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Abstract

These lectures provide a basic overview of topics related to the study of CP
Violation in B decays. In the first lecture, I review the basics of discrete symmetries
in field theories, the quantum mechanics of neutral but flavor-non-trivial mesons, and
the classification of three types of CP violation [1]. The actual second lecture which
I gave will be separately published as it is my Dirac award lecture and is focussed on
the separate topic of strong CP Violation. In Lecture 2 here, I cover the Standard
Model predictions for neutral B decays, and in particular discuss some channels of
interest for CP Violation studies. Lecture 3 reviews the various tools and techniques
used to deal with the hadronic physics effects. In Lecture 4, I briefly review the
present and planned experiments that can study B decays. I cannot teach all the
details of this subject in this short course, so my approach is instead to try to give
students a grasp of the relevant concepts and an overview of the available tools. The
level of these lectures is introductory. I will provide some references to more detailed
treatments and current literature, but this is not a review article so I do not attempt
to give complete references to all related literature. By now there are some excellent
textbooks that cover this subject in great detail [1]. I refer students to these for more
details and for more complete references to the original literature.
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1 Lecture 1: Preliminaries: Symmetries, Hermitic-

ity, Rephasing Invariance

We begin with the basics of symmetries in Lagrangian Field Theory. Physicists use the
term symmetry to denote an invariance of the Lagrangian, and thus of the associated
equations of motion, under some change of variables. Such changes can be local, that
is coordinate dependent, or global; and they can be a continuous set or a discrete set
of changes. The value of such symmetries lies in the simplification they achieve by
limiting possible terms in the Lagrangian and by their relationship to conservation
laws and the conserved quantum numbers that then characterize physical states. The
invariance may be with respect to coordinate redefinitions, as in the case of Lorentz
Invariance, or field redefinitions, as in the case of gauge invariance. The particular
invariances of interest to us in these lectures are the global discrete invariances known
as C, P , and T . These are charge conjugation or C (replacement of a field by its
particle-antiparticle conjugate), parity or P (sign reversal of all spatial coordinates),
and time reversal or T (sign reversal of the time coordinate, which reverses the role
of in and out states). Table 1 shows the effect of these operations on a Dirac spinor
field ψ, and Table 2 summarizes the effect of the particular combination CP on some
quantities that appear in a gauge theory Lagrangian. In Table 2, the symbol (−1)µ

denotes a factor +1 for µ = 0 and -1 for µ = 1, 2, 3.

Table 1: The operation of P ,C, and T on a Dirac spinor field

Pψ(t, x)P = γ0ψ(t,−x) ,

Tψ(t, x)T = −γ1γ3ψ(−t, x) ,

Cψ(t, x)C = −i(ψ(t, x)γ0γ2)T

Table 2: The effect of a CP transformation on various quantities

term ψiψj iψiγ
5ψj ψiγ

µψj ψiγ
µγ5ψj

CP -transformed term ψjψi −iψjγ
5ψi −(−1)µψjγ

µψi −(−1)µψjγ
µγ5ψi

term H A W±µ ∂µ

CP -transformed term H −A −(−1)µW∓µ (−1)µ∂µ

When constructing a field theory we always require locality, the symmetries of
Lorentz Invariance, and hermiticity of L. That is sufficient to make any field theory
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automatically also invariant under the product of operations CPT . In many theo-
ries, for example for QED with fermion masses included, the combination CP , and
thus also T are also separately automatic. This is the reason why the experimental
discovery that CP is not an exact symmetry of nature caused such a stir. All the
field theories that had been studied up to that time had automatic CP conservation.
So we need to examine how CP non-conservation manifests itself, and then ask what
theories will give such effects.

CP non-conservation shows up, for example, as a rate difference between two
processes that are the CP conjugates of one-another. How can such a rate difference
appear? Consider a particle decay for which two different terms in the Lagrangian
(two different Feynman diagrams) give possible contributions. The amplitude for
such a process can be written as

A = A(A → B) = g1r1e
iφ1 + g2r2e

iφ2 . (1)

Here g1 and g2 are two different, possibly complex, coupling constants in the the-
ory. The transition amplitudes corresponding to each coupling are written as reiφ

to emphasize that they too can have both a real part or magnitude and a phase or
absorptive part. The physical source of this phase is that there may be multiple real
intermediate states which can contribute to the process in question via rescattering
effects. In the jargon of the field the phases φ are called strong phases because the
rescattering effects among the various coupled channels are dominated by strong in-
teractions. These phases are the same for a process and its CP conjugate because
the CP -related sets of intermediate states must contribute the same absorptive part
to the two processes. The phases of the coupling constants are often called weak
phases because, in the Standard Model, the relevant complex couplings are in the
weak interaction sector of the theory. When we look at the amplitude for the CP
conjugate process we find

A = A(A → B) = g∗1r1e
iφ1 + g∗2r2e

iφ2 . (2)

Note that the phases of the coupling constants change sign between any process and
its CP conjugate process, while the strong phases, which arise from absorptive parts
in the amplitudes, do not.

So now let us calculate the CP -violating difference in rates for these two processes.
With a little algebra we find

|A|2 − |A|2 = 2r1r2Img1g
∗
2 sin(φ1 − φ2) . (3)

This shows that the effect will vanish if the two coupling constants can be made
relatively real. In addition it depends on the difference of strong phases in the two
amplitude contributions, and vanishes if this quantity is zero. Such a CP violation
in the comparison of two CP -related decay rates is often called direct CP violation.
I prefer the more descriptive term CP violation in the decay amplitudes. Whatever
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you choose to call it, this effect is characterized by the condition |A/A| 6= 1. It is
obvious that in any process where there is only a single contributing term in the decay
amplitude the phase of the coupling constant is irrelevant and |A/A| = 1 is automatic.
You need two different couplings contributing, with non-zero relative phase of the two
couplings to see any CP violation.

This statement applies for al types of CP violation. The phase of any single
complex coupling in a Lagrangian is not a physically meaningful quantity. In general
it can be redefined, and even made to vanish by simply redefining some field or set
of fields by appropriate phase factors. But such rephasing of fields can never change
the relative phase between two couplings (or products of couplings) that contribute
to the same process. Both contributing terms must involve the same nett set of fields,
and hence both change in the same way under any rephasings of those fields. These
rephasing-invariant quantities are the physically meaningful phases in any Lagrangian,
the existence of such a quantity signals the possibility of CP violation.

The second feature we note is that the CP -violating rate difference in Eq. (3)
also depends on a difference of strong phases. Typically, this makes it difficult to
calculate. Strong phases are, in general, long-range strong interaction physics effects,
not amenable to perturbative calculation. One of the things that makes the decays of
neutral but flavored mesons particularly interesting is that there we find other types
of CP -violation effects where the role played here by the strong phases is replaced by
other coupling constant phases, those relevant to the processes that mix the meson
with its CP (and thus also flavor) conjugate meson. In such a case we may be able
to relate a measured CP violation directly to phase-differences in the Lagrangian
couplings, with no need to calculate any strong-interaction quantities. Only in the
case of neutral but flavor non-trivial mesons can such mixing-dependent effects occur.

We have seen that only a theory with two coupling constants that are not relatively
real can give CP violation. Thus we only can have CP violation in a theory where
there is some set of couplings for which rephasing of all fields cannot remove all
phases. CP conservation is automatic for any theory for which the most general form
of the Lagrangian allows all complex phases to be removed by rephasing of some set
of fields. Let us examine a few of the terms that occur in the QED Lagrangian to see
why CP conservation is automatic in that theory. For the gauge coupling terms we
have, after requiring hermiticity

gAµψγµψ + g∗Aµψγµψ . (4)

Thus hermiticity clearly makes the QED gauge coupling real, (g + g∗), because the
term it multiplies is itself a hermitian quantity. After imposing hermiticity you will
find that the fermion mass term must take the form

Re(m)ψψ + iIm(m)ψγ5ψ (5)

for any complex m. Hermiticity alone does not require that the fermion mass be real,
but it does require that the imaginary part multiplies a factor of γ5. But a chiral
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rephasing of the fermion field ψ → eiφγ5ψ can be made. This does not change the
kinetic or gauge coupling terms at all. In QED, one can always choose the angle φ in
this rotation in such a way that it makes m a real quantity. This tells us that, in such
a theory, the phase of m is not a physically meaningful quantity. Hence the theory is
indeed automatically CP conserving for any choice of m. (It is merely for convenience
that we always choose to write QED with real particle masses; it is unnecessary
to include additional parameters that you know are irrelevant to complicate your
calculations.) Tomorrow we will see that this same rephasing is not so innocuous in
QCD, and how this leads to the strong CP problem [2].

Given these examples you may be beginning to wonder how we ever get a CP
violating coupling into a Lagrangian field theory. That is the question that puzzled
everyone in 1964. The trick is to have a sufficient number of different terms in the
Lagrangian involving the same set of fields. For example imagine a theory with
multiple flavors of fermions and multiple scalar fields. In such a theory there can be
Yukawa couplings of the form Yijkφkψiψj. Hermiticity then requires only that we also
have a term Y ∗

ijkφ
∗
kψjψi in the Lagrangian. Note that this is a different product of

fields from the original term, so hermiticity does not disallow phases for the various
Yijk in such a theory. But we still must ask whether we can make every such coupling
real, by systematically redefining the phases of the various fields. That depends on
the details of the theory. As we add more fields of a given type, either fermions or
scalars, the number of possible coupling terms grows more rapidly than total number
of fields. With enough fields of the each type there will be more couplings that
there are possible phase redefinitions, and then not all couplings can be made real by
rephasing the fields.

We can always make all couplings real by imposing CP invariance as a postulate,
but it no longer an automatic feature of the theory. The Standard Model with only
one Higgs doublet and only two fermion generations has automatic CP invariance;
all possible couplings can be made simultaneously real (ignoring for now the issue of
strong CP -violation via a QCD-theta parameter). Adding one more generation of
fermions or adding an additional Higgs doublet with no further symmetries imposed
opens up the possibility of CP violating couplings [3]. The three generation Standard
Model with a single Higgs doublet has only one CP -violating parameter, that is only
one independent phase difference survives after as many couplings as possible are
made real by field rephasing. This means that all CP -violating effects in this theory
are related. That is what makes it so interesting to test the pattern of CP violation
in B decays. Here there are many different channels in which possible CP -violating
effects may be observed. In the Standard Model there are predicted relationships
between these effects, and between CP violating effects and the values of other CP -
conserving Standard Model parameters. Thus the patterns of the B decays, as well
as their relationships to the observed CP violation in K-decays, provide ways to test
for the effects of physics beyond the Standard Model. Such effects can disrupt the
predicted Standard Model relationships between the different measurements.
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1.1 Quantum Mechanics of Neutral Mesons

We now we turn to a general discussion of the physics of flavored neutral mesons,
those made from different quark and antiquark types of the same charge. These
are the K, D, Bd and Bs mesons, which we denote generically by M0. (I use the
notation Bd as a reminder of the quark content, even though the official name of
this particle is simply B0.) There is a beautiful quantum mechanical story here. In

each case there are two CP -conjugate flavor eigenstates, M0 = qq′ and M
0

= q′q. In

general CPM0 = eiξM
0
. The phase ξ is convention dependent and can be altered by

redefining one or other of the quark fields by a phase. In much of the literature on this
subject the convention ξ = 0 is chosen without comment, but elsewhere ξ = π is used.
Physical results are convention independent, but only as long as you consistently use
the same convention. You can get into trouble if you combine formulae taken from
two different sources without first checking that both are using the same convention.
From this point on I will use the convention ξ = 0; if you want to see the equations
with arbitrary phase factors explicitly displayed, go to the textbooks [1].

