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1. Introduction

Many physical systems can be described, at least in some dynamical regime, by gauge

field theories. Indeed, gauge field theories are considered fundamental in understanding

the interactions of elementary particles. In recent years, gauge theories have also been

applied to the study of low-energy systems in condensed matter physics [1], such as

the quantum Hall fluid [2], and high-Tc superconductors [3]. In this case gauge theory

provides an effective, rather than fundamental, description, which still proves to be

quite useful. In both cases, a better understanding of the dynamics of gauge field

theories is clearly a worthwhile pursuit.
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It has recently been conjectured by Susskind that a two-dimensional quantum Hall

fluid of charged particles with filling fraction ν = 1/k is described by a non-commutative

Chern-Simons (NCCS) gauge theory at level k [4]. This conjecture is based on an

earlier realization that a two-dimensional charged fluid in a strong magnetic field is

equivalent to a pure Chern-Simons (CS) gauge theory, where the gauge group is the

group of area-preserving diffeomorphisms (APD) [5]. Susskind argued that in order

to fully realize the graininess of the fluid one must replace the above CS theory with

a non-commutative U(1) CS theory. The APD CS theory can be thought of as the

lowest order approximation to the NCCS theory. Some evidence for this conjecture

was provided in [6], where a formal correspondence between the Hilbert space of NCCS

theory and Laughlin’s wavefunctions [7] was shown. (For a more detailed discussion of

the correspondence see [8]).

Studies of string dualities have led to novel realizations of various gauge field theo-

ries using configurations of branes, and much has been learned about the dynamics of

gauge theories from these configurations [9]. Of course it is not at all clear that nature

chooses to realize gauge field theories in this way. Nevertheless, it is useful to study a

variety of realizations of gauge theories. In particular, certain realizations may provide

insights into a dynamical regime of the theory where other realizations, perhaps even

the true realization, are not as useful. It is therefore an interesting question whether

NCCS theory can be realized on branes in string theory.

It is well known that D-branes in a constant B field background, and in a certain

zero-slope limit known as the Seiberg-Witten (SW) limit, give rise to non-commutative

gauge theories [10, 11].1 On the other hand, it is also known that the world-volume

theories of D-branes in massive Type IIA string theory [13], i.e. in the presence of D8-

branes, contain CS terms [14]. In particular, the theory on a D2-brane near D8-branes

is three-dimensional Yang-Mills-Chern-Simons (YMCS) theory, with some scalars and

fermions. It is therefore natural to look for a brane realization of NCCS theory using

D2-branes in massive IIA string theory with a B field, and this is indeed where we will

find it. Furthermore, we will show that a consistent massive IIA background with non-

vanishing B requires a non-vanishing RR magnetic fieldG2 as well. SinceB also induces

a uniform D-particle density in the D2-brane, the entire system is found to correspond

to a two-dimensional fluid (the D2-brane) of charged particles (the D-particles) moving

in a uniform magnetic field (G2), namely a quantum Hall fluid. Thus the brane picture

draws a correspondence between NCCS theory and the quantum Hall fluid.

Matrix theory [15, 16] provides an alternative description of non-commutative

1See also a recent review [12].
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gauge theory in terms of lower-dimensional D-branes. For example, a non-commutative

configuration of two matrices X1,X2 in the matrix model corresponds to a D2-brane

with a uniform density of D-particles. Fluctuations about this configuration are then

governed by a non-commutative SYM theory [17]. NCCS theory can also be derived

from a certain matrix model [18, 4, 19], where the quanta are identified with the elec-

trons of the quantum Hall fluid [4]. As we will show, this matrix model can also be

realized in terms of D-particles. In an appropriate decoupling limit, the dynamics of D-

particles in massive IIA string theory with a B field are governed by a pure CS matrix

model, which in turn reproduces the three-dimensional NCCS theory on the D2-brane.

Strings play a central role in the D-particle matrix model. Their presence on D-

particles in massive IIA string theory is a known consequence of charge conservation

[25, 26], which in the matrix model formulation is encoded in the Gauss law constraint.

The latter exhibits a variety of solutions, including a non-commutative D2-brane with

no strings. Solutions containing both a D2-brane and strings ending on it are identified

with quasiparticles and quasiholes in the quantum Hall fluid. These are found to carry

fractional D-particle charge, and to exhibit fractional statistics.

The paper is organized as follows. In section 2 we show that the world-volume

theory on D2-branes in massive IIA string theory with a constant B field background

reduces to pure NCCS theory in an appropriate decoupling limit. This gives a derivation

of the conjectured correspondence of NCCS theory and the quantum Hall fluid. In

section 3 we describe the matrix model of D-particles in massive IIA string theory, which

gives rise to NCCS theory on the D2-brane. In section 4 we identify the quasiparticles

and quasiholes of the quantum Hall fluid, in both the spacetime picture and the matrix

model description, and determine their charge and statistics. Section 5 is devoted to

our conclusions and outlook.

