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Abstract

The coherent synchrotron radiation of a bunch in a bunch com-

pressor may lead to the microwave instability producing longitudinal

modulation of the bunch. This modulation generates coherent radia-

tion with the wave length small compared to the bunch length. It can

also be a source of an undesirable emittance growth in the compressor.

We derive and analyze the equation that describes linear evolution of

the microwave modulation. Numerical solution of this equation for

the LCLS bunch compressor reveals such an instability, in qualitative

agreement with numerical simulations.

�Work supported by Department of Energy contract DE{AC03{76SF00515.



1 Introduction

A relativistic electron beam in a bunch compressor can radiate coherently

if the wavelength of the radiation exceeds the length of the bunch. This

radiation results in an undesirable growth of the beam emittance [1], which

can however be cured (at least partially) by a special design of the compressor

[2].

As was pointed out in our paper [3], the coherent synchrotron radiation

of the beam can also be a source of modulation of the beam density at

wavelengths small compared to the bunch length. It follows from the results

of Ref. [3] that such modulation occurs at the wavelengths � that are larger

than the critical wavelength �0

� & �0 � �R

�
�
Æ20
nbre

�3=2

; (1)

with a typical growth rate

Im! � c�Æ0

�0
; (2)

where nb is the number of particles in the beam per unit length, 
 is the

relativistic factor, � is the momentum compaction number, re is the classical

electron radius, and Æ0 is the rms relative energy spread in the beam. Of

course, this instability occurs only if the synchrotron radiation at this wave-

length is not suppressed by the shielding e�ect of the conducting walls of the

vacuum chamber. Also, for a bunched beam, the wavelength �0 should be

much smaller then the length of the bunch.

The results of Ref. [3] refer to the microbunching instability in a ring,

however a similar e�ect can also occur in a bunch compressor where coherent

synchrotron radiation often plays a role. Indeed, the e�ect of microbunching

caused by CSR has been observed in computer simulations of the bunch

compressor [4] designed for the Linac Coherent Light Source (LCLS) at SLAC

[5]. Analytical estimates of the CSR e�ects in bunch compressors has been

recently published in Ref. [6].

In this paper we develop a linear theory of the microbunching in a bunch

compressor generated by the CSR wake�eld [7, 8]. We assume that the

shielding e�ect of the conducting walls on CSR is not important which is

usually true when the bunch length is short enough. We will also neglect the

transient e�ects in the CSR wake [9] occurring in short magnets.
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2 Basic equations

Consider a Gaussian bunch at the entrance to a bunch compressor with the

rms bunch length �l and the rms relative energy spread Æ0, Æ
2
0 = h(�E)2i=E2,

where E is the beam energy, and �E is the energy deviation. The distribu-

tion function of the bunch is

�in(z; Æ) =
N

2��lÆ0
exp

�
� z2

2�2
l

� Æ2

2Æ20

�
; (3)

where N is the number of particles in the bunch and z is the longitudinal

coordinate within the bunch with positive z corresponding to the head of

the bunch. The rf voltage Vrf of the acceleration section introduces the

Æ � z correlation in a bunch changing particle energy Æ ! Æ � uz, where

u = 2�Vrf=(�rfE), and �rf is the rf wave length. The distribution function

�(s; z; Æ) after acceleration (at the entrance to the dispersion section, s = 0)

takes form

�(0; z; Æ) =
N

2��lÆ0
exp

�
� z2

2�2
l

� (Æ + uz)2

2Æ20

�
: (4)

When bunch enters the dispersion section the coordinate z is transformed

z ! z + R56Æ. For concreteness, we assume that the parameter R56 in the

compressor is a positive function of s, then compression occurs if u is also

positive.