Let us for the moment assume that CP is a symmetry of our theory. What
does this tell us about the neutral mesons? It says that the physical propagation-
eigenstates of the system, that is the particles which propagate with a distinct mass

(and lifetime), must be eigenstates of CP . These are the combinations (M0±M
0
)/
√

2.
Particles produced by the strong interactions are produced as flavor eigenstates. This
means initially one always has a coherent superposition of the two CP eigenstates.
Then as time goes on, because of the difference in masses of these two states, their
relative phases change. Thus, if both states are long-lived enough, the flavor composi-
tion oscillates. However there is also a difference in lifetime of the two CP eigenstates.
If this is large then eventually the shorter-lived eigenstate decays away. Once one of
the two mass eigenstates has decayed the other combination dominates, terminating
the flavor oscillation and giving essentially a fixed admixture from that time on (in
vacuum). For the kaon system the difference in lifetime is large compared to the
difference in mass, so one does not talk about kaon oscillation, but rather about long-
lived and short-lived states. Conversely for Bd the mass difference is large compared
to the width difference, and one can discuss either oscillating flavor states, or, discuss
the same phenomena in the language of mass eigenstates, BH=heavy and BL=light. For
the Bs both the mass and lifetime differences must be both be considered in analyzing
the evolution of states. For the D mesons, in contrast, the mass and width differences
are both small in the Standard model. Thus both mass eigenstates decay before any
significant oscillation occurs. These particles are thus typically described in terms
of flavor eigenstates. Experimental searches for evidence of mixing (mass or width
differences) for the D0 states are another way to seek non-Standard Model physics
effects, since the effect as predicted in the standard Model is small [4].

Notice that the peculiar phenomenon of oscillating particles, here and in the neu-
trino case as well, occurs only if you insist on describing the process in terms of
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flavor eigenstates. The more physical description is to use the mass eigenstates as the
things you call particles (as we do for the quarks themselves). Then all that changes
with time is the proportion of the two eigenstates that are present, because of their
different half-lives, and the relative phase of the two states, because of their different
masses.

Now let us review the story of CP for neutral K mesons. The flavor quantum
number strangeness is conserved in strong interactions. Strangeness-changing weak
decays are suppressed by the Cabibbo factors tan(θCabibbo) compared to strangeness
conserving u < − > d transitions. This first fact means strange mesons are typically
pair produced, the second that they are relatively long lived. The assumption of
CP -conservation in neutral Kaon decays “explains” the observation of the two very
different half-lives for neutral kaons. If CP were exact, then only the CP -even state,

Keven = (K0 +K
0
)/
√

2, can decay to two pions, since a spin zero neutral state of two
pions can only be CP -even. (By Bose statistics, it can have no I=1 part.) Three-pion
final states can be either CP -even or CP -odd. But the phase space for the three pion
decay of a neutral kaon is quite small compared to that for two pions. This predicts
two very different half-lives for the two CP -eigenstates. They are different, in fact,
by more than a factor of ten.

This successful picture was challenged in 1964 by the discovery by Christensen,
Cronin, Fitch and Turlay [5], that the long-lived (and hence putatively CP -odd)
kaon state did indeed sometimes decay into the CP -even two pion state. This re-
sult immediately shows that CP -invariance is violated. Comparison of the rates for
charged and neutral pions further showed that the violation is principally in the fact
that the mass eigenstate does not have a unique CP . This result was initially very
puzzling. Until then almost any field theory that had been considered as a realistic
physical theory had automatic CP conservation once the other desired symmetries
of were imposed. Now, however, we know that the three generation Standard Model
in its most general form includes one CP -violating parameter in the matrix of weak
couplings, which is called the CKM matrix (for Cabibbo, Kobayashi and Maskawa).
Thus CP violation per se is no longer a puzzle, but rather a natural part of the
Standard Model. What we do not yet know is whether the Standard Model correctly
describes the CP -violation found in nature. Exploration of that question is a major
goal of the B-physics program.

Any theory for physics beyond the Standard Model will have, in general, possible
additional CP -violating parameters. Any further fields, such as any additional Higgs
fields, can introduce further CP -violating couplings. Such effects may then enter
into B decay physics. For example, in many models additional Higgs particles lead

to additional contributions to B0-B
0

mixing. This in turn gives possible deviations
from the patterns predicted by the Standard Model for CP -violation in B decays.
One of the motivations to search for such effects is that it is not possible to fit the
observed matter-antimatter imbalance (or rather the consequent matter to radiation
balance) of the Universe with the CP -violation in the quark mixing matrix as the
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only such effect [6]. (This failure suggests that there must be additional sources of
CP -violation beyond those in the quark coupling matrix of the Standard Model, but
does not require that any such effects will be apparent in B decays.)

Even with no other new particles, an extension of the Standard Model to include
neutrino masses now appears to be needed. Then the weak couplings of the neutrino
mass eigenstates are given by a CKM-like matrix. This introduces the possibility of
further CP -violating parameters. Indeed if the neutrinos have Majorana type masses
there are more CP -violating parameters in this matrix than in the quark case [7].
These parameters will be very difficult to determine and they play essentially no role
in B physics. However they may have played an important role in the early universe,
giving the matter-antimatter imbalance via leptogensis [8]. I will not discuss neurtrino
masses further in these lectures.

As I will discuss tomorrow [2], once there is any CP violation in the Standard
Model theory it becomes a problem to understand how it happens that CP is con-
served in the strong interaction sector of the theory. Experiment tells us this is so
to very high accuracy, chiefly via the upper limit on the electric dipole moment of
the neutron. This result tells us that, far as the CP -violating effects that we want to
explore in B decays go, we can ignore strong CP violation. So apart from tomorrow’s
Dirac lecture, I will not discuss it further in this series of talks.

1.2 General Formalism for Neutral Mesons with CP Viola-
tion

Once we know that CP is not a symmetry of our theory we must allow a more general
form for the two mass eigenstates of neutral but flavored mesons. In the following I
use the convention that these two states are defined to be MH and ML where the H
and L stand for heavy and light, which really means heavier and less heavy, since the
mass difference may indeed be quite tiny.

I define the two eigenstates to be

MH = pM0 + qM
0

ML = pM0 − qM
0
, (6)

where |p|2 + |q|2 = 1. Note that this equation is again convention dependent, I have
not specified a sign or phase for q, but I have defined the more massive state to be the

one with a plus sign before q. In combination with my convention that CPM0 = M
0

this makes the phase of q a meaningful quantity. (Be aware however that, once again,
other conventions are also used in the literature.)

The quantity q/p is determined from the mass and mixing matrix for the two-
meson system, M = M + iΓ. This matrix is written in the basis of the two flavor
eigenstates. Note that both M and Γ are complex 2×2 matrices, M is hermitian and
Γ is anti-hermitian. The off-diagonal (or mixing) elements are calculated from Feyn-
man Diagrams that can convert one flavor eigenstate to the other. In the Standard
Model these are dominated by the one loop box diagrams, shown in Fig. 1. Actual
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calculation of such quantities will be discussed in later lectures, for now we simply
note that they exist. Then

q/p =
∆M − i/2∆Γ

2(M12 − i/2Γ12)
=

M12 − i/2Γ12

2(∆M − i/2∆Γ)
. (7)

Notice that the two mass eigenstates of this mixed system do not have to be orthog-
onal, in fact in general they will not be so, unless |q/p| = 1.

b
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Figure 1: Leading Diagrams for BB Mixing in the Standard Model

1.3 The Three Types of CP Violation

In the above discussion we have already mentioned two possible ways that CP viola-
tion can occur. The first was CP violation in the decay, or direct CP violation, which
requires that two CP -conjugate processes to have differing absolute values for their
amplitudes. A second possibility, seen for example in K decays, occurs if |q/p| 6= 1.
It is very clear in this case that no choice of phase conventions can make the two
mass eigenstates be CP eigenstates. This is generally called CP -violation in the
mixing. As we will see later, in decays of the neutral mesons to a CP -eigenstate f ,
there is a third possibility. This can occur even when both the ratio of amplitudes
and the quantity q/p have absolute value 1. The CP violation effects in such de-
cays will be shown to depend only on the deviations from unity of the parameter

λf = (q/p)A(B
0 → f)/A(B0 → f) . The third option is CP violation in the interfer-

ence between decays to f with and without mixing. This effect is proportional to the
imaginary part of λf and thus can be non-zero even when the absolute value satisfies
|λf | = 1. Decays where this latter condition is true are particularly interesting. In
such cases one can interpret any observed asymmetry as a direct measurement of
some difference of phases of CKM matrix elements, with no theoretical uncertainties.
We will see this in more detail in the next lecture.
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2 Lecture 2: Standard Model Predictions for

CP Violations in B Decays

2.1 CKM Unitarity

The CKM matrix of quark weak couplings has been discussed in some detail in previ-
ous lecture series in this school. It can be written, in the Wolfenstein parameterization
[9], as

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




'



1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 + O(λ4) . (8)

In the previous lecture I talked about the ability to remove, or move, a complex
phase of a coupling by redefining the phase of any field involved. This parameteriza-
tion corresponds to a particular choice of phase convention which eliminates as many
phases as possible and puts the one remaining, possibly large, complex phase in the
matrix elements Vub and Vtd.

In this convention the upper right off-diagonal elements define the parameters.
The parameterization is a convenient way to make the unitarity of the matrix explicit,
up to higher order corrections in powers of λ ≡ Vus. (The higher order terms may
also have phases, as required by the unitarity relationships, but bring in no new
independent phase parameters.) The quantity λ is essentially the sine of the Cabibbo
angle. It is a small number, of order 0.2. Wolfenstein’s parameterization uses powers
of λ is a convenient way to keep track of the relative sizes of the terms in the matrix.
The other independent magnitude parameters A and ρ2 +η2 are known to be roughly
of order unity. There is no theory behind which powers of λ enter each term. The
Wolfenstein parameterization simply summarizes the observations in a neat way. The
fact that Vcb and Vub are both small (of order λ2 and λ3 respectively in Wolfenstein’s
parameterization) is responsible for the relatively long lifetimes of B-mesons (and b-
containing baryons too). This is a fortunate property; it is essential to the feasibility
of most B-physics experiments because it allows us to identify B decays by the spatial
separation of the decay vertex from the production point. It is an observational fact,
not a theoretical prediction.

Independent of the parameterization used, in the three generation Standard Model
the CKM matrix must be unitary. This leads to a number of relationships among its
elements of the form [(row)*x(column)]=0. Examples are

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 a

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 b (9)
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VubV
∗
ud + VcbV

∗
cd + VtbV

∗
td = 0 c .

In the Wolfenstein parameterization the relationship that arises from unitarity can
be used to express the diagonal and lower left hand elements of the matrix in terms
of the upper right elements, to any desired order in λ. The form given above drops
terms of order λ4 and above.

It is a trivial fact that any relationship of the form of a sum of three complex
numbers equal to zero can be drawn as a closed triangle in the complex plane. Hence
these, and the other similar relationships, are referred to as the Unitarity Triangle
relationships. The fact that there is only one independent CP -violating quantity in
the CKM matrix can be expressed in phase-convention-invariant form by defining the
quantity J , called the Jarlskog invariant for Cecilia Jarlskog who first pointed out
this form [10],

ImVijVklV
∗
il V

∗
kj = JΣ3

m,n=1εikmεjln (10)

where i, j, k, l run over the values 1, 2, 3 and εijk takes the value +1 if the three indices
are all different and in cyclic order, and -1 if they are all different and in anti-cyclic
order, but is zero if any two are the same. All the unitarity triangles have the same
area, J/2. This area shrinks to zero if the CP -violating phase differences in the
matrix vanish.