Note added: While this paper was being finished, we were informed of work by

L. Susskind and S. Hellerman on a string theory construction of the quantum Hall

system [20].

2. The non-commutative massive D2-brane as a QH fluid

2.1 D2-brane in massive IIA supergravity

Our starting point is massive Type IIA supergravity [13]. In particular, we shall be

interested in a form of the (bosonic) action which includes the 9-form potential C9
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[14, 21]2

S =
1

2κ2
10

∫
d10x
√−g

{
e−2Φ

[
R + 4|dΦ|2 − 1

2
|H|2

]
− 1

2
|G̃2|2 −

1

2
|G̃4|2 −

1

2
M2

}

− 1

4κ2
10

∫ {
2MdC9 +B ∧

(
dC3 +

1

2
MB ∧B

)
∧
(
dC3 +

1

2
MB ∧B

)}
, (2.1)

where κ2
10 = (2π)7(α′)4/2, and the gauge-invariant field strengths are given by

H = dB,

G̃2 = G2 −MB = dC1 −MB, (2.2)

G̃4 = dC3 − C1 ∧H +
1

2
MB ∧ B .

The scalar M is an auxiliary field, and the above action reduces to ordinary (massless)

Type IIA supergravity when M = 0. The equation of motion for C9 implies that M

must be (piecewise) constant. The equation from varying M , with B = 0, is

M = *dC9 , (2.3)

so this field is sometimes referred to as the RR scalar field strength. This suggests that

8-branes create discontinuities in the value of M . In fact, the configuration correspond-

ing to an 8-brane located at x9 = 0 is given by [14]

ds2 = f−1/2(x9)dxµdxνηµν + f1/2(x9)(dx9)2

e−4Φ(x9) = f5(x9)

M(x9) = ∓f ′(x9) ,

(2.4)

where

f(x9) = c−m|x9| . (2.5)

Here c and m are positive constants. The 8-brane is a domain wall across which the

value of M jumps from −m to m. The sign in the solution for M is correlated with the

chirality of the unbroken supersymmetry, and therefore differentiates an 8-brane from

an anti-8-brane. In string theory the jump is quantized in units of the D8-brane charge

µ8,3 so for 2k D8-branes we get

M(x9) = 2kκ2
10µ8ε(x

9) =
kε(x9)

2π
√
α′
, (2.6)

2We use the notations of Section B.4 in [21] for differential forms.
3The charge of a Dp-brane is given by µp = (2π)−p(α′)−(p+1)/2 [21].
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where ε(x9) is the unit step function.

Note that the above solution is ill-defined globally, since the dilaton, and therefore

the string coupling gs = eΦ, blows up at a finite distance from the 8-brane.4 However,

as long as we stay close enough to the 8-brane the background is locally consistent.5

In particular this is the case in the decoupling limit we will consider.

Now consider a D2-brane along (x1, x2), and at x9 > 0, in the background of 2k

D8-branes. Supersymmetry is completely broken since there are six coordinates with

mixed (ND) boundary conditions. The low-energy world-volume field theory of the

D2-brane contains the usual D = 3 N = 8 vector multiplet, i.e. a gauge field, seven

adjoint scalars XI (I = 3, . . . , 9), and eight adjoint fermions, as well as 2k massive

fundamental fermions χa (a = 1, . . . , 2k) from the D2-D8 strings. The action takes the

form

SD2 = SSYM + Stop + Sχ , (2.7)

where

SSYM = − 1

g2
YM3

∫
d3σ
√−g

[
1

4
gαα

′
gββ

′
FαβFα′β′ +

1

2(2πα′)2
gαβgIJ∂αX

I∂βX
J + · · ·

]
,

(2.8)

Stop = µ2

∫
[C3 + C1 ∧ (2πα′F +B)] , (2.9)

and

Sχ =

∫
d3σ χa

(
iD/ +

X9

2πα′

)
χa , (2.10)

and the YM coupling is given by g2
YM3

= gs/
√
α′ .6

We now integrate out the fundamental fermions. This has two effects: it produces

a Chern-Simons term for the gauge field via the parity anomaly [22, 23],

SCS =
k

4π

∫
d3σ εαβγAα∂βAγ , (2.11)

where ε012 = −ε012 = −1, and a potential for X9. The precise form of the potential is

not important for our purpose.

4This was not the case for the solution originally written in [14], which corresponds to m < 0 in

our conventions. The latter presumably describes a combination of an orientifold 8-plane and seven

D8-branes (plus images), which carries the same total charge as a single (anti) D8-brane.
5A completely consistent configuration of 8-brane requires the introduction of orientifold planes (as

in Type IA string theory) to cut off the growth of the dilaton.
6For a Dp-brane the YM coupling is g2

YMp+1
= gs(2π)p−2(α′)(p−3)/2.
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2.2 Non-commutative D2-brane

It is well-known that turning on a constant NSNS field, and taking an appropriate

decoupling limit, deforms an ordinary D-brane world-volume gauge theory into a non-

commutative gauge theory [11]. In our case we consider a constant NSNS field along