In the case when e�ect of the wake �elds is negligible, the equations of lon-

gitudinal motion are dÆ=ds = 0, dz=ds = R056Æ, where the prime denotes the

derivative with respect to s, and the distribution function in the compressor

is

�(s; z; Æ) =
N

2��lÆ0
exp

�
�(z � ÆR56)

2

2�2
l

� [Æ + u(z � ÆR56)]
2

2Æ20

�
: (5)

In the presence of the wake �eld W (z) the equations of motion are modi�ed

dÆ

ds
= �re




Z
dz0W (z � z0)n(s; z0) ;

dz

ds
= ÆR056 ; (6)

where n(s; z) =
R
�(s; z; Æ)dÆ. Equations of motion Eq. (6) corresponds to

the Vlasov equation for the beam density �(s; z; Æ),

@�

@s
+ ÆR056

@�

@z
� re




@�

@Æ

Z
1

�1

dz0W (z � z0)n(s; z0) = 0 : (7)
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For the wake we will assume a steady-state CSR wake which is valid for long

magnets and neglects the transient e�ects at the entrance to and the exit

from the magnet [9]. This wake can be written as [8]:

W (z) =
2

(3R2)1=3
@

@z

1

z1=3
; z � 0 ; (8)

where R is the curvature radius of a particle trajectory. The wake W (z) = 0

for z < 0. The derivative @=@z in Eq. (8) indicates that substituting the

wake in Eq. (7) one has to integrate by parts over z, which recasts the

integral into one that converges at z = 0.

3 Linearized equations for perturbation

We are interested here in the bunch modulation with the wave length much

smaller than the rms bunch length �l. In this case, we can neglect the spatial

variation of the beam density and instead of Eq. (3) consider a coasting

beam with the initial linear density nin and a Gaussian distribution in Æ,

�in(Æ) = (nin=
p
2�Æ0) exp(�Æ2=2Æ20). Eq. (5) then is reduced to

�0(s; z; Æ) =
ninp
2�Æ0

exp

�
� [Æ + u(z � ÆR56(s))]

2

2Æ20

�
: (9)

The beam density at the location s is given by the following equation

n0(s; z) =

Z
dÆ�0(s; z; Æ) =

nin

1� uR56(s)
; (10)

where (1 � uR56(s))
�1 is the compression factor. Note that in our model

of the coasting beam, the beam density n0 tends to in�nity when R56(s)

approaches 1=u. In what follows, we assume that 0 < R56(s) < 1=u.

It is easy to see, that the distribution function given by Eq. (9) satis�es

Eq. (7) because the beam density is independent of z and the integral term

in Eq. (5) vanishes.

To study the bunch stability consider a small perturbation �1 of the dis-

tribution function

�(s; z; Æ) = �0(s; z; Æ) + �1(s; z; Æ) : (11)
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The linearized Vlasov equation for �1 reads,

@�1

@s
+ ÆR056

@�1

@z
� re




@�0

@Æ

Z
dz0dÆ0W (z � z0)�1(s; z

0; Æ0) = 0 : (12)

Eq. (12) can be simpli�ed by using variables �, p instead of z and Æ:

� = z � R56(s)Æ; p = Æ + u(z � R56(s)Æ) ; (13)

with the inverse transform

Æ = p� u�; z = (1� uR56(s))� +R56(s)p ; (14)

and assuming that �1 is a function of s, � and p.

Let us consider a perturbation that is sinusoidal in � with the wave vector

k,

�1(s; �; p) = �̂1(s; p)e
ik� : (15)

In original variables z, Æ, this perturbation corresponds to the dependence

�1(s; z; Æ) = �̂1 (s; Æ(1� uR56(s)) + uz) eik(z�ÆR56(s)) ; (16)

and corresponds to a sinusoidally modulated distribution function �1(0; z; Æ) =

�̂1 (s; Æ) e
ikz at the entrance to the compressor (before the application of the

RF voltage). The perturbation of the bunch density n1(s; z) =
R
dÆ�1(s; z; Æ)

can now be found by integrating Eq. (16) which gives an explicit dependence

of n1 versus z, n1 / eikz=(1�uR56(s)). Note that the wavelength of the modula-

tion 2�(1� uR56(s))=k decreases during the bunch compression inversely to

the compression factor.

