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Studies of threshold production of top quark pairs will
provide information about Standard Model parameters
and a window to “New Physics” phenomena. Because
the t quark decays fast compared to the strong interac-
tion time scale, even the threshold top pair production
in e+e− or γγ collisions can be described using perturba-
tive QCD [1]. However, close to the threshold, the cross
section is enhanced by the strong attraction between the
quark and the antiquark and an all-order resummation
of the Coulomb effects is required. The magnitude of
the threshold cross section and the position of its peak
are sensitive to the top quark mass and width, as well as
the strong coupling constant αs, and can help determine
those parameters with high precision [2, 3]. In addition,
precision measurements in the threshold region at the
Next Linear Collider (NLC) will probe electroweak inter-
actions of the t quarks and be sensitive to “New Physics”.

A particularly interesting environment for studying
“New Physics” effects in the top production is the γγ
collider mode of the NLC, with laser beams backscat-
tered from the high-energy e+ and e− as the source of
the colliding photons [4]. It has been pointed out [5, 6]
that the process γγ → tt̄ is twice as sensitive to anoma-
lous photon-top quark couplings as e+e− → tt̄, and in
addition is free from contamination by the Ztt̄ coupling.
It will therefore allow searches for anomalous couplings
of the top quark to photons, in particular the electric
dipole moment. Although precision studies might be fea-
sible only at the NLC, the observation of γγ → tt̄ may
be possible already at the LHC [7].

Although the threshold production cross section can be
computed perturbatively, it is not clear how well the se-
ries converges. Recently, the renormalization group tech-
nique was employed [8] to sum up large logarithmic cor-
rections appearing in threshold problems. It was applied

to σ(e+e− → tt̄) at the threshold in [9] and an achieve-
ment of a 3% accuracy in the normalization of the cross
section was claimed. However, it is conceivable that pos-
sible large non-leading-logarithmic effects may spoil this
picture. To a large extent, study of the tt̄ threshold pro-
duction cross section in the γγ mode might help in an as-
sessment of the situation and provide an additional test
of the assumptions of the resummation program.

In general, behavior of the tt̄ threshold cross sections
is rather similar in e+e− and γγ collisions; the difference
comes from the fact that the quarks are mainly produced
in spin one and spin zero state in e+e− and γγ collisions,
respectively. Since the Coulomb interaction does not de-
pend on the spin, this fact does not affect the behavior
of the leading order cross section but, since relativistic
corrections do depend on the total spin of the produced
fermion pair, it becomes important in higher orders.

There is yet another interesting feature of the top
quark threshold production in γγ collisions [4]. In con-
trast to an e+e− collider, manipulating polarization of
the incoming photons can suppress the S-wave produc-
tion and provide a possibility to study the P -wave thresh-
old production without the huge S-wave background. All
these features of the top quark threshold in γγ collisions
make it a very interesting laboratory for studying the
non-relativistic QCD dynamics of a heavy quark anti-
quark system, determining the standard model parame-
ters, and searching for “New Physics”.

A known problem with this program is the monochro-
maticity of the photon beams at the NLC where a typical
energy spread is currently estimated to be about 10% of
the total energy (see e.g. [10]). This may hamper the
threshold studies since a large energy spread will wash
out any pronounced signal at the top threshold. It re-
mains to be seen if this difficulty can be overcome.
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Much effort has already been spent on theoretical
studies of σ(γγ → tt̄) with polarized photons. Away
from the threshold, one-loop QCD corrections were com-
puted in [11]. Close to the threshold, the cross section
σ(e+e− → tt̄) has been studied in NLO in [4]. Recently,
studies of NNLO corrections to σ(e+e− → tt̄) were com-
pleted and the appropriate effective field theory frame-
work for studying higher order corrections to the thresh-
old phenomena was formulated (see [3] and references
therein). Applying similar techniques to γγ → tt̄, it is in
principle straightforward to obtain the NNLO corrections
to this process; the major obstacle has been the lack of
the two-loop matching coefficient for an effective opera-
tor responsible for the leading order transition γγ → tt̄
at the threshold. In this paper we describe the calcula-
tion of this matching coefficient and present the NNLO
corrections to σ(γγ → tt̄) at the threshold.