Notice however that, while the triangles have the same area, the three examples
given above are triangles of very different shapes. Triangle a has two sides of order
λ and one of order λ5. It would be very difficult to measure the area using such a
triangle. Triangle b is a little better, but still a has one small angle, its larger sides
are of order λ2 while its small side is of order λ4 giving an angle of order λ2. Finally
triangle c is the most interesting, because it has all three sides of order λ3 so all
three angles are a priori of comparable and large magnitude. The price one pays is
that all the sides are small, but this is not as serious as the problem of measuring an
asymmetry proportional to a very small angle. This triangle is the one most often
discussed in relation to B-meson decays. Since these angles are large one expects
some channels in both Bd and Bs decays with order 1 CP -violating asymmetries .

2.2 Fixing the Parameters

The triangle is conventionally drawn by dividing all sides by VcbV
∗
cd, which gives a

triangle with base of unit length whose apex is the point (ρ, η) in the complex plane.
Prior to considering the asymmetry measurements we can try to determine the shape
of this triangle from measurements of CP -conserving quantities which fix the sides,
plus the measured CP violation in K-decays. Notice that this information is already
sufficient (in principle) to over constrain the set of parameters.

The quantity Vcb is determined from B decays to charmed final states, Vub from
final states with no charm, while measurements of the Bd and Bs mass differences
constrain Vtd. The CP violation in K → ππ gives an allowed band for the apex of
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the triangle. In each case there is both an experimental uncertainty in the measure-
ment and a theoretical uncertainty in the relationship between the measured quantity
and the theoretical parameter(s). The theoretical uncertainties dominate. They are
typically not statistical in nature, but rather have to do with the part of the calcula-
tion which involves models or approximations needed to allow for strong interaction
physics effects. There is a large literature by now on the topic of how best to combine
the various measurement and deal with both statistical and theoretical uncertainties
[11].

New measurements from Belle and BaBar on a CP asymmetry in B-decays con-
straining the angle at the lower left of the triangle have recently been announced [12].
This is one measurement where the theoretical uncertainties are very small, so the
constraint will improve as the statistics of the measurement improve for some time to
come. So far all the various results give a consistent picture; the Standard Model fits
the data. This means that, within the ranges of the various theoretical uncertainties,
there is a region of possible choices for the Lagrangian parameters that are consistent
with all data.

One hope of many physicists involved in the large effort in B physics is that
at some point some measurements will give discrepant answers for some Standard
Model parameters or predictions. This would be evidence for physics beyond the
Standard Model, and cause for much excitement in the physics community. If results
for some set of measurements should begin to look discrepant, then the question
of the statistical significance of the discrepancy will be much debated, as different
treatments of theoretical uncertainties will give different conclusions on this point.

Let us examine one of these quantities in a little more detail to see how the
theoretical uncertainties arise. In each case there is a mix of weak interaction and
short-distance strong-interaction physics, which both are perturbatively calculable
and long range strong-interaction physics which is not perturbatively calculable. To-
morrow’s lecture will introduce some of the methods that are used to deal with (or
avoid) possible long-range strong interaction effects. Here I simply want to show how
such effects can enter. Consider the question of the mass difference between the two
mass eigenstates for Bd. The two one-loop diagrams given in Fig. 1 are the dominant
contribution to this effect. Each loop-diagram can have either a t-, c-, or u-quark
for each of the two internal quark lines. Calculation of the matrix element of these

diagrams between a B0 and a B
0

meson would give M12 + iΓ12/2.
The diagrams can be written as a local four-quark operator multiplied by a calcu-

lable coefficient which includes CKM factors. I will write the quark-propagator and
coupling dependent part of this coefficient schematically as

Q = |VtdV
∗
tbDt + VtcdV

∗
cbDc + VudV

∗
ubDu|2 (11)

where the Dq factors are the quark propagators. This expression is schematic because
in writing it as a perfect square I ignored the differences in the momenta of the two
quark lines in the diagram (which are typically small, O(mb/mW ), compared to the

12



loop momentum itself).
Notice that if all the quarks had equal mass then Dt = Dc = Du and the unitarity

condition Eq. (10c) would say that this factor Q vanishes. Indeed we can use this
condition to rewrite the expression as

Q = |VtdV
∗
tb(Dt −Du) + VcdV

∗
cb(Dc −Du)|2. (12)

Because of the two W -propagators the loop integral is dominated by momenta of
order MW , which is large compared to either the c or u quark masses. Thus the two
quark propagators in the second term of Eq. (12) above essentially cancel one-another,
so the term is suppressed by a factor of order (M2

c −M − u2)/m2
W . Thus the mass

difference is effectively proportional to the square of the coefficient of the remaining
term, which |Vtd|2 (since Vtb is 1 up to order |λ|4). (Note that this argument also shows
why the mixing matrix is small in the D-meson case. There the three propagators are
the down-type quarks, all three of which have masses that are small compared to MW ,
so the Unitarity cancellations suppress the entire effect. Furthermore the contribution
of the most-massive quark in this case, the b-quark, is Cabibbo-suppressed, further
reducing the effect. )

To find the value of this Vtd by measuring the B meson mass differences we need

to know the matrix element of the four quark operator between the B0 and B
0

meson
states. This is where the long-distance hadronic physics sneaks into the problem, this
matrix element depends on the form of the B wavefunction, including all effects of soft
gluons. The best available method to determine it is to use lattice QCD calculation
[13].

A measurement of the mass difference of the two Bd mass eigenstates thus gives a
measurement of Vtd with a theoretical uncertainty that is dominated by the theoretical
uncertainty in the lattice determination of the relevant four-quark matrix element.
The result is usually written as some “known” factors times BBf 2

B. (The “known”
factors include quark masses, which are actually not so well-known and must be
carefully defined.) Here the factor f 2

b is the vacuum to one meson matrix element
of the axial current which arises in the naive approximation to the matrix element
obtained by splitting the four-quark operator into two-quark terms and inserting the
vacuum state between them. This is known as the vacuum-insertion approximation.
The quantity BB is simply the correction factor between that approximate answer
and the true answer. It can be estimated in various model calculations. The lattice
calculation does not need to make this subdivision, it directly calculates the full matrix
element. However the result is often quoted in terms of the BB and fB parameters.
Lattice methods can also directly calculate the latter. Eventually fb will be measured
and that will provide a separate test of the lattice calculation.

Once there is a good measurement of the Bs mass difference the ratio ∆mb/∆ms

will provide a better determination of Vtd via the ratio Vtd/Vts. This mass ratio is
relatively free of theoretical uncertainties, as most of these cancel in the ratio of
matrix elements. The matrix elements for the Bd and the Bs mesons are similar.
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Only a small correction due to the difference of the s and d quark masses remains.
The uncertainty in this correction gives a relatively small theoretical uncertainty in
Vtd. At present only a lower limit for the Bs mass difference is known; even this gives
an important constraint (upper limit) on the range of Vtd.

2.3 Time Evolution of the B States and Time-Dependent
Measurements

Now I turn to the topic of decays of neutral B mesons. What can we measure and
what does it tell us? To discuss this we need to understand the time evolution of
state which at time t = 0 is known to be a pure B0 meson. This means that at t=0
we have

B(t = 0) = (BH + BL)/2p . (13)

Since the two mass states evolve with different time-dependent exponential prefactors
we find

B(t) = g+(t)B0 + (q/p)g−(t)B
0

(14)

where the functions g± are just the sums and differences of the exponential mass and
lifetime factors

g± = [e(−iMH t−ΓH t/2) ± e(−imLt−ΓLt/2)]/2

= e−iMt−Γt/2[e(−i∆M−∆Γ/2)/2 ± e(i∆M+∆Γ/2)/2]/2 . (15)

Here we introduce the notation M and Γ for the average mass and width and ∆M
and ∆Γ for the differences between the two sets of eigenvalues. In the case of Bd the
width difference is small compared to the mass difference (and to the width itself) so
to a good approximation we can neglect ∆Γ. Then the expressions for the g± simplify
in an obvious way. For Bs it is likely that the width difference is comparable to the
mass difference and the full expressions must be used.

The time-dependent state that is a pure B
0

at t = 0 can likewise be written in
terms of these same functions

B(t) = (p/q)g−(t)B0 + g+(t)B
0
. (16)

It is now straightforward to derive the time-dependent rate to reach a particular CP
eigenstate final state f with CP quantum number ηf . It is given by

|A(B(t) → f |2 = |A(B0 → f)|2[|g+(t)|2 + |λfg−(t)|2 + 2Re[g∗+(t)g−(t)λf ]] (17)

where the quantity

λf = (q/p)
A(B → f)

A(B → f)
= ηf (q/p)

A(B → f)

A(B → f)
. (18)
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In the second equality here we have used the fact that f is a CP eigenstate, CPf =
f = ηff where ηf = ±1, to write the ratio of amplitudes in a form that shows
explicitly that one amplitude is simply the CP conjugate of the other.

The CP -violating asymmetry between the rates is defined to be

a(t) =
|A(B(t) → f)|2 − |A(B(t) → f)|2
|A(B(t) → f)|2 + |A(B(t) → f)|2 . (19)

(Note once again you must beware of conventions, some of the literature defines the
asymmetry with the opposite sign.)

If ∆Γ/Γ can be neglected, which is a very good approximation for Bd decays, then
|q/p| = 1 and the asymmetry takes the form

a(t) = −[(1− |λf |2) cos(∆Mt) + 2Imλf sin(∆Mt)]/(1 + |Λf |2) . (20)

As promised previously, this relationship shows that the CP -violating effects measure
properties of λf , in particular its magnitude and imaginary part. (In the more general
case the expressions are somewhat more complicated and depend also on the width
difference.) In particular, if only the third type of CP violation is present, namely
if in addition to |q/p| = 1 we have |A/A| = 1 so that |λf | = 1, then this expression
simplifies to

a(t) = −Imλf sin(∆Mt)] . (21)

The argument of λ depends simply on weak phases, so that

Imλf = ηf sin(2φmixing − 2φdecay) . (22)

Here 2φmixing is the phase of q/p and 2φdecay is the phase of A(B → f)/A(B → f) while
ηf is the CP quantum number of the state f . These phases are each given by some
combination of CKM matrix-element phases. While each of them separately can
be changed by changes in phase convention (rephasing of quark fields) the difference
is convention independent, as must be so for any physically measurable quantity.
Thus the asymmetry directly measures the phase differences between particular CKM
matrix elements with no uncertainties introduced by our inability to calculate strong
interaction physics effects such as the magnitude or strong phase of an amplitude.
These strong interaction effects all cancel exactly when |λf | is 1.

2.4 CP Eigenstate Channels for b → ccs

There are many possible channels to investigate. The interest lies not just in one
measurement but in whether the pattern of CP -violating asymmetries fits the pre-
dictions of the Standard Model. What channels should we study? We need a final
state of definite CP . In general for a multibody final state even when the particle
content is CP -self conjugate there will be an admixture of CP -even and CP -odd
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contributions because of different possible orbital angular momenta among the parti-
cles. The simplest way to get a definite CP final state is to require that the B decay
to a two-body or quasi-two body final state with only one allowed orbital angular
momentum. (Quasi-two-body here simply means a two-body state with one or two
unstable particles, such as a ρπ or ρρ. The actual observed final state is then three or
four pions.) Given that the B has spin zero, the final state has a unique orbital an-
gular momentum between the pair of particles if (and only if) at least one of the two
particles has spin zero. For quasi-two body states where both particles have non-zero
spin but at least one of them is unstable one can possibly separate out the CP -even
and CP -odd final state contributions using an angular analysis of the distribution of
secondary decay products [14]. The price is that, in general, a larger data sample is
needed to achieve the same accuracy on the CP asymmetry measurement.

Note that the Feynman diagram structure is the same for all channels with the
same quark content. Results from multiple channels can sometimes be combined to
improve statistical accuracy. For example for the quark decay b → ccs the B0 decay
channels J/ψKS, ψ′KS, ηcKS J/ψKL, ψ′KL, ξcKL (etc.) all depend on the same set
of quark diagrams. For the b → uud (and ddd)quark content there are likewise many
channels: ππ, ρπ, ρρ, etc. (The last of these needs angular analysis.)