It is convenient to introduce a new function G(s) such that

n1(s; z) =
eikz=(1�uR56(s))

(1� uR56(s))8=3
G(s) : (17)

Introducing also a new variable � = R56(s)=(1� uR56(s)) which varies from

0 to1 when R56(s) varies from 0 to 1=u, we will consider G as a function of

�. As shown in Appendix A, the function G(�) satis�es the following integral

equation,

G(�) = G0(�) + (1 + u�)�5=3
Z �

0

d�0M(�; �0)G(�0) ; (18)
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where G0 is the initial value of G,

G0(�) =
1

(1 + u�)5=3

Z
dp�̂1(0; p)e

�ikp� ; (19)

and

M(�; �0) = �iA k�(�0)

R056(�
0)

Z
dp
@�0(p)

@p
e�ikp(���0) ; (20)

with

�(s) =
ninre


k2=3R(s)2=3
; (21)

and A = 1:63i� 0:94.

For a Gaussian distribution function given by Eq. (9), �0(p) = (1=
p
2�Æ0)

� exp(�p2=2Æ20), and the kernel M reduces to

M(�; �0) = A�(�0)k2Æ20(� � �0)e�(kÆ0(���0))2=2 ; (22)

where �(�) = �(�)=Æ20R
0

56(�). In numerical calculations we also assumed a

Gaussian initial perturbation, �̂1(0; p) = �0(p), which gives G0(�) = (1 +

u�)�5=3 exp(�(k�Æ0)2=2).
Eqs. (18)-(20) constitute a full set of equations that de�ne bunch modu-

lation n1(s; z) for s > 0.

It is interesting to note that in the absence of the wake�eld, when the

kernel vanishes, the solution of Eq. (18) is G = G0, and an initial density

perturbation exponentially decays in time n1 / exp(�(k�Æ0)2=2). The wake,
however, not only prevent this perturbation from decaying, but can actually

amplify it, as we will see below.

4 Comparison with storage ring

It is instructive to compare the results obtained above with the similar prob-

lem of the bunch stability in the storage ring [3]. The storage ring result

corresponds to the limit u! 0 and a linear dependance R56(s) = const��s,

where � is the momentum compaction of the ring. We also assume here a

constant bending radius R. In this limit � = const��s, and Eq. (18) reduces
to

G(�) = G0(�) +

Z �

0

d�0M(� � �0)G(�0) ; (23)
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where the kernelM given by Eq. (22) is now a function of the di�erence ���0
as explicitly indicated in Eq. (23). Note that the parameter � is constant in

this limit.

Eq. (23) can be solved by using the Laplace transform of G(�),

~G(
) =

Z
1

0

d�G(�)e�i
� ; (24)

where we use the complex variable i
 as the Laplace variable. Note that the

physical frequency ! is related to 
 by ! = 
c�.

Using the identity

Z
1

0

te�t2=2�i
tdt =
1p
2�

Z
1

�1

pe�p2=2dp

p+ 

; (25)

valid for Im
 < 0, Eq. (23) can be written in the form

~G(
) = ~G0(
) + ~G(
)
A�p
2�

Z
1

�1

pe�p2=2dp


=kÆ0 + p
; (26)

where ~G0(
) is the Laplace image of G0(�). The bunch stability is de�ned

by the dispersion equation

1 = �Aj�jp
2�

Z
1

�1

pe�p2=2dp


=kÆ0 + p
; (27)

which is obtained from Eq. (26) by dropping the G0 term on the right hand

side. The parameter j�j is equal to �=�Æ20. This equation agrees with the

dispersion relation obtained for the storage ring in Ref. [3] (see Eq. (7) of

Ref. [3]).