Close to the threshold, the produced top quarks are
non-relativistic so that it is reasonable to expand the pro-
duction amplitudes in powers of the relative velocity β
of t and t̄. The Born amplitude for γγ → tt̄ with O(β2)
accuracy can be written as

M = −8iπαQ2
tφ

+ [MS +MP ]χ, (1)

where Qt = 2/3 is the electric charge of the top quark, φ
and χ are the top and anti-top spinors. The amplitudes
that give rise to the production of the tt̄ state in S and
P waves are, respectively

MS =

(
1 +

(~p~n)2

m2
− ~p2

2m2

)
i~n · [~e1 × ~e2], (2)

MP =
(~p~n)(~σ~n)(~e1~e2) + (~p~e1)(~σ~e2) + (~p~e2)(~σ~e1)

m
.

In these formulas, ~n is a unit vector along the photon
flight direction, ~p is the top quark three-momentum and
~e1,2 are the polarization vectors of the colliding photons.
From now on we will consider the incoming photons to
be circularly polarized. If the two photons have opposite
polarizations, the S wave production amplitude vanishes.
As a consequence, only MP contributes to the top pro-
duction and the cross section at the threshold behaves as
σ+− ∼ β3. If the photon helicities are the same, the top
quarks are mainly produced in the S wave with a small
admixture of the P wave appearing in the NNLO.

It is customary to define a normalized unpolarized
cross section, Rγγ = σ(γγ → tt̄)/σ0, with σ0 =
4πα2/(3s), and decompose it into contributions with the
same and opposite photon helicities, Rγγ = (R++ +
R+−)/2, where we have used R++ = R−− and R+− =
R−+, valid for electromagnetic processes. Let us con-
sider the case of the two photons with equal helicities
and select the contribution of the S wave. (The case
of the P wave production has been investigated earlier
in the literature (for the most recent discussion see [12])
and, because of its relative O(β2) suppression, we do not
have much to add to this issue.) In case of the S wave,

the quarks are produced in a spin singlet state. The ex-
pression for the cross section in the regime αs � β � 1
reads:

R++
S = 6Q4

tNcβ

(
1− β2

3

)

·
[
1 + CF

(αs
π

)
∆(1) + CF

(αs
π

)2

∆(2)

]
, (3)

where β =
√

1− 4m2/s. Also,

∆(1) =
π2

2β
−
(

5− π2

4

)
+
π2

2
β + O

(
β2
)
. (4)

The two-loop corrections can be decomposed into four
parts, arising from the abelian and non-abelian gluon ef-
fects, and to light quark and top quark vacuum polar-
ization insertions in the one-loop correction. Neglecting
terms of O (β), the two-loop corrections are

∆(2) = CF∆A + CA∆NA + TRNL∆L + TRNH∆H , (5)

∆A =
π4

12β2
+

(
−5

2
+

1

8
π2

)
π2

β

+
27

8
π2 +

25

4
+

35

192
π4 − 2π2 ln(2β) + 2xA;

∆NA =

(
31

72
− 11

12
ln(2β)

)
π2

β

+π2

(
5

4
− ln(2β)

)
+ 2xNA;

∆L =

(
− 5

18
+

1

3
ln(2β)

)
π2

β
+ 2xL;

∆H = 2xH . (6)

In the above formulas the terms xA, xNA, xL, xH are
related to the hard renormalization of the operator
φ+~n · [~e1 × ~e2]χ responsible for γγ → tt̄ transition at
the threshold:

xA = −21.02; xNA = −4.79;

xL = −0.565; xH = 0.224. (7)