Let us then examine what the predicted CP asymmetry is in each of these two
cases. We begin with the modes such as B → J/ψKs. These have been called the
golden modes for analyzing CP violation in B decay. For once we have a situation
where the mode for which the theoretical analysis is straightforward is also one with
good experimental accessibility. One still needs a large sample of B decays because
the branching fraction to these channels is not large. (In B decays there are so many
open channels that branching fractions are small and smaller: the “large” modes
occur at the few percent level; J/ψKS and similar modes are about a tenth of a
percent; a “rare” mode in this game has a branching fraction a few times 10−5.)

First we need a little terminology. We use the term spectator quark for the quark
other than the b-type quark (or antiquark) that is present in the initial B meson, since
it is generally not involved in the b-decay diagram. There are two topologies of weak
decay Feynman diagram that can contribute to B decays to leading order in the weak
interactions. These are called “tree” and “penguin” diagrams and are shown in Fig.
2. A tree diagram is one where the W -boson creates or connects to a different quark
line from the line that starts out as the b-quark. I thus also include any annihilation
diagram or any diagram where the W -boson connects to the spectator quark as part
of what I call the tree amplitude. Whenever such a diagram is allowed it will enter
with the same CKM factors as the other tree diagram processes. A penguin diagram
is a loop-diagram where the W reconnects to the quark line from which it was emitted.
Then a hard gluon is emitted from the quark line in the loop, and either makes a pair
or is absorbed by the spectator quark.

When higher order strong interaction rescattering effects are included the dis-
tinction between tree and penguin diagrams becomes blurred. However, it is useful
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Figure 2: The (a) tree and (b) penguin weak decay processes at the quark level.

(and standard) to start out by describing processes in this language as it allows us
to identify all the relevant CKM factors, and the operators which they multiply. As
we will shortly see, that is the essence of the story. Eventually we will group terms
not by the diagrams, but by the CKM factors. That grouping is not blurred by any
subsequent strong interactions. The language tree and penguin persists, but the “tree
contribution”, in my terminology will be taken to include not only the tree diagrams
(including those that involve the spectator in the weak vertex), but also that part of
the contribution from the penguin diagrams that has the same CKM factor as the
tree diagrams. Obviously, if one wants to try to calculate the size of the contribu-
tion to the amplitude one must keep track of each diagram separately, but if we are
only concerned with whether there is more than one CKM structure in the significant
contributions we can lump together all the terms with a given CKM factor.

The cleanest cases theoretically are those where we can make a prediction without
knowing anything about the sizes of the amplitudes because we are looking at a ratio
of rates where these cancel to a good approximation. The CP -violating asymmetry
in channels arising from quark transition b → ccs in a Bd meson is just this type. The
tree diagram has a CKM factor V ∗

cbVcs. Any time that penguin diagrams contribute
to an amplitude there are three terms, corresponding to the three different up-type
quarks that inside the loop. Thus we can write the b to s penguin amplitude P in
the form

P = V ∗
tbVtsf(mt) + V ∗

cbVcsf(mc) + V ∗
ubVusf(mu)

= V ∗
cbVcs[f(mc)− f(mt)] + V ∗

ubVus[f(mu)− f(mt)] (23)

where the f(mq) is some function of the quark mass. In the second expression I have
once again used the Unitarity relationship Eq. (10c) to rewrite the three terms in P
in terms of two independent CKM factors. Notice that the first of these is the same as
that for the tree term, so for this discussion we call that contribution part of the “tree
amplitude”. The remaining term is CKM suppressed by an additional factor of λ2.
The two differences of quark-mass-dependent factors are expected to be comparable
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in magnitude. Furthermore, ignoring CKM factors, the penguin graph contribution
is expected to be suppressed by about 0.3 compared to the tree graph, because it is
a loop graph and has an additional hard gluon. This means the suppressed second
term in Eq. (23) is negligible (a few percent) compared to the “tree amplitude” which
here is the sum of the tree term and the dominant penguin term.

Thus we have an amplitude that effectively has only a single CKM coefficient and
hence one overall weak phase. This then ensures |A/A| = 1, which means there is no
decay-type (direct) CP violation. (You will recall we needed two terms with different
weak phases to get such an effect. ) Remember too that for Bd we expect |q/p| = 1
to a good approximation. Thus we have a case where |λf | = 1 and the measured
asymmetry arises purely from the interference of decay before and after mixing. We
find

aJ/ψKS
= −Im(λJ/ψKS

) sin(∆Mt) = sin(2β) sin(∆Mt) . (24)

Here the quantity β is the lower left-hand angle in the standard B physics Unitarity
triangle (also sometimes called φ1). (The minus sign disappears because ηf = −1
for f = J/ψKS.) Thus this asymmetry directly measure the phase of a rephasing-
invariant combination of CKM elements.

Furthermore all the channels in the ccs list above measure the same asymmetry,
up to an overall sign, the ηf factor of the channel in question. For example KS and
KL are states of opposite CP , as are the ψ and ηc. Care must be taken to include
the correct ηf factor for each state in combining the results. One can also include a
state such as J/ψK∗ provided the K∗ decays to a flavor-blind combination such as
KSπ0, and angular analysis is used to separate CP -even and CP -odd contributions.

One can apply this same diagrammatic analysis to the decays b → ccs in a Bs

meson. This gives a prediction for channels such as J/ψφ that the CP asymmetry
is zero in the Standard Model, as the Bs mixing term is dominated by CKM factors
with the same weak phase as this decay. Thus, in the Standard Model, only the
CKM suppressed penguin terms which we neglected above can give CP violating
asymmetries here, so at most a few percent asymmetry is expected. Such predictions
of small or vanishing asymmetries give another way to examine the patterns of the
Standard Model. Any theory of new physics effects which give additional mixing
contributions could destroy the cancellation of mixing phase and decay phase which
makes this asymmetry small in the Standard Model. However to interpret such a
result one indeed needs some calculation of decay amplitudes, in order to quantify
more precisely how big the “few percent” Standard Model asymmetry could be.

The trick of rewriting the sum of three penguin terms as two terms using the
Unitarity relationships is a generally useful tool. In any channel one then has at most
two CKM factors to consider. The next step is to get a rough estimate of the relative
size of the two terms. This becomes important when |A/A| 6= 1.
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Figure 3: Possible two-meson tree-diagram decay processes showing color-flow loops as dotted lines.
These are called (a) color-allowed tree contribution, and (b) color suppressed tree contribution.

2.5 Some further B Physics Jargon

The B physics jargon distinguishes contributions by three attributes, because these
three things give a first estimate of how big the contribution is. The first size factor
is whether the diagram is tree or penguin. The penguin is suppressed relative to the
tree because it is a loop diagram and because it involves a factor of αstrong at a scale of
order mb due to the hard gluon, together this makes for a suppression factor of order
about 0.3, all else being equal. The next size factor is the powers of the Wolfenstein
parameter λ in the associated CKM factors. All B-decay amplitudes have at least two
powers of λ. Amplitudes with higher powers are called CKM-suppressed. The third
size factor is the color flow pattern that forms the particular final state of interest.
Diagrams where a quark-antiquark pair produced by a W finish up in the same meson
are called color-allowed, because this pair is produced in the requisite color-singlet
combination. In terms of color-flow diagrams there are two independent color-flow
loops as shown in Fig. 3(a). When the quark and antiquark produced by the W end
up in different final mesons the diagram is called color-suppressed (Fig. 3(b)). There
is then only a single color-flow loop so that diagram is expected to be of the order of
1/Nc smaller than the corresponding color-allowed diagram.

For penguin diagrams color suppression, if it works at all, works the other way
around. Diagrams where the quark and antiquark from the gluon end up in two
different mesons, Fig. 4(a), are color allowed, and indeed can be seen to have two-
color-flow loops just as do the tree color-allowed contributions. Diagrams where the
flavor-structure says the quark and antiquark produced by the hard gluon must be
in the same meson are called color suppressed. In Fig. 4(b) there is only one color
loop. However in this diagram the gluon makes a color singlet object. But a gluon
is a color-octet state. Taken literally, the diagram vanishes. A second gluon must be
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Figure 4: Possible penguin-type two-meson decay processes showing color-flow loops as dotted
lines. These are called (a) color allowed penguin, (b) naive color suppressed penguin process, vanishes
exactly, and (c) allowed diagram with additional gluon for so-called color-suppressed penguin process.
(It has two color flow loops as does the “color-allowed”, but an additional αqcd factor.)

exchanged here. If we were to count the extra gluon as a hard gluon, there would be
an additional suppression factor of αstrong, but no 1/NC , because we would again see
two color loops, Fig. 4(c). However the second gluon is not necessarily hard, so the
relevant scale for the αstrong is not large. In some estimates these contributions are
treated as 1/NC suppressed terms, but there is no good argument that justifies this
counting. As you can see from these arguments, the naive color-counting is not a very
reliable measure of the relative strengths of the two types of penguin contributions.
QCD-improved operator-product expansion calculations at leading order in Λ/mb

[15, 16, 17] can be made. These treat the color factors correctly. We will return to
this approach at later, in Lecture 3. However there is a large literature of estimates
that use the language of color-allowed and color-suppressed contributions, so it is
important to know how these terms arose and how they are used.

All these size-counting factors are generally used to give first estimates of the
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order of magnitude of the various contributions. Clearly a more serious calculation
can significantly change the relative sizes. The kinematics of the different diagrams
are different. The matrix elements of the various operators are different. Indeed
there is an interplay between the wave function of the mesons and the counting
factors discussed above which in the end determines the size of an amplitude. Powers
of ΛQCD/mb can arise from the wavefunction for particular kinematic configurations
relative to others. Higher-order hard QCD effects can be systematically included,
but the soft hadronization part of the calculation needs some additional input, either
from a model or from some other measurement.

2.6 Another Sample Channel

Now let us look at one more set of channels to see what happens when this size
counting says two CKM factors can occur with comparable coefficients. The case I
choose to examine is the decay Bd → π+π−. At the quark level this process is governed
by decays b → uud. You can readily find from the diagrams of Fig. 2 that there are
both tree and penguin contributions for this quark content. The tree diagrams have
a CKM factor V ∗

ubVud. For the penguin contributions we can again use unitarity to
rewrite the three different intermediate quark contributions as a sum of two terms. In
this case all three CKM coefficients are of the same magnitude. I choose to eliminate
V ∗

cbVcd because then the second penguin term (the one that does not have the same
weak phase as the tree term) has the same weak phase as the mixing term in the
Standard Model. Then only one difference of CKM phases will enter my eventual
formulae for the asymmetry. However we cannot ignore the second penguin term.
The only thing that makes it small compared to the “tree amplitude” (which includes
the first penguin term as well as the contribution from the tree diagram) is the fact
it is a penguin loop. That is not sufficient to completely discard it.

So here we have a situation where there can be |A/A| 6= 1 effects. We must use
Eq. (20) to interpret the the measured asymmetry. One would like to extract from the
measurement the CKM phase difference between mixing and tree decay contribution
(which in this case is α ≡ π− β − γ). One can measure two quantities, |λf | from the
coefficient of cos(∆Mt), and Imλf from the coefficient of sin(∆Mt).