(x1, x2), B12 = −B21 = B, which deforms the YMCS theory on the D2-brane to a

non-commutative YMCS theory. In particular, the gauge part of the action becomes

Sgauge = − 1

4g′2Y M3

∫
d3σ

√
−ĜĜαα′Ĝββ′F̂αβ ∗ F̂α′β′

+
k

4π

∫
d3σεαβγ

(
Âα ∗ ∂βÂγ +

2i

3
Âα ∗ Âβ ∗ Âγ

)
, (2.12)

where Ĝαβ is the open string metric given in the Seiberg-Witten limit by 7

Ĝαβ =

{−(B−1gB−1)αβ α, β = 1, 2

gαβ otherwise ,
(2.13)

and g′YM3
is the effective YM coupling defined by

g′2Y M3
= g2

Y M3

√
det(Bg−1) . (2.14)

The star product is defined in terms of the non-commutativity parameter 8

θαβ = 2πα′(B−1)αβ . (2.15)

This is most easily understood by turning on the B field before integrating out the

fundamental fermions. The resulting non-commutative YM theory with fundamental

(Dirac) fermions exhibits a parity anomaly analogous to the commutative case, and a

one-loop non-commutative Chern-Simons term is produced [24].

In the Seiberg-Witten zero-slope limit the theory contains both a non-commutative

YM term and a non-commutative CS term, as well as scalar fields and fermions. We

7Our convention for B differs from [11] in that B = 2πα′BSW , so in the decoupling limit B ∼ α′.
8Our convention for the star product is

f(x) ∗ g(x) = exp

(
− i

2
θαβ

∂

∂ξα
∂

∂ζβ

)
f(x + ξ)g(x + ζ)

∣∣∣∣
ξ=ζ=0

.

The ordering of the open string space-time fields corresponding to the vertex operators A(X(τ )) and

B(X(τ ′)) is taken to be A(X)B(X) when τ < τ ′. This is the convention taken in [40, 33], and is

different from the one in [11].
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shall instead consider a slight modification of this limit, in which

gαβ ∼ (α′)2+δ (α, β = 1, 2)

gs ∼ (α′)3/2+ε ,
(2.16)

where δ > ε > 0. The Seiberg-Witten limit corresponds to the case that δ = ε = 0,

which keeps θαβ, Ĝαβ and g′YM3
finite. In the new limit θαβ remains finite, but Ĝαβ and

g′Y M3
scale as

g′2Y M3
∼ (α′)ε−δ, Ĝαβ ∼ (α′)δ (α, β = 1, 2) . (2.17)

In this limit the YM term vanishes, since

1

2g′2Y M3

√
−ĜĜ11Ĝ22F̂12 ∗ F̂12 ∼ (α′)2δ−ε (2.18)

and
1

2g′2Y M3

√
−ĜĜ00Ĝαα∂tÂα ∗ ∂tÂα ∼ (α′)δ−ε . (2.19)

In addition the scalar fields decouple, since the effective coupling constant for the

canonically normalized fields

φI =
(−Ĝ)1/4

g′YM3

√
gII

2πα′
XI , (2.20)

is given by g′Y M3
/(−Ĝ)1/4 ∼ (α′)ε/2. Thus any interaction term written in terms of

Âα and φI vanishes, because this effective coupling constant vanishes, and Ĝαβ, which

contracts indices from the non-commutative gauge field, vanishes. It is straightforward

to extend the argument to include the fermions. This leaves us with the pure non-

commutative Chern-Simons (NCCS) theory,

SNCCS =
k

4π

∫
d3σεαβγ

(
Âα ∗ ∂βÂγ +

2i

3
Âα ∗ Âβ ∗ Âγ

)
. (2.21)

Note also that the limit in (2.16) also implies that in the supergravity solution (2.4)

we must take c ∼ (α′)−6/5−4ε/5. In other words, the point where the dilaton diverges is

taken to infinity, and gs goes to zero at the location of the D2-brane. The supergravity

soultion is therefore well-defined.

2.3 Quantum Hall fluid

There is an apparent problem with the previous discussion. Unlike massless supergrav-

ity, the equations of motion of massive supergravity (2.1) do not admit a solution with

7



a nontrivial constant B field and all other fields trivial. Another way to see this is that

the B field induces sources for the RR fields inside the world-volume of the 8-branes.

In the simplest case of a single non-trivial constant component B12 = B, and a trivial

C3, the equation of motion for the NSNS field is given by

d(e−2Φ *H) = M *(G2 −MB) . (2.22)

Since H vanishes we find that the solution requires a G2 flux along (x1, x2)

G2 = MB =
kB

2π
√
α′
ε(x9) . (2.23)

This can also be understood from the fact that the constant B field induces a uniform

D6-brane charge density per unit area in the (x1, x2) plane in the world-volume of the

D8-brane. From the coupling

µ8

∫
C7 ∧B (2.24)

in the D8-brane world-volume theory, we deduce that the D6-brane charge density for

2k D8-branes is

ρ6 = 2kµ8B =
2kB

(2π)8(α′)9/2
. (2.25)

The resulting magnetic field is given by

G2 =
1

2
(2κ2

10)ρ6ε(x
9) =

kB

2π
√
α′
ε(x9) , (2.26)

in agreement with (2.23). We will assume that this relation continues to hold in the

presence of the D2-brane.