To evaluate the hard renormalization factors we
have used some of the results obtained for the para-
positronium decay [13, 14]. In addition, to find xNA
which is our main new result here, we had to evaluate
the non-abelian diagrams (see Fig. 1(a-e)) and massless
insertions in the one-loop diagrams (an example is shown
in Fig. 1(f)). Here we briefly summarize those calcula-
tions. Diagram 1(a) is the simplest two-loop non-abelian
contribution. It is both ultraviolet (UV) and infrared
(IR) finite and we evaluate it using Monte Carlo inte-
gration over six Feynman parameters. (We use FORM
[15] for symbolic manipulations and Vegas [16] for nu-
merical integrations.) Diagram 1(b) is UV divergent. To
compute it we use a trick: assign mass M to the quark
line (inside the loops) and expand the diagram in the
ratio t = m2/M2, treating M as much larger than m.
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(a) (b) (c)

(d) (e) (f)

FIG. 1: Examples of non-abelian hard corrections to γγ → tt
computed in this paper. In addition, we include diagrams
similar to (f) with gluon, Faddeev-Popov ghost and fermion
loops inserted in all one-loop corrections.

At the end we have to evaluate the sum of the resulting
series at t = 1. It is sufficient to compute only a few
first terms of the series in t if we change the variables,
t → −4w/(1 + w)2, expand in w, and evaluate the new

series at w = 2
√

2− 3 ' −0.17.

Diagrams (c) and (d) are also UV-divergent, with a
subdivergence in the non-abelian vertex correction and
an overall divergence. It is useful to first remove the
subdivergence by subtracting a product of one-loop di-
agrams which can be evaluated analytically. Next, the
remaining overall divergence is removed by subtracting
a similar two-loop amplitude which depends either only
on the external quark momentum (for (c)) or only on the
spatial photon momentum (for (d)). The resulting finite
integrals are evaluated with Vegas, while the subtracted
divergent pieces can be computed either exactly (for (c))
or with the expansion used for the diagram (b).

The only IR-divergent non-trivial two-loop diagram
is (e). It also contains a UV-subdivergence which we
remove in the same way as in (c) and (d). The IR-
divergence is subtracted by neglecting the loop momen-
tum in the “t-channel” quark propagator. That subtrac-
tion can be computed analytically, since it is simply a
2-loop vertex diagram at threshold, of the type for which
we developed a general algorithm in an earlier study [17].
The finite difference is evaluated with Vegas.

We did not include effects of the γγ → gg scattering
via light quark boxes. We have checked with a rough
approximation that this finite and gauge-invariant subset
contributes only insignificantly.

Using the result (3) it is easy to obtain the top thresh-
old production cross section for the photons with equal
helicities close to the threshold. In doing that, we follow
the approach described in Ref. [18]. Let us first present
a general formula for the resummed cross section for two

different choices of the photon helicities. We find:

R++
S =

24πNcQ
4
t

m2
t

Ch

×Im

{(
1− 5

6
β2

)
Gsing (0, 0, E + iΓt)

}
, (8)

where Ch is the hard renormalization factor and Gsing

is the Green’s function of the spin singlet state of the tt̄
pair including relativistic corrections and corrections to
the Coulomb potential (see [18] for details).

As we already mentioned, there is also a P wave contri-
bution to the ++ cross section at NNLO. It is suppressed
by O(β2) relative to the S wave and working to NNLO
we need to know it only to leading order. Since for the
photon helicities +− the top pair is also produced in the
P wave, there is a leading-order relation between R++

P
and R+−,

R+− =
4

3
R++
P , (9)

R+− =
32πQ4

tNc
m4
t

∂x∂yImG (x,y, E + iΓt) |x=0,y=0.

Numerically (see e.g. [12]) the P wave contribution is
small; the corresponding values of R+− are ∼ 5× 10−2.
For this reason, we do not consider the P wave contribu-
tion in what follows. In Fig. 2 we present the LO, NLO
and NNLO excitation curves forR++

S computed using the
pole mass of the top quark. As is clearly seen from this
plot, the NNLO corrections to the normalization of the
cross section are quite large: close to the peak they are
about 20 − 30%. The position of the peak of the cross
section from which the mass of the top quark is to be
determined suffers from significant shifts when one goes
from LO to NNLO. All these features are quite similar
to the known behavior of e+e− → tt̄ at the threshold [3].