However three unknown quantities enter in the expressions for λf in such a case.
These are the relative weak phase of mixing and the tree decay amplitude α, and
both the absolute value ratio, r, and the relative strong phase, δ of the penguin and
tree terms. We can write

λf = e−2iα 1 + rei(δ+α)

1 + ri(δ−α)
. (25)

Here the phase α = π−γ−β is the angle at the top vertex of the standard B-physics
unitarity triangle; it is the difference between the weak phases of the mixing and
that of the tree contribution to the decay. Obviously, knowledge of both the real and
imaginary parts of λf is not enough to fix all three quantities. So we cannot extract
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a value of α from this asymmetry measurement alone. (Note, however that for very
small r the expression simplifies so that the measurement of Imλ determines sin2α.)
We must use further theory or measurement inputs (or both) to determine α if r is
not small. (A note of warning here, one often sees the statement that one tests the
Standard Model by testing the relationship α = π − β − γ between the angles in the
triangle. The relationship is a definition. The tests of the Standard Model are tests
of whether one finds the same result for the two independent angles, usually chosen
to be β and γ, using a variety of independent ways to measure them.)

Note also that the ratio, reiδ, of the tree to the penguin amplitudes will be different
for the different channels with the same quark content. The kinematics of the tree and
penguin diagrams are different, and so are the wave functions for forming a π or a ρ, for
example. Thus, unlike the ccs decays, we cannot simply combine channels to improve
statistical accuracy. Instead we must devise methods to remove the dependence on the
additional parameters; these methods are different for each set of final state particles.

For the ππ case there are two ways to proceed. One is to rely on isospin symmetry
and isospin-related channels to give the needed additional information. The second
is to develop methods to calculate these various amplitudes more reliably. This may
also involve using relationships to other channels where the tree and penguin ampli-
tudes enter with different relative strengths because of different CKM structure. For
example by using measurements on Kπ channels as well with those from ππ channels
one can gain some information on the size of the penguin amplitude which dominates
the decay in the former case. One can then use SU(3) symmetry to relate that to the
size of the penguin in the ππ case. Eventually such methods can much reduce the
theoretical uncertainty in the extraction of the CKM parameter γ, or equivalently
α = π − β − γ. Tomorrow I will discuss both of these approaches in a little more
detail.

The set of all possible B decays can be summarized by reviewing all possible b-
quark decays and the channels to which they can contribute. A little care must be
applied to this logic, as strong rescattering can turn one quark-antiquark combination
into another, one must include this possibility in a full treatment. For example in any
channel involving a π0 or ρ0 meson the penguin diagrams for b → ddd must be added
to the diagrams for b → uud. I refer you to the table in the Particle Data Book review
on this topic [18] that summarizes the quark decays and gives the CKM factors that
enter for each (after using the Unitarity trick to get two terms only.) Any time you
start thinking about a specific process you will find you want this information. You
can rederive it readily by drawing the allowed quark diagrams and investigating their
CKM factors.

3 Lecture 3. Theorist’s Tools for B-physics

Today’s lecture will briefly introduce a number of theoretical tools for calculating B
decay processes. There are only a few examples of measurements for which we do

22



not need to know the relative magnitude of various contributions to the decay am-
plitudes in order to relate the measurement to some parameters in the theory. We
would like to go further and interpret the multitude of other measurements that are
possible because of the many different B-decay channels. To do this we must devise
methods to calculate or relate amplitudes. The available calculational methods all
involve some mix of systematic expansion in powers of one or more small parameters,
lattice calculation of matrix elements of operators, relationships based on symmetries
of the strong interactions such as isospin and SU(3) flavor symmetry, and some input
for transition matrix elements and or quark distribution functions. These last can be
calculated reliably only in certain limits and in general require models and approxi-
mations. Alternately one can measure some of these quantities in one set of processes
and use the measured values as input in the interpretation of other measurements.

This lecture will give a general picture of the toolkit of approaches, what each
tool is, and how it can be used. There will not be time here to teach the details of
any of the methods. This lecture summarizes a large body of theoretical work. I will
not attempt to reference all the relevant papers, but will include references to some
current papers as examples of the type of work now underway. I apologize in advance
to the many whose papers I do not mention.

There are two small parameters in this game, namely ΛQCD/mb and αstrong(mb).
Here mb is the mass of the b-quark and ΛQCD is the scale that defines the running of
the strong interaction coupling. The detailed definition of each of these quantities is
fraught with technical problems, but there is a clear physical meaning for the rough
size of these parameters. ΛQCD is related to the inverse size of a typical hadron while
the b-quark mass can be characterized as roughly the same scale as the mass of a B
meson (up to corrections of order ΛQCD/mb). The strong coupling αs(mb) scales as
a logarithm of ΛQCD/mb; we treat it as a separate small parameter because we can
count powers of this parameter separately from the powers of ΛQCD/mb; they arise
in different ways.

The fact that ΛQCD/mb is indeed quite small leads to a simple intuitive picture
of a B meson at rest. It is an essentially static b quark with the light quark forming
a cloud around it. The light-quark distribution is sometimes called the brown muck,
because we cannot reliably calculate the details of it. However we do know that
certain properties are rigorously true in the limit mb →∞. For example in that limit
the wavefunction does not depend on the spin orientation of the b-quark and hence is
the same for a spin 0 B meson and a spin 1 B∗. A second way in which the large mass
of the b-quark simplifies the problem is that any gluon that carries off a significant
fraction of the b-quark mass is a hard gluon that can be treated perturbatively; it
introduces the small parameter αstrong(mb).

In addition to these expansions there is another part of the picture that is true
because mb/MW is small. This means that weak decays of the b-quark are essentially
local four-quark effects. Thus the B meson decay can, to a reasonable approximation,
be thought of as proceeding in two stages: a b-quark decays and then the remnants
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hadronize to give the final state under study. It is this second stage, the hadronization,
that introduces all the uncertainties into the calculations. We have good methods for
applying QCD to things like jet-formation for well-separated high momentum quarks,
but a B decay does not give us large enough quark momenta to use this formalism
reliably. Further, we want to know amplitudes for specific few-body (quasi-two-body)
final states (states of definite CP ). Most likely these arise when the four quarks that
are present after the b decay are not well-separated (so even if the B mass were
much larger a jet calculation would not provide the answer). We cannot calculate
these amplitudes completely from first principles. So my purpose in this lecture is to
review the tools that we do have and how they can be used to minimize the theoretical
uncertainty on the extraction of the desired quantities, such as CKM parameters, from
experiment.

3.1 Operator Product Expansion

The operator product expansion is a way to formalize the separation of hard or
short-distance physics from soft or long-distance physics. It begins by rewriting the
Feynman diagrams into the form of local operators, defined at a given scale, with
calculable, scale-dependent coefficients.

First we look at all the tree and penguin Feynman diagrams for the weak decay
of the b-quark. Each can be written as a sum of four quark operators with definite
coefficients at the scale MW . This is the leading order operator product expansion.
There are actually two types of penguin diagrams, those I mentioned earlier that
involve a gluon, and a second set called electroweak penguins that involve a photon
or a Z particle emitted from the loop. These last give an additional set of four-quark
operators. At first glance one might guess that the electroweak penguin contributions
are very small, with αQED replacing the αstrong of the gluon case. However it turns out
there is a part of the Z-penguin contribution which is enhanced by a factor M2

t /M2
W

and so there are cases where these terms can be important too.

Each class of diagrams corresponds to a distinct set of four quark operators at
leading order. When hard QCD corrections are included, one must introduce a new
scale into the problem, which is the hard-soft separation scale µ that defines which
gluons are absorbed into the new scale-dependent operator coefficients and which
are defined to be included in the scale-dependent matrix elements of operators. In
addition, these corrections can mix the operators, and thereby blur the distinction
between tree and penguin contributions. Thus the labels of each operator as being
tree or penguin type is a leading order distinction only. However they are usually
listed in that way as it is a useful way to keep track of which operator arises with
which CKM coefficients. In addition, if a hard gluon connects the weak decay vertex
to the spectator quark this can also introduce additional local operators that involve
six quark fields, again with calculable coefficients that begin at order αs(mb).

One must choose the µ-scale that separates hard and soft physics. In principle no
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physics depends on this choice. In practice if one makes approximations for the matrix
elements one does not usually get the correct scale-dependence in their values. So
results do to some extent depend on the choice of scale. This dependence is minimized
by doing higher order QCD calculations, but in general is not fully removed even with
that laborious step.

Each four-quark operator takes the form

On = bΓn1q
iqjΓn1q

k (26)

where each Γni denote a specific combination of gamma matrices and QCD color
structure and the qi denote the relevant quark flavor (and color) content. The details
of the color and flavor flow in the diagram can be read off once these operators are
written. I do not include here the detailed list nor any discussion of the coefficients.
That is available many places [1]; my point here is not to discuss this well-developed
technical subject, but rather to talk about the additional steps between writing down
an operator and its coefficient and calculating an amplitude for any particular channel.

The matrix elements of the operators between the initial B state and the final set
of mesons are where hadronic physics enters the game. Our methods for calculating
that physics are limited. We can however use information that we do have about
symmetries of the strong interactions, for example, to tell us about the ratios of
matrix elements that occur in different decays.

3.2 The Factorization Approximation

The simplest approach to the problem, for example for calculation of a color-allowed
tree diagram, is to approximate the matrix element in a two-hadron decay as the
product of the transition matrix element of a two-quark weak current between the B
meson and one final state meson (that can be measured in a semileptonic decay), times
the matrix element for the W to create the second meson, which is also measured
elsewhere. This approach is called factorization, (or sometimes “naive factorization”)
because it factorizes the four-quark hadronic operator matrix element into a product
of two two-quark matrix elements. This idea can be generalized to divide any four-
quark operator into two two-quark operators, which can either be extracted from
experiment or estimated using models for the quark distribution functions of the
mesons. The approximation neglects any effect of interactions between the two mesons
in the final state, effects known as final state interactions.

Now we know that two mesons (for a concrete example think of two pions) colliding
at the energy corresponding to a B-mass certainly do interact. So at first glance
you may think this approximation has no reason to be accurate. It is certainly not
rigorously true, except in a few special cases. However it is motivated by a reasonable
physical picture, usually attributed to Bjorken [19] (although in this reference he says
the argument is common knowledge).
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The idea is that the weak decay is a very local process which converts one quark
to three. Only for the kinematic configuration where two of these quarks (or rather
one quark and one antiquark) go off essentially together, with the third one recoiling
in the opposite direction, is there any significant probability that the system will
hadronize as a two-body final state. (All other configurations are assumed to make
multi-body final states, for example by fragmentation of the four final-state quarks.)
In the special case that gives two-body states the quark and anti-quark that travel
together start out much closer together in the transverse direction than the size of
a typical hadron. They get quite far from the region containing the other quark
and the “brown muck” of the spectator quark before they evolve into the hadronic-
sized meson that is observed. They must start out in a color-singlet state to form
such a meson. In a local color-singlet configuration (small compared to a meson) the
strong interactions must cancel. So initially there are no strong interactions because
the pair is in a local color-singlet configuration. Later there is no strong interaction
because the two mesons are well-separated and strong interactions are a short-range
phenomenon.

The justification of the factorization approximation, as described above, applies
for a tree diagram with no direct involvement of the other valence quark of the B
meson quark in the weak decay vertex. More generally one can try to factorize
any four quark operator (possibly after making a Fierz rearrangement to group the
relevant quark fields as flavor-flow dictates they must be grouped to form the mesons
of interest). One then uses other measurements, or possibly lattice calculations, to fix
the two two-quark matrix elements. In the case of a color-suppressed contribution,
or one arising from a penguin diagram the flavor-flow does not automatically match
two color-singlet quark pairings. However, if a color-singlet meson is to be formed
then there must be a color-singlet piece of the amplitude, and for this piece the
factorization argument applies.

In some processes the flavor content of the final state allows a contribution either
from annihilation (in the case of a charged B meson) or from exchange of a W between
the two initial state valence quarks (for neutral B’s). Both processes are suppressed
in the heavy quark limit by the quark-mass dependence of the wave-function at the
origin (the B to vacuum transition matrix element of a local two-quark current).
These contributions are typically neglected in rough estimates of two-hadron decay
rates.