This is where the problem becomes a virtue. The B field induces a uniform D-

particle charge density per unit area in the membrane given by

ρ0 = µ2B =
B

(2π)2(α′)3/2
. (2.27)

The non-commutative membrane can therefore be thought of as a two-dimensional

fluid of RR-charged D-particles in a background RR magnetic field, i.e. a quantum

Hall fluid. The filling fraction ν is defined as the ratio of the carrier density to the

degeneracy of the Landau level. The latter is given by µ0G2/(2π), so the filling fraction

is

ν =
ρ0/µ0

µ0|G2|/(2π)
=

1

k
. (2.28)
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G 2

2k D8-branes n D2-branes

Figure 1: Brane configuration of the quantum Hall fluid with ν = n/k. A uniform B field

induces D-particles (small circles) inside the D2-branes, and D6-branes (large circles) inside

the D8-branes. The D6-branes give rise to a uniform magnetic RR field G2.

This establishes Susskind’s conjecture that a quantum Hall fluid at filling fraction 1/k

is described by a NCCS theory at level k [4]. In this approach it is clear why the

inverse filling fraction is quantized; it simply corresponds to the quantized value of the

RR scalar field strength M , or equivalently to (half) the number of D8-branes. It is

less clear at this stage whether the D-particles in the membrane behave like fermions

or bosons, and how this property correlates with k. This will be clarified in the matrix

model picture in the next section.

2.4 Multiple D2-branes

It was also conjectured that the theory for a quantum Hall fluid with a filling fraction

ν = n/k would be a level k U(n) NCCS theory [4]. In our construction this is a trivial

generalization of ν = 1/k case. Consider n D2-branes in massive supergravity with

2k D8-branes. The resulting world-volume theory is U(n) YMCS theory with adjoint

matter, and a CS coefficient k. In the presence of the B field, and in our scaling limit,

this becomes a level k U(n) NCCS theory. The RR magnetic field is still given by

(2.23), but the D-particle charge density is now

ρ0 = nµ2B , (2.29)

9



so the filling fraction is

ν =
n

k
. (2.30)

The challenge is to understand, in this picture, which fractions actually exhibit a mass-

gap, and why there is a hierarchy of fractions.

3. D-particles and the Chern-Simons Matrix Model

It is well-known that non-commutative Yang-Mills theory on a Dp-brane with 2n

non-commutative directions can be obtained from a non-commutative configuration of

D(p− 2n)-branes [17]. In particular the non-commutative SYM theory on the massless

Type IIA D2-brane is obtained by considering fluctuations about a non-commutative

configuration in the D-particle matrix model. Similarly, NCCS theory can also be

obtained from a one-dimensional matrix model [18]

S =

∫
dt Tr

[
−kA+

k

2
(θ−1)ijX

iD0X
j

]
, (3.1)

expanded about a non-commutative background

X i = xi + θijÂj (3.2)

where

[xi, xj] = −iθij. (3.3)

To make this consistent for finite N , it was proposed in [19] to add a term

i

∫
dtψ†D0ψ , (3.4)

where ψ is a complex boson transforming in the fundamental representation of U(N).

We will show that this matrix model can be realized by D-particles in massive IIA

supergravity with a B-field in the scaling limit described in the previous section.

3.1 D-particles in massive IIA supergravity

It has been known for quite some time that there are subtleties involved in introducing

D-particles in massive IIA supergravity, i.e. in the presence of D8-branes [25, 26]. In

particular, charge conservation requires strings to end on D-particles, whereas this is

forbidden in massless IIA [27]. In the spacetime picture this follows from the equation

of motion for B, which for trivial background fields becomes

d(e−2Φ *H) = M*G2 +
2κ2

10

2πα′
nsδ8 , (3.5)

10



where the second term corresponds to ns fundamental string sources. Integrating over

an 8-sphere surrounding N D-particles we find that

ns = −2πα′MNµ0 = −kNε(x9) , (3.6)

where we have used the value of M for 2k D8-branes at x9 = 0 (2.6). It follows that k

strings are attached to each D-particle, and their orientation depends on which side of

the D8-branes the D-particle is. Alternatively, if a string ends on any other D-brane,

the above equation implies that its end carries 1/k units of D-particle charge. This fact

will be important in the next section.