Let us now address these problems in turn. It was ar-
gued [19, 20] in connection with the threshold production
of tt̄ in e+e− collisions that significant shifts in the po-
sition of the peak are the consequences of the fact that
the pole mass scheme is unstable against radiative correc-
tions. The way out of this problem is to adopt a different
mass definition which will have such a stability. In Fig. 3
we show the S-wave part of the cross section, parame-
terized by the so-called kinetic mass [21]. We observe
that the stability of the peak does improve significantly,
a behavior familiar from e+e− → tt̄ studies.

Let us now discuss the corrections to the peak height.
Again, the situation is similar to e+e− → tt̄ but the cor-
rections are larger. Since the height of the cross section
is controlled by the wave function at the origin, ψ(0), of
the tt̄ ground state, it is easy to understand what is hap-
pening by looking at the lnαs enhanced corrections to
ψ(0) computed in [22]. Neglecting effects of the running
of the coupling constant, they read

ψ2(0) = ψ2
0(0)

[
1− α2

s lnαs (7.55− 1.19 S(S + 1))

+α3
s ln2 αs (−9.48 + 0.99 S(S + 1))

]
. (10)
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E [GeV]
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NLO

µ = 30 GeV 60 GeV

NNLO

344 346 348 350 352
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1

1.5
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2.5

FIG. 2: R++
S at LO, NLO and NNLO. Top quark pole mass

mt = 175.05 GeV width Γt = 1.43 GeV are used. The hard
renormalization scale and the factorization scale are equal to
the top quark mass (αs(mt) = 0.109). The soft renormaliza-
tion scale is 60 GeV (αs(60 GeV) = 0.127) but we also show
the NNLO curve for the soft renormalization scale 30 GeV to
demonstrate large changes with the coupling constant scale
variation.

E [GeV]

µ = 30 GeV 60

NNLO

344 346 348 350 352

0

0.5

1

1.5

2

FIG. 3: R++
S parameterized with the kinetic mass

mkin(15 GeV) = 173.10 GeV. Other parameters are the same
as in Fig. 2. Dashed, dashed-dotted and solid curves are LO,
NLO and NNLO approximations, respectively.

The O(α3
s) (N3LO) leading logarithmic effects are in-

cluded in this formula. From Eq. (10) one sees that there
is, effectively, a compensation between spin-dependent
and spin-independent terms in the correction to the wave
function at the origin; since the top quarks are produced
in the spin-singlet state in γγ → tt̄, the corrections in
this case are expected to be larger than in e+e− → tt̄.
Note also that in both cases the α3

s lnαs corrections are
negative, so that the NNLO curves shown in Fig. 2 are
expected to be pushed down in N3LO, which clearly il-
lustrates the sign-alternating nature of the perturbative
series. The success of the resummation program [9] for
e+e− → tt̄ is related to this property of the series; for this
reason one can expect a significant improvement in the

E [GeV]

LO

NLO

NNLO, µ = 60 GeV

NNLO, µ = 30 GeV

344 346 348 350 352

1.8

1.9

2

2.1

2.2

FIG. 4: The ratio of R++
S and Re in the threshold region at

LO, NLO and NNLO (with two different soft renormalization
scales) parameterized by kinetic mass mkin(15 GeV).

stability of the height of the cross section also in γγ → tt̄
once the resummation program is carried out.

It is also interesting to consider the ratio of the top
threshold production cross sections in e+e− and γγ col-
lisions, plotted in Fig. 4. We see that the ratio is energy
independent at LO and NLO, since in these orders the
spin of the tt̄ pair decouples. However, at the NNLO the
non-relativistic Hamiltonian depends on the spin of the
tt̄ pair and the ratio of the cross-sections becomes energy
dependent. This results in large corrections to the ratio
in the vicinity of the peak. Away from the peak where
the bound state dynamics is not very important and the
ratio is, essentially, given by the hard renormalization
factors of the production currents, the convergence of
the perturbative series for the ratio is quite good.