Despite all the caveats, the factorization approximation is generally used to make
first guess estimates of the sizes of various partial rates. To determine the reliability of
this calculation one must look more carefully at what is being done here. I mentioned
previously that the operator coefficients can be calculated with hard QCD corrections
taken into account. This introduces a scale dependence into their definition, the scale
of the separation between hard and soft corrections in QCD. This is not a physical
scale, but an arbitrarily chosen one, so the true answer cannot depend on it. Any scale-
dependence in the coefficients must be compensated by cancelling scale-dependence
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in the matrix elements. But when we use measurement of a semi-leptonic process to
determine the matrix element there is no reference to any hard-soft division scale; the
measured quantity is scale independent. So we clearly have a problem, even in the
best cases, factorization cannot be quite correct.

The naive way to deal with this problem is to say it is reasonable to pick a
scale somewhere between mb/2 and 2mb since the mass of the b-quark sets the typical
momentum scale for the quarks arising from its decay. One then asks how the quantity
in question varies as one changes the scale within this range and uses this variation
to assign a central value and a theoretical uncertainty to the result. While this
seems quite a plausible approach there is no way to be sure it is right. The problem
is alleviated somewhat, though not completely removed, when higher order QCD
calculations of the operator coefficients are used. It can only be dealt with correctly
when a consistent treatment of higher order matrix elements is used, along with the
higher order coefficients. Any finite order calculation, however, will typically have
some residual scale-dependence problems.

The issue of determining the theoretical uncertainty, that is the reasonable range
of values of a theoretical estimate, is one to which we will return again and again
in this lecture. Our ability to test the Standard Model by comparing its predictions
with experiment depends on our ability to determine how big the uncertainties in
our theoretical calculation are. A clean result is one where we know that these
uncertainties are very small, or at least where we know very well how big they can
be. But more often than not we find a part of the calculation is not so clean. The
methods of determining the possible range of the predictions of the Standard Model
are all too often subjective and ill-defined. Theorists continue to work to remove such
ambiguities, and to find those measurements, or sets of measurements, for which they
are minimal. This is an important task.

3.3 Heavy Quark Limit Relationships between B and D

Mesons

One powerful technique for dealing with B decays is use the fact that the b-quark
mass is large compared to the QCD scale and to calculate quantities in terms of a
power series expansion in that ratio. If one also treats the charm quark as heavy
compared to the QCD scale then one has an even more powerful set of relationships.
Then to leading order in ΛQCD/mq the distribution of the light quark in a heavy-light
meson is independent of the spin orientation or the mass of the heavy quark. This
means it is the same for a B or a B∗ or a D or a D∗ meson. This is a very important
statement because it gives us at least one limit in which we know the transition matrix
element between a B and a D or D∗ meson.

Consider for example the semi-leptonic decay B0 → D∗`ν. In the kinematic limit
where the D∗ is at rest in the B rest frame the wave-function overlap is 1. There
is a small but calculable QCD correction to the unit wave-function overlap. Then
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there are the corrections to the heavy-quark limit relationships, which in this case
turn out to be quadratic in ΛQCD/mq. This is reasonably small even for the charm
quark. This means that we can, in principle, use a measurement of this quantity to
extract the CKM matrix element Vcb with very little theoretical uncertainty. The
only problem is that the configuration where this relationship holds is, as I said, a
kinematic limit. That means that the rate vanishes at that point! One must measure
the rate as a function of q2, and use an extrapolation to extract the quantity of
interest. The extrapolation requires some knowledge about the behavior of the form
factor as one goes away from the perfect-overlap situation, and that introduces some
theoretical uncertainty into the answer for Vcb. However as more data is collected one
can measure the rate ever closer to the end point, thereby reducing the sensitivity to
the extrapolation.

There are some other technical issues that appear in this problem. One interesting
one that crops up here, and in other problems too, is the choice of the definition of
the quark mass mb (or mc). If you remember from muon decay, the semileptonic
decay rate for a fermion (here the b-quark) goes like the fifth power of the mass of the
decaying particle. Thus any uncertainty in the definition of the quark mass translates
into a huge uncertainty in the predicted rate. But it is even worse than this. If you
try to define the quark mass as the mass at the pole of the quark propagator this
definition is scale dependent and even diverges as the scale is reduced (known as
the renormalon problem). Clearly this is an unphysical effect, because you chose an
unphysical definition of the quark mass. The problem is to find a definition that avoids
this problem and leads to a well-controlled result. This can indeed be done. The full
discussion of how one does it is beyond the scope of this lecture. I merely warn you
that you can get into trouble by blithely assuming you know what someone means
when they write mb. This quantity cannot be directly measured. It is dependent
on definition convention and on renormalization scale. As you compare results of
different calculations you must always be aware of the conventions and definitions
that have been used. Otherwise you will not be able to interpret and apply the
results correctly.

3.4 QCD-Improved Factorization

The word picture explanation of factorization is to some extent confirmed by explicit
calculation of QCD corrections up to order αS and at leading order in Λ/mq. It is
found that the color-singlet nature of the meson leads to cancellation of the soft-gluon
exchange between the two final-state mesons. In general, particularly for processes
dominated by penguin or color-suppressed diagrams, there are found to be additional
contributions which cannot be described by the simple factorization of a four-quark
operator, but rather add to the picture a local six-quark operator. They arise because
of a hard-gluon exchange between the so-called spectator quark (now no longer just
a spectator) and another quark within the same meson. The matrix elements of this
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operator can be approximated as the a product of three valence-quark-distribution
functions, one for each meson (one initial and two final) times the hard coefficient
which begins in order αs(mb). Uncertainties arise from limitations on our knowledge
of the quark distribution functions.

One has to be careful here when matching the calculated hard-quark coefficient
with measured transition matrix elements and form factors. The scale-dependence
matching must be done correctly. One must also ensure that one is not double
counting contributions of hard quarks that are effectively inside one of the measured
quantities. But these are technical problems that can be dealt with correctly.

This treatment is known as qcd-improved factorization [15]. Here the term fac-
torization is used for the factorization of the hard and soft physics. This form of
factorization has been demonstrated to work for the leading order in Λ/mb and one
order in αs(mb) corrections to the leading diagrams. The actual Λ/Mb power counting
is dependent on the assumptions about quark distribution functions; it assumes they
vanish as a power of x at their end-point. As the calculation includes all gluon energy
scales it is argued that all final state interactions are included in the formalism. The
question remains as to whether this argument applies to all orders. It has been proven
true to all orders in αs and leading order in Λ/mq for the special case of a Dπ final
state with flavor such that the spectator quark in the B ends up in the D and the
charm quark is treated as a heavy quark in the Λ/mq power counting [20].

It turns out that the numerical results depend quite sensitively on the details
of input assumptions on the quark distribution functions [16, 17]. A variant of the
approach making quite different, and indeed additional, assumptions about the quark
distribution function end-point behavior gets numerically very different results [17].
The second approach is called perturbative QCD by its proponents. It is claimed in
this approach that the entire result is perturbatively calculable. While these claims
are open to question [21], one can simply regard the results of this work as the
output of a set of ansaetze for the distribution functions. The results raise issues
that have contributed important points to the discussion. One is the question of
exactly how small some of the (Λ/mb)-suppressed contributions are in actuality. The
annihilation-graph contribution, for example, is found to be significant, even though
formally suppressed.

The sensitivity of results to inputs is unfortunate. It means that even these more
sophisticated calculations leave us with some significant theoretical uncertainties. The
best one can do to quantifying these uncertainties is to see how much the results
change when one varies over some reasonable set of assumptions for the various inputs
such as quark distribution functions and transition matrix elements. But how do you
decide what is a reasonable range? As the existing debates show, in many cases this
comes down to some subjective choices, not all rigorously decidable! (Some choices
are, however, quite clearly unreasonable and should be excluded from discussion,
for example a calculation that sets the scale of transverse momenta in a hadron
at k2

⊥ = Λmb, or a form-factor model that does not fit a rigorous theoretical limit
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relationship.) As data and calculations for multiple channels are obtained it is likely
that we will develop a better understanding of such issues, and a more consistent
view of what range of assumptions are reasonable will emerge. Meanwhile it is very
important that any calculation reported should include an honest estimate of its
uncertainties, and a clear explanation of the assumptions made and the ranges of
input variables that were included in obtaining this estimate.

3.5 Isospin

Another useful tool for extracting clean results for strong decay amplitudes is the
symmetries of the strong interactions. The best of these, in that it most close to a
true symmetry of the hadronic decays, is Isospin symmetry. I find I must explain
this symmetry from scratch for current students. It is a piece of old fashioned physics
knowledge which is not always taught in modern courses. Isospin is a symmetry under
interchange of u and d quark flavors. It is called “iso”, because atoms which differ by
such an interchange (originally by replacing a neutron by a proton or vice versa) are
called isomers because they have nearly equal mass, and “spin” because the two quarks
form an SU(2) doublet and the mathematics of SU(2) is the familiar mathematics of
spin doublets. Isospin has nothing to do with any angular momentum. Notice also
that I do not here mean the weak isospin (so called because it is yet another SU(2));
the isospin doublet is truly u with d, not with some admixture of d,s, and b.

Isopin is, quite obviously, broken by electromagnetic effects since these distinguish
quark charges, and it is also broken by quark masses. Now the up and down quark
mass are nowhere near the same, the ratio (mu −md)/(mu + md) is not a small
number. So why is Isospin ever a good symmetry? The answer is that in many
cases, (including most but not all hadron decays) the relevant scale with which to
compare the quark mass difference is not the quark mass sum but the hadron mass
scale. That scale is set either by ΛQCD or by some heavy quark mass. Then the
corrections to isopin-based predictions are small. One must be careful, however, to
look out for the cases where the effect is one that is “chirally enhanced” that is
where the sum of up and down masses does appear in the denominator. (A similar
issue may also arise when making a heavy-quark expansion; terms that behave like
Λ2

QCD/mb(mu + md), though formally suppressed in the large mb limit, are not always
numerically negligible.)

How does isospin help clarify B decay processes? Its chief value is that it allows
us to make an experimental separation of some tree and QCD-penguin type contri-
butions. In some processes these have different isospin structure, as well as having
different CKM structure. Let us take the example of B decaying to two pions. First
let us look at the final states, two pions in a spin zero state. A pion has isopin 1.
Naively there are three possible isospins for the two-pion states, 0, 1 and 2. However
Bose statistics says the overall state must be even under pion interchange. Since the
spin zero spatial state is even, the isopin state must be even too. This eliminates
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the I = 1 possibility. Now let us examine the quark decays. The tree b → uud
contribution contains both ∆I = 1/2 and ∆I = 3/2 contributions. These combine
with the spectator quark to contribute to the I = 0 and I = 2 final states respec-
tively. But a gluon is an isosinglet particle—it has no isospin. Hence the b → d QCD
penguin graph is purely ∆I = 1/2 and contributes only to the I = 0 final state. (In
quark language the gluon makes uu + dd. ) We can use measurements of several
isospin-related channels (Here B0 → π+π−, B0 → π0π0 and B+ → π+π0 and their
CP conjugates) to isolate the I = 2 contribution [22]. Then we have found a pure tree
process, which thus depends on only one weak phase (up to small corrections from
electroweak penguin effects.) Thus the isospin analysis gives us a way to separate out
the dependence on α, the difference of the weak phase of the mixing and the weak
phase of the tree diagram, without having to calculate the relative strength of the
penguin and tree contributions.

The theoretical uncertainty that we found in the previous lecture in trying to
extract the CKM parameter α from the asymmetry in B → π+π− decays can then
be much reduced. If, in addition to measuring that time-dependent asymmetry in
that channel, one also measures the rates for the isospin related channels, one has,
in principle, enough information to determine sin(2α). Unfortunately, the π0π0 rate
is expected to be small, so that it may be some time before the experimental uncer-
tainties of this approach are small enough that the result is actually improved by it.
However even an upper bound on the neutral pion rate can provide useful constraints
[23].