The analysis of the dispersion relation (27) carried out in Ref. [3] shows

that the system is stable for j�j < 0:62. Above the threshold, j�j > 0:62, the

imaginary part of 
 becomes positive and an initial perturbation exponen-

tially grows with s. For given beam parameters, the maximum growth rate

Im! occurs at a wavelength that correspond to the value of � = 1:3 and

is approximately given by Eq. (2). In the next section we will apply these

results for qualitative analysis of the situation with u 6= 0.
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5 Qualitative analysis and numerical solution

In the bunch compressor, when u > 0, Eq. (16) cannot be cast into a

dispersion relation similar to Eq. (27). However, an analysis based on the

results of the previous section provides valuable insight into the behavior of

the solution in this case.

Note that the parameter � in the kernel of Eq. (18) is multiplied by the

additional factor (1+u�)�5=3. De�ning an e�ective �e� as �e� = �(1+u�)�5=3

we see that �e� decreases with compression, and the beam becomes more

stable. Assuming that, for a given wavelength, � � 1 at the beginning

of the compressor, the perturbation will be unstable for small values of �.

If, however, the bunch compressor is long enough, so that at some point

�(1 + u�)�5=3 becomes smaller than the critical value of 0.6, one can expect

the suppression of the instability in this part of the compressor with the

initial exponential growth changing into an exponential decay.

2 4 6 8 10
kδ0ξ

0

0.5

1

1.5

2

n 1/n
0

1

2

Figure 1: Relative density perturbation n1=n0 as function of kÆ0� in the case

u = 0. Curve 1 { � = 0:5, curve 2 { � = 0:7.

To verify the prediction of this qualitative analysis, we wrote a computer

program that solves Eq. (18)) numerically. In the numerical algorithm,

the interval of interest 0 < � < �max is divided into nmax subintervals and

the unknown function G is de�ned at the mesh points of the grid. The

contribution of each subinterval into the integral of Eq. (18) is evaluated
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using linear interpolation of G. As a result, the integral equation (18) is

converted into a system of linear equations which can be solved numerically.

Typical values of nmax used in the calculation were between 1000 and 3000.

It was veri�ed that the obtained result did not depend on the size of the

mesh.

The numerical algorithm has been tested for the case u = 0 where we

found a good agreement with the dispersion relation described in the previous

section. For illustration, numerical solutions are shown in Fig. 1 for the

case u = 0 for two values of parameter � | below and above the critical

value �crit = 0:62. It is seen, that the solution grows or decays depending on

whether the value of � is below or above the threshold. A more detailed study

demonstrates also an agreement between the growth rates found numerically

and the ones computed from the dispersion relation.

0 5 10 15 20
k∆0Ξ

0

2.5

5

7.5

n 1
�n 0,Μ eff

Figure 2: Relative density perturbation n1=n0 (upper curve) and �e� (lower

curve) as functions of kÆ0� in the case u = 0:1kÆ0 and � = 10. The dot shows

the point where �e� reaches the critical value of 0.62.

A numerical solution with u = 0:1kÆ0 and � = 10 is shown in Fig. 2 for a

linear dependence of R56(s). We also plot the value of �e�(s) which according

to the qualitative analysis above is correlated with the growth and decay of
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the density perturbation. As one can see, indeed in the region where �e�(s)

is smaller than the critical value 0.62, the solution is unstable; it stabilizes

and begins to decay when �e� drops below approximately the critical value.

6 LCLS bunch compressor

The second LCLS compressor BC2 consists of eight dipole magnets of length

0.8 m. It is located at the point in the linac where the beam energy is equal to

4.5 GeV, and compresses the rms bunch length �l from 195 microns down to

22 microns, (see [5]). Other relevant parameters of the bunch compressor are:

uncorrelated rms relative energy spread at the entrance to the compressor

Æ0 = 1:6 � 10�5, number of particles in the bunch N = 6:5 � 10�9, the energy
chirp parameter u in Eq. (4) is 41 m�1. The bending radius in the �rst 4

magnets is 16.2 meters, and the last four | 37.2 meters. The calculated R56

as a function of s is shown in Fig. 3.