The NNLO corrections to the top pair threshold pro-
duction in γγ collisions, which we have completed by
evaluating the non-abelian hard renormalization factor,
turn out to be large. This is similar to the process
e+e− → tt̄. In both cases we see that the position of
the cross section peak is stabilized when a short-distance
quark mass definition is used, but the height of the peak
is changed significantly by the NNLO corrections. We
have argued that the structure of the NNLO corrections
to γγ → tt̄ at the threshold is rather similar to that of
e+e− → tt̄; in particular the normalization of the cross
section is determined by sign-alternating series. This
suggests that if the renormalization group improvement,
applied to e+e− → tt̄ in [9] is applied to γγ → tt̄, one
can expect significant improvement in the stability of the
normalization of the production cross section. For this
reason, in the future, it would be interesting to resum
the logarithmic corrections O (ln(β)) for γγ → tt̄, along
the lines of such an analysis for the e+e− annihilation
[9]. We hope that a combined analysis of both processes
will shed new light on the behavior of higher-order cor-
rections to the threshold processes and allow to reach
better theoretical precision.



5

A.C. thanks A. S. Yelkhovsky for helpful discussions.
This research was supported in part by the Natural Sci-

ences and Engineering Research Council of Canada and
by the DOE under grant number DE-AC03-76SF00515.

[1] V. S. Fadin and V. A. Khoze, JETP Lett. 46, 525 (1987),
[Pisma ZhETF 46 417 (1987)]; Sov. J. Nucl. Phys. 48,
309 (1988), [Yad. Fiz. 48, 487 (1988)].

[2] E. Accomando et al., Phys. Rept. 299, 1 (1998).
[3] A. H. Hoang et al., Eur. Phys. J. direct C3, 1 (2000).
[4] I. I. Bigi, F. Gabbiani, and V. A. Khoze, Nucl. Phys.

B406, 3 (1993).
[5] J. L. Hewett, Int. J. Mod. Phys. A13, 2389 (1998).
[6] E. Boos et al., hep-ph/0103090.
[7] K. Piotrzkowski, Phys. Rev. D63, 071502 (2001).
[8] M. E. Luke, A. V. Manohar, and I. Z. Rothstein, Phys.

Rev. D61, 074025 (2000).
[9] A. H. Hoang, A. V. Manohar, I. W. Stewart and

T. Teubner, Phys. Rev. Lett. 86, 1951 (2001) and hep-
ph/0107144.

[10] T. Abe et al., Resource Book for Snowmass 2001, hep-
ex/0106058.

[11] B. Kamal, Z. Merebashvili, and A. P. Contogouris, Phys.
Rev. D51, 4808 (1995).

[12] A. A. Penin and A. A. Pivovarov, Nucl. Phys. B550, 375

(1999).
[13] A. Czarnecki, K. Melnikov, and A. Yelkhovsky, Phys.

Rev. Lett. 83, 1135 (1999), E: ibid. 85, 2221 (2000).
[14] A. Czarnecki, K. Melnikov, and A. Yelkhovsky, Phys.

Rev. A 61, 052502 (2000), E: ibid. 62, 059902 (2000).
[15] J. A. M. Vermaseren, math-ph/0010025.
[16] G. P. Lepage, J. Comp. Phys. 27, 192 (1978), and Cornell

preprint CLNS-80/447.
[17] A. Czarnecki and K. Melnikov, Phys. Rev. Lett. 80, 2531

(1998).
[18] K. Melnikov and A. Yelkhovsky, Nucl. Phys. B528, 59

(1998).
[19] M. Beneke, Phys. Lett. B434, 115 (1998).
[20] A. H. Hoang, M. C. Smith, T. Stelzer, and S. Willen-

brock, Phys. Rev. D59, 114014 (1999).
[21] I. Bigi, M. Shifman, N. Uraltsev, and A. Vainshtein,

Phys. Rev. D56, 4017 (1997).
[22] B. A. Kniehl and A. A. Penin, Nucl. Phys. B577, 197

(2000).

http://arXiv.org/abs/hep-ph/0103090
http://arXiv.org/abs/hep-ph/0107144
http://arXiv.org/abs/hep-ph/0107144
http://arXiv.org/abs/hep-ex/0106058
http://arXiv.org/abs/hep-ex/0106058
http://arXiv.org/abs/math-ph/0010025