Another way to see that strings are attached to the D-particle is via the world-

line theory [28]. In this picture the end of the string is a source for the world-line

electric field, and is necessary in order to cancel an induced electric charge due to the

background D8-branes. In the usual decoupling limit

α′ → 0 , gij ∼ (α′)2 , gs ∼ (α′)3/2, everything else ∼ O(1) , (3.7)

the world-line theory for N D-particles is given by [26]

S =
1

g2
YM1

∫
dtTr

[ 1

2(2πα′)2
gijD0X

iD0X
j +

1

4(2πα′)4
gikgjl[X

i,Xj ][Xk,X l] + · · ·
]

+

∫
dt

{
−Tr

[
kA0 +

kX9

2πα′

]
+ ψ†a

(
iD0 −

X9

2πα′

)
ψa

}
, (3.8)

where ψa (a = 1, . . . , 2k) are N -component vectors of fermions coming from the (R

sector of the) 0-8 strings, and we have suppressed the terms involving the fermionic

partners of X i. Each of the fundamental fermions contributes a CS term with coefficient

−1/2, as well as a linear X9 potential, to the one-loop effective action [29, 26]. The

former corresponds to an induced charge, and the latter to a non-vanishing repulsive

force. In order to cancel these we must add a bare CS term and an attractive potential

as above. The former is interpreted as the charge at the end of the string, and the

latter is due to the tension of the string.

3.2 The Chern-Simons matrix model

Now consider turning on a constant B field along (x1, x2). As we have seen in the

previous section, this requires turning on a constant G2 along (x1, x2) as well. This

introduces additional terms in the equation of motion for B,

d(e−2Φ *H) = M*G2 −M2*B −M*dC3 ∧B

+ d

(
*dC3 ∧ C1 −

1

2
C3 ∧ dC3

)
+

2κ2
10

2πα′
nsδ8 . (3.9)

11



In particular, the third term contributes to the integral over an eight-sphere at infinity

if D2-branes are present, and one gets

ns = − kN +
kB

(2π)2α′
nA = − kN +

G2

2π
√
α′
nA , (3.10)

where we have used (2.23) in the second equality. Here n is the number of D2-branes,

and A is their (infinite) area. Using the definition of the filling fraction ν (2.28), we

can rewrite this condition as

ns = −N
(
k − n

ν

)
. (3.11)

If n = 0 the situation is the same as before, and each D-particle has k strings attached.

For n 6= 0 the number of strings depends on the filling fraction. In particular for

ν = n/k we find ns = 0. Thus no strings are attached to the D-particles in the

quantum Hall fluid phase. In the next section we will consider a more general situation

in which the filling fraction is different from this value, which requires strings to end

on the D2-branes.

The world-line theory is also modified in the presence of B and G2. First, there

will be an additional X9 potential due to the induced D6-branes. More importantly

though, there is a Lorentz-type interaction with the background RR field [30, 31, 32]

SG2 =
µ0

2

∫
dt (G2)ijTr

[
X iD0X

j
]
. (3.12)

Now consider the decoupling limit (2.16), in which g2
YM1

= gs(2π)−2(α′)−3/2 ∼ (α′)ε. In

this limit the fields XI , with I = 3, . . . , 9, and the adjoint fermions decouple completely.

In addition, the CS term (3.12) dominates over the kinetic terms for X1 and X2, and

the only non-trivial part of the matrix model is given by

S =

∫
dt
{

Tr

[
1

2
√
α′

(G2)ijX
iD0X

j − kA0

]
+ iψ†aD0ψa

}

=

∫
dt
{

Tr

[
k

2
(θ−1)ijX

iD0X
j − kA0

]
+ iψ†aD0ψa

}
, (3.13)

where we have used (2.23) and (2.15) in the second equality. This is almost identical

to the finite N CS matrix model discussed in [19]. The only difference is that here

the fields ψa are fermions, whereas in [19] they are treated as bosons. The former is

more natural, given the form of their action. Recall that these fields correspond to 0-8

strings.
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3.3 Solutions

The dynamics of the matrix model in (3.13) is determined completely from the Gauss

law constraint,

−i(α′)−1/2G2[X1,X2]mn + ψa,mψ
†
a,n = kδmn . (3.14)

Note that for G2 = 0 we get

ψa,mψ
†
a,n = kδmn . (3.15)

This is just the statement that k strings are attached to each D-particle.

For finite N the trace of the constraint is always

Trψaψ
†
a = Nk , (3.16)

since the trace of the commutator vanishes. However, when N → ∞ more general

solutions to the trace constraint are possible. In particular, the quantum Hall fluid

corresponds to a non-commutative D2-brane, which is described by a D-particle con-

figuration X1 = x1, X2 = x2, and XI = 0 (I = 3, . . . , 9), in which

[x1, x2]mn = −iθ12δmn = iθδmn , (3.17)

where we have defined θ = −θ12. It then follows from (2.15) and (2.23) that

ψaψ
†
a = 0 , (3.18)

namely that there are no strings. This is consistent with what was found in the space-

time viewpoint (3.11).

By considering fluctuations of X1 and X2 about this solution (3.2), and replacing

Tr→ Pf(θ−1)

2π

∫
dx1dx2 =

1

2πθ

∫
dx1dx2 , (3.19)

one obtains NCCS theory [4]. The D-particle density per unit area in this configuration

is 1/(2πθ), so the filling fraction is 1/k, in agreement with the result in Section 2.