Electroweak penguin effects can also be considered in an isospin analysis, by writ-
ing the isospin structure of the Z-boson decay. However, since this decay has isospin
1 as well as isospin 0 parts, there is a ∆I = 3/2, Ifinal = 2 contribution, and this
cannot be separated from the tree term via any multichannel analysis. This results
in some residual theoretical uncertainty in the extraction of α, but it is significantly
smaller than that from the gluonic penguin contribution without isospin analysis.

A similar situation makes isospin analysis useless in separating tree and penguin
parts for b → ccd channels such as D+D−. Here both the tree and penguin contri-
butions are pure ∆I = 1/2, so there is no way to distinguish them via their isospin
structure.

3.6 SU(3) Symmetry

One can get further relationships between different processes if one extends the idea
of isospin to the full flavor SU(3), which treats the three lightest quarks as a degen-
erate triplet. In particular the subgroup of SU(3) known as U-spin under which the
down and strange quarks are a doublet gives lots of interesting relationships between
amplitudes [24]. As with any approximate method, the challenge here is to estimate
the size of possible corrections from symmetry breaking effects, that is to estimate
the theoretical uncertainty in the predictions. One can distinguish three different
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types of SU(3) breaking effects. First there are kinematic factors that occur because
of the different quark (and hence different meson) masses give different phase space
factors. These may be large but can be well-estimated and lead to small theoretical
uncertainties for any given set of channels. Second there are the factors of Fπ (or
fπ) versus the similar factors for the kaon. These are measured numbers so, where
a vector or pseudoscalar meson is directly produced by a W , they again lead to no
significant uncertainties. However when the local operator that produces the light
meson is not an axial current then the corresponding ratio is not so well determined.
Calculations often use the known ratio of F (or f) factors to estimate the SU(3)
breaking in such cases also, but now the uncertainty is not so well-controlled. Finally
there are cases where the prediction depends also on assuming an SU(3) relationship
between the phases of decay amplitudes. Results sensitive to this assumption may
have a larger theoretical uncertainty.

The application of SU(3)symmetry can allow one to use measured penguin-dominated
amplitudes such as B → Kπ to constrain the penguin contribution to a tree-dominated
amplitude such as B → ππ. This provides a collection of additional approaches to
fix the CKM parameter γ from the combined ππ and Kπ data [25].

Another value of both Isospin and SU(3) relationships is that they provide a
window to search for effects of physics beyond the Standard Model. There are a
number of cases where possible new physics effects do not respect the relationships
predicted by these symmetries [26]. Tests of these relationships may then provide a
window for new physics.

3.7 Lattice Calculations

Perhaps the best way to include hadronic physics and QCD effects in a calculation
of the matrix element of any operator is to use lattice QCD methods. Methods to
treat heavy-light mesons on the lattice have been developed and are steadily improv-
ing. There are a number of cases where this method will eventually yield theoretical
predictions with well controlled errors. Lattice calculation is particularly useful for
quantities such as the B-mixing matrix element which is a one-particle to one-particle
transition, or fB, which is a one-particle to vacuum transition. For one particle to
multiparticle transitions (where multi here means two or more) the problem of includ-
ing final state interactions is not solved by lattice calculations. These calculations are
performed in Euclidean space-time and require analytic continuation to give the ac-
tual physical result. The uncertainties introduced by this step are difficult to quantify
and can be large.

There are basically four sources of uncertainties in lattice of calculations of the
one-particle to one-particle (or one to zero-particle) matrix elements. The first is the
statistical reliability of the Monte-Carlo treatment. This is simply a matter of doing
enough calculation, and is very well understood. Second there are the extrapolations
and scale-matching to match the finite-volume, finite-lattice-spacing parameters and
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results with the infinite-volume continuum quantities. Again the process is highly de-
veloped and for the most part in good control. Third are the methods of handling the
heavy quark on the lattice, which are also now quite well-developed. The critical last
ingredient in this progression is for the lattice calculation to be “unquenched”. This
means that the lattice allows the development of virtual light quark-antiquark loops.
Such calculations require significantly more computer time than the corresponding
“quenched calculation” which suppresses quark-loop effects. Unquenched calculations
are beginning to appear, for example for the matrix element that is relevant to the
mixing between B and B mesons. There then remains some extrapolation in the light
quark masses and in the number and degeneracies of the light quarks. The prospect
is that all sources of uncertainty can be investigated, and that, at least for some
of the critical quantities, the lattice will eventually provide the most accurate and
well-controlled estimates of the matrix elements. Well-controlled here means that the
uncertainty in the estimate can be reliably constrained.

3.8 Quark-Hadron Duality

Even with all these methods we are again and again confronted with data that cannot
be interpreted without further input. We are reduced to using models, or to mak-
ing further assumptions. One commonly used assumption goes under the name of
“quark-hadron duality”. This is the assumption that if I can calculate a quantity,
such as an inclusive rate, at the quark level then that calculation must also give the
correct answer at the hadronic level. In a situation where we can average over a
range of energies one can indeed prove that this must be true for certain averages,
for example the energy-averaged total cross-section for electron-positron collisions to
produce hadrons. On the other hand it is clear that if we look in detail at any process
the quark result, calculated at low order in QCD, can not reproduce all the details of
the hadronic spectrum correctly. In particular, thresholds or end-points of spectra are
different for quarks and for mesons. Perturbative quark calculations know nothing
about resonance masses, at least not in any fixed-order calculation.

In a B decay we cannot average over energies, the energy of the decay is set by
the B mass. Even so it is popularly believed that inclusive B decays can be well-
described using the assumption of quark hadron duality. At the quark level we can
calculate the b-quark decay. Now we assume that gives the inclusive meson decay
correctly, because, if the quark has decayed it must hadronize to something. The
level of assurance with which one can make an estimate for the corrections to this
approximation varies with the process. For inclusive semi-leptonic decays integrating
over lepton momenta provides integration over a range of hadron invariant mass. This
can be expected to reduce the corrections. It has thus been argued that these are
very small in the inclusive semileptonic case [27].

The demands of realistic measurements can also dilute the power of quark-hadron
duality. Consider for example inclusive semi-leptonic decays of B mesons to hadrons
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that contain no charm. In principle the measurement of this total rate can be used
to extract a value for the CKM parameter Vub, if we can calculate the expected rate.
We assume quark-hadron duality gives an accurate result for the full inclusive rate,
by the arguments given above. However in any experimental measurement, we must
make some kinematic restriction in order to exclude backgrounds coming from the
much larger rate of decays to hadrons containing charm quarks. This introduces
dependence on details of the spectrum, rather than just a particular integral of it.

There is more than one way to choose the kinematic cut: one can for example
restrict the electron momentum to be large enough that charm production is excluded;
or one can restrict the hadronic invariant mass to be small enough to exclude charm.
Because of the unseen neutrino these restrictions are not identical. Each keeps some
fraction of the total rate. To extract Vub we must know what that fraction is. But to
calculate that fraction we are looking at details of the spectrum for which the use of
a quark-level calculation may not be so safe. Recent work has suggested using some
combination of cuts on hadron mass and on lepton invariant mass (which requires
neutrino reconstruction). A carefully chosen combination can minimize sensitivity to
the spectrum end-point details. One can also make some tests as to the stability of
the result as the cut prescription is varied [28, 29].

3.9 Models and Other Approximations

In many other channels, even once one uses QCD-improved factorization calculations
one needs to know a meson-meson transition matrix and/or quark distribution func-
tions for both initial and final state particles to calculate a rate. Lattice calculation,
or measurement in a semi-leptonic decay, can be used to fix the transition matrix el-
ement. In certain cases one obtains self-consistent quark distribution functions using
light-cone QCD arguments. Or one can parameterize these distributions, for example
by their moments, and use some set of measurements to fix the set of parameters
that dominate an effect (making sure that such parameters are indeed carefully and
consistently defined in both processes).

Finally one can simply resort to making models for the unknown quantities. One
can using rigorous limits obtained from QCD sum rules [30] and from the heavy quark
limit to constrain the models and reduce the number of independent inputs needed.
However this is not sufficient to remove all model dependence of the results. There
are often still large (and not well-constrained) uncertainties that arise in this stage of
the calculation.

3.10 Summary

For two-body hadronic decays even QCD-improved calculations require some input
of transition matrix elements and quark distribution functions for the mesons in
question in order to calculate amplitudes. These input quantities can sometimes be
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constrained by symmetries. Rigorous limits for some can be derived for example from
the heavy quark limit and from QCD (e.g. the QCD sum rule methods). Some of
the quantities of interest can eventually be accurately calculated on the lattice. Some
can be measured in semileptonic processes. Data on a great variety of decays will
help refine our understanding. This process has already begun. Data from CLEO
and from the two asymmetric B factories gives us much to study, and will continue
to do so.

Our ability to see whether different measurements yield consistent or inconsistent
values for the Standard Model parameters is only as good as our ability to constrain
the theoretical uncertainties in a reliable fashion. As one applies any method to a
multitude of channels one can learn from experience what accuracy is obtained and
refine the method on the basis of that experience. Because there are indeed many
possible quasi-two-body B decays this process will eventually improve our ability to
constrain the theoretical uncertainty of a given calculational method. To achieve this
ability it is important for theorists to be as precise and as honest as possible about
the sensitivity of any results to input assumptions or models, and to explore this
sensitivity in some detail. Only in this way can we find those sets of measurements
which truly give us sensitive tests of the Standard Model.

4 Lecture 4. Experiments to Measure B Decays

In this last lecture I will review how one goes about studying these questions ex-
perimentally. Even though you (in this audience) are mostly theory students, it is
important that you have some idea of how the measurements are made. The aim of
the game is to make multiple measurements that can check Standard Model predic-
tions in a redundant fashion. There are a number of ways that physics from beyond
the Standard Model could show up. One could find inconsistent results for a partic-
ular Standard Model parameter (or set of parameters) when determining the same
parameters by multiple independent methods. One could find a large CP -violating
asymmetry in a mode for which the Standard model predicts a small or vanishing
effect. One could find decay modes that are predicted to be rare present at a rate
different from that expected or with a pattern of isospin or SU(3) symmetry viola-
tions that cannot be accommodated within the theoretical uncertainty of Standard
Model predictions. Each of these possibilities requires ongoing work on both the the-
ory front, to reduce theoretical uncertainties, and the experimental one, to make all
the suggested measurements. I will focus on B decay experiments, but rare K-decay
results also contribute to the picture, as do the existing results on CP -violation in K
decays.
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4.1 Tagging B Flavor

Up until now we have talked about various decays of an individual B meson as if
we knew what meson we had at time t = 0. The flavor conservation of strong and
electromagnetic interactions means that one produces a b-quark and an anti-b-quark
in the same event. In general one has no a priori knowledge of which type of neutral
B meson was formed at production. One must use other properties of the total

event in order to determine whether one had a B0 or B
0

meson at production (or at
some other known time). This process is called tagging. For example one can tag
a B meson when another B meson in the same event decays in such a way that its
b-flavor is identifiable. An example of a tag is a semileptonic decay; the charge of
the lepton then identifies whether it came from the weak decay of a b or a b quark.
The tagging possibilities and efficiencies are quite different in e+e− collisions and
in hadronic collisions, but the requirement for tagging is common to both types of
experiments.