0 5 10 15 20
s, HmL0

0.5

1

1.5

2

R
56

,HcmL

Figure 3: Plot of R56 for the LCLS bunch compressor.

We calculated the microbunching e�ect in the bunch compressor by nu-

merically solving Eq. (18) . We assumed a Gaussian distribution of the beam

density and used the relation for the linear particle density nin = N=
p
2��l.

We also assumed initial Gaussian distributions for �0(Æ) and �̂1(0; Æ) with the

rms value of the relative energy spread Æ0. At the entrance to the compressor,
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an initial density perturbation ninit
1 with the wavelength � has been speci�ed

and the ratio jn1(s; z)j=n(s) has been calculated throughout the compressor,

where n1 is given by Eq. (17) (note, that the absolute value jn1(s; z)j is a
function of s only). The ampli�cation factor P for the density perturbations

is de�ned as

P (s) =
jn1(s; z)j
n(s)

nin

ninit
1

; (28)

which characterizes the growth of the relative density perturbation of the

beam (note that the linear beam density n(s) grows by a factor of (1 �
uR56)

�1 � 10 at the end of the compressor).
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Figure 4: The logarithm of the ampli�cation factor P for three values of �:

1 { � = 10�m, 2 { � = 5�m, 3 { � = 1�m.

The results of calculation are shown in Fig. 4. As one can see, according

to the linear theory, the initial density perturbation with the initial wave-

length in the range of 1 to 10 microns will grow several orders in magnitude

over the length of the compressor. Of course, the linear theory is only valid

if n1(s)=n(s)� 1 and the large values of the ampli�cation factor mean that

the density perturbation will most likely grow into a nonlinear regime and

saturate at the level where n1(s)=n(s) � 1. One has also keep in mind that

the wavelength of the perturbation � is also compressed by the same factor
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(1�uR56)
�1, so, for example, an initial 10 micron perturbation is transformed

into approximately 1 micron wavelength at the end.

It is important to emphasize here that the wake Eq. (8) used in this

paper may not be applicable for very short wavelength. Indeed, this wake

was derived for a bunch that is in�nitely thin in the transverse direction and

assumes that all particle in the cross section of the bunch radiate coherently.

However, the transverse coherence length l? � �2=3R1=3 decreases with the

wavelength and at some point becomes smaller than the transverse dimension

of the beam. For such wavelength, one has to use a wake that takes into

account the transverse dimension of the beam.

Note also, that the formation length of the radiation involved is actually

comparable with the length of the magnets, which means that the true wake

in this case may somewhat di�er from the steady-state expression Eq. (8).

7 Conclusion

In this paper, we developed a linear theory describing self-induced microbunch-

ing of a beam in a bunch compressor. The microbunching is a result of the

microwave instability driven in a self-consistent way by the coherent syn-

chrotron radiation of the short-wavelength modulation produced by the in-

stability. An integral equation is derived that governs the development of

initial sinusoidal density perturbation in the beam, assuming a steady-state

CSR wake.

Numerical calculation for the LCLS bunch compressor shows that an

initial density perturbation with a wavelength in the range 1{10 micron may

be ampli�ed by several orders of magnitude over the length of the compressor.

In reality, however, such ampli�cation will most likely be limited by nonlinear

saturation of the beam modulation, which will set up both the typical length

and the �nal amplitude of the microbunching. A more realistic theory has

also to include a wake that takes into account the �nite length of the magnets

and transverse dynamics of the particles.
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Appendix A

Introducing the new variables � and p given by Eqs. (13) we cast Eq. (12)

to the following one�
@�1

@s

�
�;p

=
re




@�0

@Æ

Z z

�1

dz0dÆ0W (z � z0)�̂1(s; z
0; Æ0)

=
2re

(3R(s))1=3


@�0

@Æ

Z z

�1

dz0dÆ0

(z � z0)1=3
@

@z0
�̂1(s; z

0; Æ0) : (A1)

Here, in the left-hand-side (LHS) the partial derivative with respect to s is

taken for constant values of � and p, and on the right-hand-side we used Eq.