The advantage of the matrix model approach is that it allows us to address the

question of the statistics of the D-particles, i.e. the electrons of the QH fluid. In

general, D-particles have rather complicated “non-abelian” statistics, due to the fact

that their positions are described by matrices rather than numbers. However, in the

non-commutative configuration described above the effective two-dimensional statistics

in the (x1, x2) plane simplifies. As shown in [4], the phase associated with exchanging

two D-particles in the D2-brane configuration is given by exp(iπk). This was used in [4]

to argue that k should be quantized. In our case k is (half) the number of D8-branes,

so it is manifestly quantized. We therefore see that the D-particles behave as bosons if

k is even, and fermions if k is odd.
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4. Quasiparticles and quasiholes

The quantum Hall fluid at filling fraction 1/k (with k odd) is a stable state with a mass-

gap [7]. The lowest-lying excitations of this state correspond to adding or subtracting

a unit of magnetic flux, and thereby slightly shifting the filling fraction. The former is

known as a quasihole, and the latter as a quasiparticle. Due to the incompressibility

of the quantum Hall fluid, it can be shown that these excitations effectively carry a

fractional charge ∓1/k, and therefore exhibit fractional statistics. The total charge of

the fluid remains the same, but the additional flux causes a redistribution of the charge

density. In this section we will identify the quasiparticles and quasiholes in our string

picture, and show that they have the correct charge and statistics.

4.1 Space-time picture

Let us begin with a single D2-brane, and a filling fraction ν = 1/k. Now consider a

shift in the RR magnetic field corresponding to one flux quantum, i.e.

G2 → G2 + ∆G2 , (4.1)

where ∆G2 = ±2π
√
α′/A. This can be achieved by creating a D6-D6 pair, and moving

the D6 (in the + case) or the D6 (in the - case) across the D2-brane (figure 2). Since

the total D-particle number N is kept fixed, this changes the filling fraction to

ν ′ =
1

k ± 1
N

. (4.2)

The condition (3.11) now requires ns = ±1. This can also be understood from the fact

that when the D6 (or D6) crosses the D2-brane a string is created between them. We

therefore identify the quasiparticle (quasihole) with a string ending on the D2-brane.

This also explains, from the spacetime point of view, why quasiparticles and quasiholes

correspond to sources in the world-volume NCCS theory [4].

The above result suggests that the quasiparticle and quasihole carry a fractional

D-particle number ±1/k, since a whole D-particle (outside the D2-brane) requires k

strings. Indeed, if G2 = B = 0, the equation of motion for B (3.9) implies that the

end of a string on any D-brane in massive supergravity carries 1/k units of D-particle

charge. In our case the background fields are non-trivial, and the total D-particle charge

is held fixed. The latter can be thought of as coming from two components

N = (N + ∆N)−∆N , (4.3)

14



where ∆N = ±1/k. The first component corresponds to a quantum Hall fluid with

filling fraction given by

ν =
2π
√
α′

A

N + ∆N

G2 + ∆G2
=

1

k
, (4.4)

and the second component is the quasihole (or quasiparticle). The idea is that when

we shift G2 the D-particle density changes to maintain the quantized filling fraction.

Conservation of total D-particle charge then requires a charge deficit (or excess) some-

where, and this is provided by the end of the string. The new state can be thought of

as consisting of two components

Ψ = Ψf ·Ψqp , (4.5)

where Ψf describes the fluid at ν = 1/k, and Ψqp describes the quasiparticle. This will

be made somewhat more quantitative in the matrix model approach.

Consider now a pair of quasiparticles corresponding to two strings ending on the

D2-brane at different positions. When we move one of the string ends around the other,

the quasiparticle wavefunction acquires an Aharonov-Bohm phase. Relative to the case

with a single quasiparticle, the phase given by

φ = A∆G2 ·
µ0

k
= ±2π

k
. (4.6)

Thus the quasiparticles exhibit fractional statistics.

4.2 Matrix model picture

The ground state of a quantum Hall fluid at filling fraction 1/k corresponds to a solution

of (3.14) with

ψaψ
†
a = 0 (4.7)

[X i,Xj] = −iθij 1 , (4.8)

where

θij = 2πα′(B−1)ij =
√
α′k(G−1

2 )ij . (4.9)

This corresponds to a non-commutative D2-brane with a uniform D-particle density

given by
N

A
=

(θ−1)12

2π
, (4.10)

and no strings.
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G 2 2G∆

D6D6

Figure 2: Brane configuration of a quasihole. The D6-D6 pair adds one unit of G2 flux, as

well as a D2-D6 string. The end of the string on the D2-brane carries a deficit RR charge

µ0/k, represented by the unfilled circle.

