nearly equal to the peak current required for the NLC. Finally the charge output was observed to scale with the laser pulse length, reaching more than 8×10^{12} e^- for 370 ns. The charge output corresponds to ten times the E158 requirement and more than twice the NLC-train charge. The QE was allowed to decrease and the diameter of the illuminated area was reduced to 14 mm diameter. The charge output was still linear up to the maximum laser energy as shown in Figure 18. Again assuming a linear scaling with spot size, a peak current that exceeds the NLC requirement can be expected from a 20 mm diameter cathode.
VI. CONCLUSIONS

The charge capabilities of high-gradient-doped strained photocathodes have been determined. A charge as large as $2.2 \times 10^{12} \, e^{-}$ per pulse was produced from a 14-mm diameter laser spot in 270 ns. By overlaying a short pulse laser, the peak current capability was also determined. A peak current as high as 9.2 A was extracted. There were no indications of a surface charge limit even when the QE decreased, and the charge output was limited by the laser energy. A cathode of this type is being used in a current high energy polarization experiment at SLAC, for which the charge performance has been consistent with, if not superior to, the laboratory results. This is the first demonstration that a NLC compatible beam with polarization approaching 80% is achievable.

Acknowledgments

We thank G. Mulhollan for his contribution to the early part of this work, and T. Galetto for technical assistance. This work was supported by Department of Energy contract DE–AC03–76SF00515(SLAC) and DE-FG02-95ER40896(Wisconsin).
REFERENCES

[10] Bandwidth Semiconductor (former Spire Coorporation), Hudson, NH 03051 USA.

[12] The quantum efficiency is measured as a number of photoemitted electrons per incident photon without correcting for the GaAs surface reflection and the window reflection.
[13] SIMS analyses were performed at Charles Evans & Associates, Sunnyvale, CA 94086 USA.

TABLE I. Sample parameters. * The layer thickness was measured by SIMS.

<table>
<thead>
<tr>
<th></th>
<th>wafer 4505</th>
<th>wafer 4506</th>
<th>wafer 5868</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs Surface Layer Thickness (nm)</td>
<td>27*</td>
<td>45</td>
<td>10</td>
</tr>
<tr>
<td>GaAs Surface Layer Doping (10^{19} \text{ cm}^{-3})</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Active Layer</td>
<td>GaAs</td>
<td>GaAs</td>
<td>GaAs({0.95})P({0.05})</td>
</tr>
<tr>
<td>Active Layer Thickness (nm)</td>
<td>75</td>
<td>55</td>
<td>90</td>
</tr>
<tr>
<td>Active Layer Doping (10^{17} \text{ cm}^{-3})</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Buffer Layer</td>
<td>GaAs({0.71})P({0.29})</td>
<td>GaAs({0.71})P({0.29})</td>
<td>GaAs({0.66})P({0.34})</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1 Schematic diagram of the strained photocathode structure.
Figure 2 Schematic diagram of the SLAC Cathode Test System showing the load lock.
Figure 3 Schematic diagram of the SLAC Gun Test Laboratory.
Figure 4 Schematic diagram of the laser arrangement used with the SLAC Gun Test Laboratory.
Figure 5 Intensity vs Time for the flashlamp-pumped Ti:sapphire laser.
Figure 6 Beam intensity spatial profile of the multi-mode flashlamp-pumped Ti:sapphire laser. The numbers in the figure indicate relative intensity contours.
Figure 7 The depth profile of the dopant concentration for an unused sample (Sample 1), a heat-cleaned sample (Sample 2), and an anodized sample (Sample 3) from wafer #4505.
Figure 8 Polarization and QE as a function of wavelength measured at the CTS as the highly-doped layer was reduced by anodization/stripping. The sample was anodized sequentially at a) 5 V, b) 8.4 V, c) 1.9 V, and d) 1.9 V, resulting in thicknesses of 19.6 nm, 7.1 nm, 4.3 nm, and 1.4 nm, respectively.
Figure 9 Peak polarization as a function of the highly-doped layer thickness for the sample from Figure 8 and a sample from wafer #4506 measured at the CTS.
Figure 10 The temporal profiles of the electron emission current for a sample from wafer #4505 measured at the GTL. The laser intensity is varied from 20 μJ to 140 μJ.
Figure 11 The photoemission charge per pulse as a function of the Flash-Ti laser energy for a sample from wafer #4505 measured at the GTL.
Figure 12 Conduction band energy level diagrams for a) a strained GaAs structure and b) a strained GaAsP structure.
Figure 13 Polarization and QE as a function of wavelength measured at low voltage in the CTS for a sample from wafer #5868.
Figure 14 The QE variation over ten days for a sample from wafer #5868 measured at the GTL.
Figure 15 The photoemission charge per pulse as a function of the laser energy before and after cesiation for a sample from wafer #5868 measured at the GTL.

Figure 16 The photoemission charge per pulse as a function of the laser beam diameter for a fixed laser energy for a) long pulse Flash-Ti laser and b) short pulse YAG-Ti laser.

Figure 17 The photoemission charge per pulse as a function of the laser energy for Flash-Ti only (open circles) and Flash-Ti and YAG-Ti overlaid (solid circles) measured at the GTL.

Figure 18 The photoemission charge per pulse as a function of the laser energy for 0.31% QE and 20 mm diameter spot (solid circles) and 0.25% QE and 14 mm diameter spot (open circles) measured at the SLAC injector.
FIGURE 1

<table>
<thead>
<tr>
<th>Layer</th>
<th>Dopant Concentration (cm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs Surface Layer</td>
<td>(5 \times 10^{19})</td>
</tr>
<tr>
<td>Active Layer</td>
<td>(5 \times 10^{17})</td>
</tr>
<tr>
<td>(\text{GaAs}_{1-x} \text{ P}_x)</td>
<td>(5 \times 10^{18})</td>
</tr>
<tr>
<td>(\text{Graded GaAs}{1-x'} \text{ P}{x'})</td>
<td>(5 \times 10^{18})</td>
</tr>
<tr>
<td>(x' = 0 \rightarrow x)</td>
<td></td>
</tr>
<tr>
<td>GaAs Buffer Layer</td>
<td>(5 \times 10^{18})</td>
</tr>
<tr>
<td>GaAs Substrate</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 2
FIGURE 3
FIGURE 5

Photodiode Signal (arb. units)

Slice 1

Slice 2

Time (µs)
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11
FIGURE 13
FIGURE 14

QE (%) at 780 nm

FIGURE 15

- **Charge (x10^{11} e / pulse)**
 - Laser Energy (µJ)

 - **Before Cesiation**
 - **After Cesiation**

 - **QE = 0.4 %**
 - **QE = 0.3 %**
FIGURE 17
\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure18}
\caption{FIGURE 18}
\end{figure}

- Laser Energy (\(\mu\)J)

- Charge (\(x10^{12}\) e\(^-\)/Pulse)

- QE = 0.31 %, \(= 20\) mm
- QE = 0.25 %, \(= 14\) mm