(8) for the wake and integrated by parts over z0.

Let us consider a perturbation of the distribution function given by Eq.

(15). Using the invariance of the phase volume dzdÆ = dpd� and transforming

to the variables p0 and � 0 in the RHS of Eq. (A1) we obtain

@�̂1

@s
= �A�(s)(1� uR56(s))

2=3@�0(p)

@pZ
1

�1

dp0
�
u
@�̂1(s; p

0)

dp0
+ ik�̂1(s; p

0)

�
exp

�
ikR56(s)(p� p0)

1� uR56(s)

�
:

(A2)

Here

�(s) =
ninre


k2=3R(s)2=3
; (A3)

and we have used Z x

�1

d�

(x� �)1=3
eik� = �31=3A

2k2=3
eikx ; (A4)

where A = 3�1=3�
�
2

3

� �p
3i� 1

�
= 1:63i� 0:94, with � the gamma-function.

Assuming that �̂1(s; p) ! 0 when jpj ! 1 and integrating Eq. (A2) by

parts yields

@�̂1(s; p)

@s
= � ikA�(s)

(1� uR56(s))1=3
@�0(p)

@p
g(s) exp

�
ikR56(s)p

1� uR56(s)

�
; (A5)

where

g(s) =

Z
1

�1

dp�̂1(s; p) exp

�
� ikR56(s)p

1� uR56(s)

�
: (A6)
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Integrating Eq. (A5) over s from the entrance to the bunch compressor

s = 0 to the current position s yields

�̂1(s; p) = �̂1(0; p)� ikA
@�0

@p

Z s

0

ds0�(s0)g(s0)

(1� uR56(s0))1=3
exp

�
ikR56(s

0)p

1� uR56(s0)

�
;

(A7)

where �̂1(0; p) is the initial value of �̂1 at s = 0. Combining Eq. (A6) and

Eq. (A7), we obtain the integral equation for g(s):

g(s) = g0(s) +

Z s

0

ds0K(s; s0)g(s0) ; (A8)

where,

g0(s) =

Z
1

�1

dp�̂1(0; p) exp

�
� ikR56(s)p

1� uR56(s)

�
; (A9)

and the kernel

K(s; s0) =
�ikA�(s0)

(1� uR56(s0))1=3

Z
1

�1

dp
@�0

@p
exp

�
ikpR56(s

0)

1� uR56(s0)
� ikpR56(s)

1� uR56(s)

�
;

(A10)

The perturbation of the bunch density n1(s; z) =
R
dÆ�1(s; z; Æ) can now

be found by integrating Eq. (16) and using Eq. (A6)

n1(s; z) =
g(s)

1� uR56(s)
exp

�
ikz

1� uR56(s)

�
: (A11)

Introducing a new variable � = R56(s)=(1� uR56(s)) and a new function

G = g(s)(1� uR56(s))
5=3 we will consider G as a function of �. Note that

1 � uR56(s) = 1=(1 + u�) and g(s) = G(�)(1 + u�)5=3. From Eq. (A8) it

follows

G(�) = G0(�) + (1 + u�)�5=3
Z �

0

d�0M(�; �0)G(�0) ; (A12)

where

G0(�) =
1

(1 + u�)5=3

Z
dp�̂1(0; p)e

�ikp� ; (A13)

and

M(�; �0) = �iA k�(�0)

R056(�
0)

Z
dp
@�0(p)

@p
e�ikp(���0) : (A14)

The perturbation of the bunch density in terms of the function G(�) is

given by the following equation

n1(s; z) = (1 + u�)8=3eikz(1+u�)G(�) : (A15)
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