A quasiparticle (or quasihole) corresponds to adding an additional unit of G2 flux,

while maintaining the same filling fraction for the fluid component, and keeping the

total D-particle charge fixed. The latter condition requires a string to end on the

D2-brane, which in the matrix model corresponds to Trψaψ
†
a = ψa,nψ

†
a,n = ∓1. For

example, if we choose

ψaψ
†
a = ∓|0〉〈0| , (4.11)

Gauss’ law is solved by

[X i,Xj ] = −i(θ′)ij
(

1± 1

k
|0〉〈0|

)
, (4.12)

where

(θ′)ij =
√
α′k

(
1

G2 + ∆G2

)ij
. (4.13)

This agrees with Susskind’s prescription of introducing by hand a source term to Gauss’

law in order to describe a quasiparticle [4]. In our case the “source” is provided by the

field ψ, which fits with our identification of the quasiparticle and quasihole as strings.

An explicit form of X i satisfying (4.12) was given in [4].

4.3 Charge distribution

Given any D-particle configuration X i, one could in principle compute the distribution

of RR charges from the couplings of the D-particles to the RR fields [30, 31, 32]. In
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particular, the (Fourier transform of) the D-particle density is given by

JD0(p) = Tr eipX . (4.14)

This is derived from the coupling to (C1)0:

µ0

∫
dt Tr (C1)0(X) = µ0

∫
dt

∫
d2p

(2π)2
(C̃1)0(−p)JD0(p) , (4.15)

where

(C̃1)0(p) =

∫
d2x eipx(C1)0(x) . (4.16)

The total D-particle number is given by JD0(0) = Tr 1 = N . If we map the matrix con-

figuration of X i to the non-commutative gauge field configuration Âi, the RR currents

give the coupling of the non-commutative gauge field to the RR potentials [33, 34, 35].

For example, JD0(p) is nothing but the open Wilson line [37, 36, 38]

JD0(p) =
Pf(θ−1)

2π

∫
d2x

[
eipxP exp

(
i

∫ 1

0

Âi(x+ lτ )lidτ

)]
, (4.17)

where li = pjθ
ji and the star product is implicit. We can use the RR currents to study

the D-brane charge distribution of non-commutative solitons as was done in [39].9 We

would like to compute the p dependence of JD0, and thereby the charge distribution,

for the case of the quasiparticle (or quasihole) (4.12).

It turns out to be technically challenging to compute JD0(p) using the explicit form

of the matrices X1,X2 given by [4]. Instead, we will give an indirect argument. It was

shown in [33, 34, 35] that the current J 0ij(p) which couples to (C3)0ij is topological, in

the sense that its value does not change for a small variation of the configuration δX i.

This is physically reasonable because the D2-brane charge does not change for a small

fluctuation of the non-commutative gauge field. The explicit form of J 0ij(p) is derived

from the coupling

− i
2

µ0

2πα′

∫
dt Tr C0ij(X)[X i,Xj ] = µ2

∫
dt

∫
d2p

(2π)2
C̃0ij(−p)J0ij(p), (4.18)

and is given by

J0ij(p) = −iπ Tr [X i,Xj]eipX . (4.19)

9In the Seiberg-Witten limit, there is no ambiguity in the D-brane charge distribution coming from

field redefinition of RR potentials when we set at least one transverse scalar to be zero. The closed

string on-shell condition can then be satisfied for an arbitrary momentum in the noncommutative

directions [40]. We thank H. Ooguri for the discussion on this point.
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For a configuration with a single D2-brane

J0ij(p) = −iπ Tr [X i,Xj ]eipX =
1

2
(2π)2εijδ(p) . (4.20)

For the quasiparticle solution (4.12) this gives

Tr (θ′)ij
(

1± 1

k
|0〉〈0|

)
eipX = −2πεijδ(p). (4.21)

The D-particle density is therefore given by

JD0(p) = Tr eipX = 2π(θ′−1)12δ(p)∓
1

k
〈0|eipX|0〉. (4.22)

The first term corresponds to a uniform distribution with density 1/(2πθ′), and the

second term corresponds to the 1/k excess (or deficit) charge carried by the quasiparticle

(quasihole), which compensates for the change in the uniform distribution from 1/(2πθ).

We can easily compute this term in two extreme limits. For k →∞, the configuration

reduces to (4.8), and the matrices can be expressed in terms of creation and annihilation

operators

X1 =

√
θ

2
(a+ a†) , X2 = −i

√
θ

2
(a− a†) , (4.23)

We therefore find that

〈0|eipX |0〉 = exp

[
−θ

4
(p2

1 + p2
2)

]
, (4.24)

and the coordinate space charge distribution is Gaussian. For k = 1, on the other

hand, the computation reduces to the one done in [39], and the momentum space

charge distribution is given by

〈0|eipX|0〉 = 1 , (4.25)

so in coordinate space it is δ(x). Since the charge deficit (or excess) is localized in both

limits, we expect that it is localized in general.

The solution corresponding to a quasiparticle in (4.11) and (4.12) is not unique.

For example, one can choose ψaψ
†
a = |1〉〈1|, and similarly replace (4.12). The precise

form of the charge distribution of the quasiparticle changes, but the total charge deficit

(or excess) is still 1/k.