In principle almost every event has some tagging information. Often this informa-
tion is not precise. For example consider the lepton-charge tag suggested above. If
the b-quark decays hadronically to a c-quark which then decays semileptonically then
the detected lepton comes from the decay of the c instead of that of the b. Assuming
it came from the b will give a wrong sign tag. The spectrum of such secondary-decay
leptons is different from that of the primary ones. One can use such additional in-
formation to improve the correctness of the tag. However the two spectra overlap, so
there will still be cases where there is an ambiguity. Only a probability for each tag-
type can be determined. Each type of tag event thus has two properties that must be
understood, its efficiency, ε, and the wrong tag fraction, w associated with it. Some
methods have very high purity but low efficiency, others with much higher efficiency
may have lower purity. The measure of tagging quality that eventually determines
how well we can measure a CP -violating asymmetry is the product ε(1 − 2w)2. We
will see below how this comes about. Both the efficiency and the wrong tag fraction
are determined by a combination of Monte Carlo modelling of events and measure-
ments, for example from samples of doubly tagged events. A significant systematic
uncertainty in the result for any asymmetry arises from the uncertainty in determin-
ing the wrong tag fraction. Since that determination is at least in part data driven,
this uncertainty will decrease as data samples increase.

4.2 e+e− Collisions

In an electron-positron collider the most efficient way to produce B0 mesons is to
tune the energy to the Υ4s, since that large resonant peak in event rate is just above

threshold to decay into either a B+ and a B− or into a B0 and a B
0
. Hence the Υ4s

decays essentially 50% to each of these states. Furthermore, the two neutral mesons
are produced in a coherent state which, even though both particles are oscillating as
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described previously, remains exactly one B0 and one B
0

until such time as one of
the particles decays. For studies of CP -violation this turns out to be either a disaster
or a very useful property depending on the design of your collider.

To observe CP violation we must look for decays where one of the two neutral
B’s decays in a way that identifies its flavor, so that it gives a good tag, and the
other decays to the CP eigenstate of interest for the study. Then we examine the
decay rate as a function of the time, t, between the tagging decay (defined to occur

at t = 0) and the CP -eigenstate decay. When the tag is a B
0

this means that the
particle which decayed to the CP eigenstate is known to have been a B0 at time t = 0
(or, for t < 0, to be that combination which would have evolved to be a B0 at time
t = 0). We denote this state as B0(t). Its decay rate as a function of time is given by

R(B0(t) → f) = |A(B0 → f)|2e−Γ|t|[1+(1−|λf |2) cos(∆mt)+ Imλf sin(∆mt)] (27)

where once again λf = (q/p)[A(B
0 → f)/A(B0 → f)]. In this equation and all

following discussion of Bd decays we neglect ∆Γ, and, equivalently, assume |q/p| = 1.
(The corresponding formulae for Bs decays are a little more complicated as this
approximation cannot be used in that case, you can find them in the textbooks [1]. )
Likewise, the rate when the tagging decay is a B0 is

R(B
0
(t) → f) = |A(B0 → f)|2e−Γ|t|[|λf |2 + (|λf |2 − 1) cos(∆mt)− Imλf sin(∆mt)] .

(28)
Notice that if we were to integrate over all times, −∞ ≤ 0 ≤ ∞ the term pro-

portional to sin(∆Mt) would integrate to zero. This would destroy our sensitivity to
the CP -violating quantity Imλf . We must measure the asymmetry between B tags
and B tags as a function of time to avoid this cancellation. For a symmetric electron
positron collider running at the Υ4s this is essentially impossible. (This is the disaster
referred to above.) The two B mesons are produced with small momenta. Even with
the best detectors one cannot accurately measure the difference in distance from the
collision point of the two decays. Indeed the size of the beam-beam interaction region
is typically sufficient to destroy any possibility of resolving this difference. Hence
cannot measure the time-difference between the decays. Pier Oddone suggested an
idea that allowed B factories to be built to tackle CP violation [31]. The idea was to
build two storage rings with different energies and collide the electrons and positrons
so that the Υ4s, and likewise the pair of B’s to which it decays, are produced moving,
with a significant relativistic gamma-factor. Then the physical separation of the de-
cay vertices of the two B’s is increased via the time dilation of the decay half-life. (A
decay vertex is the point from which the tracks of the particles produced in the decay
diverge.) In this case one can indeed, using a precision tracking device known as a
vertex detector, resolve the two decay vertices and measure their separation with a
resolution that is small compared to the average separation. Furthermore, since any
transverse motion of the B mesons is small compared to the overall center-of-mass
momentum, the distance between the decays (in the higher-energy beam direction)
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gives a good measure of the time between them. The uncertainty in the production
point due to beam size is irrelevant for this measurement, as we are not concerned
with time from production, but only the time between the two decays. Thus the initial
coherent state gives a beautiful prediction for a measurable time-dependent asymme-
try. The experiment has many internal cross checks that can be made to confirm that
the effect is seen as predicted. For a detailed discussion of the physics capabilities
of such a facility see for example the BaBar Physics Book, which is available via the
web [32].

To see how the tagging efficiency affects the result consider how the measured
asymmetry is related to the actual asymmetry. The total number of events that
we count as B-tagged events is ε(NB(1 − w) + NBw) where NB and NB are the
actual numbers of B and B events produced. Likewise the total count of B events is
ε(NBw + NB(1− w)). Thus the measured asymmetry is

ameas = (1− 2w)
(NB −NB)

NB + NB)
= (1− 2w)atrue (29)

where atrue is the true asymmetry. In addition the total number of events included in
the result scales with ε, the tagging efficiency, since only tagged events can be used.
Since statistical accuracy grows like the square root of the number of events, the
accuracy of the measurement is proportional to the square root of epsilon. Combining
these two facts gives you an understanding of the earlier statement that the quality
measure for tagging is ε(1 − 2w)2. This is sometimes called the effective tagging
efficiency.

Both asymmetric B factory projects, one at SLAC [33] and the other at KEK [34]),
have succeeded spectacularly in building and operating a two-storage-ring facility
together with a detector and computer system capable of detecting and recording all
the relevant details of millions of BB events. Interesting data from these facilities is
now beginning to be reported and will continue over the next several years to yield
new insights. See the websites of the BaBar [35] and Belle [36] experiments for details.

In addition to measuring CP -violating asymmetries these facilities are also com-
piling and analyzing large data samples for a variety of Bd decays. Together with
measurements from the symmetric B factory at Cornell [37] and its detector CLEO
[38], this data will considerably refine our ability to measure the CP -conserving pa-
rameters and to test theoretical calculations. I have talked in previous lectures about
the uncertainties that plague many theoretical calculation methods, and in particular
about the difficulty in quantifying these uncertainties. As data on multiple modes
accumulates we can refine our understanding of the accuracy of various approaches
by comparison with this data.

4.3 Proton Colliders

Because the B-factory machine’s are optimized to run at the Υ4s they are below the
threshold to produce any Bs mesons. In principle they could do so by running at
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the Υ5s. The smaller peak height of this resonance, together with the fact that it
has many possible decay channels combine to make the production rate for BsBs

pairs significantly lower than that for Bd at the Υ4s. The machines would have to
be be re-optimized to run at this higher energy, which itself is not a simple change.
All these factors combine to make it unlikely that this will be attempted any time
soon, while there is still so much to learn about the Bd decays. So for measurements
of Bs decays, and also for those of baryons containing b-quarks, we need to look
elsewhere, to hadron colliders. For the time being that means the Fermilab TeVatron
[39], eventually it will also mean LHC [40] at CERN.

At a hadron collider the b and b quarks hadronize independently and each B
meson is part of a large jet of many particles. Many more B’s are produced in high
energy hadron-hadron collisions than in an electron-positron B factory. Hadronic
collisions also produce many other types of events, with yet higher cross-sections.
Thus, for these experiments, it is critical to devise ways to identify B-events fast
enough to trigger the system to record the event. The trigger is typically two charged
tracks emerging from a B-decay vertex that is separated from the beam-beam collision
region. The design of the trigger and its efficiency is a very important and challenging
feature of these experiments. The triggering requirements restrict the decay channels
that can be studied in a hadronic environment. The methods and efficiencies for
tagging the flavor of the produced B are also quite different in the hadronic case
than in the electron-positron B factory environment. The tagging particle may be a
charged B or a baryon, or it may be deduced from properties of the leading particles
in the jet containing the neutral B. Furthermore, since the two b-quark (or antiquark)
containing particles are not in a coherent state, the time evolution of the CP -study
particle (and also the tagging particle if it is a neutral B-meson) starts at production
time. There are a number of interesting quantities that can only be studied in a
hadron facility, others where the two types of machines are competitive, and some
where the electron-positron machines have unique capabilities. Both approaches are
needed to gather all the information we would like to have.

An example of a quantity where hadron collider results will be important is the
determination of the side Vtd of the unitarity triangle. Currently this quantity is
determined by measuring the Bd mass difference. However there is a significant
theoretical uncertainty that arises when relating the measurement to the parameter
Vtd. Much of this uncertainty would be removed by a measurement of the Bs mass
difference as well as that for Bd. The ratio of the two mass differences gives Vtd/Vts

with relatively controlled theoretical uncertainties. If the value predicted by the
Standard Model is correct this measurement can be done at Fermilab in the CDF
experiment, probably within the next couple of years.

There has been a detailed study of the opportunities for B physics in Run II at
Fermilab [41]. The CDF [42] and D-Zero [43] detectors have just completed upgrades
and are beginning to take data, including some B-physics-triggered data. In addition
a new experiment,known as BTeV, with a detector optimized for B-physics capability,
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is planned [44]. At CERN there is also such an experiment planned, known as LHCB
[45]. These detectors will give expanded B physics capability and perhaps allow some
rare modes to be studied, with branching fractions that are too small to measure in
the current experiments. (After my talk I was told there is also a study underway
of a possible future B experiment at HERA, a follow-up to the HERA-B experiment
[46] using a wire target in the proton beam of that e-p collider.) Another future
option is an intense Z-production facility at a linear collider, where study of Z → bb
decays can yield useful additional possibilities.) All in all, the problem has many
aspects. The complementarity of the different experiments will allow a rich program
of measurements. Eventually we will have a clear picture of whether the pattern of
results matches the Standard Model or requires some physics beyond the Standard
Model to describe the data.

4.4 Some Final Remarks

As theorists search for ways to extract interesting information from B decays they will
often describe desired measurements that are beyond present capabilities. This is not
new. When Bigi and Sanda [47] first talked about CP -violation in B decays we did
not know the B lifetime, so the measurements that they proposed seemed out of reach.
Sometimes nature is kind and the numbers work out better than present knowledge
suggests. Sometimes clever technical ideas, such as the asymmetric e+e− collider,
extend our experimental reach. Improvements in the technology of particle tracking
and particle identification have been essential in the B factory experiments and will
continue to be so for BTeV and LHCB. The history of discovery in science continues
because measurements deemed impossible in one era become feasible with new devel-
opments. Likewise new developments on the theory side, such as new techniques for
unquenched lattice calculations are important, as they allow more measurements to
be interpreted with good control of theoretical uncertainties.

To conclude this lecture series I would like to remind you that the aim of the game
in studying CP is to examine this least-explored corner of the Standard Model in two
ways. The first is to pin down the value of the remaining Standard Model parameters.
The second is to test whether multiple measurements give consistent answers, both
for the parameters and for other Standard Model predictions. The hope is that any
discrepancy will be a clue to the nature of physics beyond the Standard Model, physics
that can, for example, change the relative phase of a mixing amplitude compared to
a decay amplitude. Indirect searches for new physics, such as these B physics probes,
are a blunt instrument. Many extensions of the Standard Model may predict similar
effects, for example additional contributions to the mixing. The challenge to theorists
is to reduce theoretical uncertainties to the point that we sharpen that instrument
enough to see the effects if they are there, rather than losing them in the ranges of
possible answers given by our poor control of hadronic physics effects. This work
is well begun, but there is more to do. I hope some of the students here will make
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interesting contributions to it in the near future.
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