Multi-quasiparticle (quasihole) states can be described by configurations of the

form

ψaψ
†
a =

N∑

m=0

cm|m〉〈m| (4.26)

[X i,Xj] = −i(θ′)ij
(

1−
N∑

m=0

cm|m〉〈m|
)
. (4.27)
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The total charge deficit (or excess) is simply given by Trψaψ
†
a/k =

∑
cm/k. However

the entire charge is concentrated at the origin. It would be interesting to find multi-

centered solutions. In particular, one would like to identify the collective coordinates of

multi-quasiparticle states, just as in the case of non-commutative solitons in [41]. This

would be particularly useful in verifying the statistical properties of the quasiparticles

in the matrix model, as was done for the D-particles in [4].

5. Conclusions and outlook

In this paper we have derived the correspondence between NCCS theory and the quan-

tum Hall fluid. The brane picture which we have presented, namely a D2-brane in

massive IIA string theory with a constant B field background, in an appropriate de-

coupling limit, can be viewed in two ways. In the spacetime viewpoint the system is

seen as a two-dimensional fluid of charged particles in a uniform background magnetic

field, where the charged particles are D-particles, the magnetic field is the RR field G2,

and the fluid corresponds to a non-commutative configuration of D-particles forming a

D2-brane. At the same time, the D2-brane world-volume theory is a pure NCCS gauge

theory.

The brane picture naturally explains various aspects of the quantum Hall fluid,

such as the quantization of the filling fraction, and the charge and statistics of the

quasiparticle and quasihole excitations. Note, however, that since the Hamiltonian of

the NCCS theory (as well as the matrix model) vanishes, all the allowed states are

degenerate in energy. In particular, the quasiparticle and quasihole excitations are

massless in this context. It therefore remains unclear how to obtain a non-vanishing

mass gap. One possibility is that additional interactions must be added to the action.

In fact, the string construction gives a definite prescription for this; if we set ε = δ = 0

in (2.16), we recover the ordinary Seiberg-Witten limit, in which the theory has a finite

YM term, as well as coupled scalars and fermions. It would be interesting to study this

situation.

It would also be interesting if the string realization gives some insights into the

transition to a Wigner crystal phase at low filling fraction. The relevant physical

gauge-invariant observables for this problem are correlation functions of the D-particle

density JD0(p). It was suggested in [4] to calculate the correlation functions by mapping

to the noncommutative gauge theory in a power series expansion in θ. We now have

an exact expression for the Seiberg-Witten map [33, 34, 35, 42], and the D-particle

density JD0(p) is given by the open Wilson line (4.17). It would therefore be important

to study correlation functions of the open Wilson line in NCCS theory.
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Another open problem is how to describe the hierarchy of different filling fractions

in the brane picture. This hierarchy was explained in [43] by an iterative procedure of

quantizing a gas of quasiparticles or quasiholes of a fluid with a given filling fraction,

to produce a fluid with a different filling fraction. The result is

ν =
1

k +
α1

p1 +
α2

p2 + ...

(5.1)

where k = 1, 3, 5, . . ., pi = 2, 4, 6, . . ., and αi = ±1, depending on whether one uses

quasiparticles or quasiholes. For example, the ν = 2/3 state is obtained from the ν = 1

state by choosing α1 = 1 and p1 = 2, and the ν = 2/5 state is obtained from the

ν = 1/3 state with α1 = −1 and p1 = 2.

We have seen that a filling fraction n/k fluid can be described by a configuration

of n D2-branes and 2k D8-branes in a background B field. Let us propose a possible

scenario which accommodates the above hierarchy structure. Consider the case with

ν = 2/5 by starting with ν = 1/3. Since 1/3 = 5/15, we can also realize ν = 1/3 by

2× 15 D8-branes and 5 D2-branes. The world-volume theory is U(5) NCCS theory at

level k = 15. If we increase the filling fraction by decreasing G2, while keeping the total

D-particle charge fixed, quasiparticles will appear. Since quasiparticles correspond to

the ends of strings on the D2-branes, each carries a charge which is 1/15 the unit D-

particle charge. However, in order to make a U(5) invariant state one must combine

five strings ending on the five different D2-branes. This U(5) singlet quasiparticle then

actually has a charge 5/15 = 1/3. This is the true quasiparticle of the ν = 1/3 state.

As we continue to decrease G2 more and more quasiparticles are produced, until the

filling fraction reaches the value 2/5. Here we notice that

2

5
=

1

3
+

1

15
=

5

15
+

1

15
=

6

15
. (5.2)

We therefore propose that at this point the quasiparticles condense, much like the

original D-particles, to form another D2-brane, giving a total of n = 6, and thus ν =

6/15 = 2/5. It is straightforward to extend this scenario down the hierarchy by starting

with more D8-branes. To argue that this is more than an amusing scenario, however,

requires a better understanding of the dynamics of quasiparticles and quasiholes. In

the matrix-model picture, construction of multi-centered solutions of quasiparticles

and quasiholes, and the identification of their collective coordinates would also be

important.
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