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Recently a new approach to type IIA theory in 10d was initiated in [1]. It was

given a name ‘bulk & brane action’ 1. The purpose was to clarify the properties of D8

branes (domain walls in 10d) and related configurations which require the ‘massive’

type IIA bulk supergravity of Romans [5]. The new version of IIA supergravity in

the bulk [1] includes a 10-form field strength G(10) which is dual to zero-form field

strength G(0). The theory is defined on S1/Z2 space. The value of G(0) depends on

the brane part of the bulk & brane action. The brane part consists of two orientifold

planes and some number of D8 branes coincident with each of the O8 planes. The

resulting on shell value of the 0-form field G(0) in the presence of sources is a piecewise

constant

G(0)(x9) =
2n − 16

4πls
ε(x9) .

This identifies the mass parameter of Type IIA supergravity in ‘bulk & brane action’

[1] as follows:

m =





n − 8

2π`s
, 0 < x9 < πR ,

−n− 8

2π`s
, −πR < x9 < 0 .

The mass is quantized in string units and it is proportional to n − 8 where there

are 2n and 2(16 − n) D8-branes (including the images) at each O8-plane. The mass

vanishes in the special case n = 8 when the contribution from the D8-branes cancels

exactly the contribution from the O8-planes.

n = 8 ⇒ m = 0 .

The set up for the bulk & brane action allows to find the equations of motion following

from the bulk supergravity as well as from the brane actions. A familiar example

of this kind is the fundamental string F1: the equations of motion were derived

from the bulk 10d massless supergravity supplemented by the string action [6]. The

coordinates of the string were embedded into the target space of supergravity by the

choice of the static gauge: X0 = τ,X1 = σ. The matching conditions at the position

of the string were satisfied for this solution. In [1] an analogous procedure was

performed for stringy domain walls in massive IIA bulk supergravity supplemented

by O8 and D8 actions. The solution satisfied matching conditions at the positions

of the walls and had 1/2 of unbroken supersymmetry.

The purpose of this paper is to introduce more general ‘bulk & brane actions’ and

study the solutions of massive IIA theory with less unbroken supersymmetry. The

1This was a follow up of a 5d bulk & brane action suggested in [2] with the purpose to super-

symmetrize the Randall-Sundrum [3] brane world. This approach to IIA theory is closely related

to Polchinski-Witten construction [4].
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challenge here is that apart from D8 branes which require massive supergravity, the

rest of the known D-branes are solutions of the massless supergravity. Few solutions

of the massive supergravity have been found before [7, 8]. However they have been

found in the theory with the constant mass, without a 10-form, whereas a consistent

theory of domain walls on S1/Z2 requires the presence of the 10-form dual to a 0-form

and they both change the sign across the wall.

An interesting case which we will study in this paper is a configuration which one

can conditionally call D8-D0-F1 solution which is expected to define strings stretched

between the walls. One can not expect a simple combination of known D8 brane,

D0 brane and fundamental strings F1 solutions by the following reason:

• The status of the D0 brane in massive supergravity with everywhere constant

mass is somewhat ambiguous since the 1-form can be gauged away via Higgs

effect which makes the 2-form B a massive field [5]. In our theory [1], however,

in presence of the 0- and 10-form fields it is impossible to gauge the RR 1-form

away everywhere. In Romans theory [5] the fieldBµν appears either via the field

strength H = dB or in the combination dA + mB. Thus the transformation

δB = 1
m
dA does not change H and absorbs the 1-form A into B. In [1] B

enters in a combination dA + G(0)B where the 0-form G(0) is a function and

therefore G(0)B can not absorb dA, in general.

• The fundamental string F1 of type IIA massless supergravity does not solve

equations of motion of the massive theory. Therefore in presence of O8-D8

walls some unusual strings may be expected.

Our interest to the problem was enhanced also by a phenomenon of string cre-

ation when D0 particle crosses a D8 brane [9]. The observation in these papers was

of the following nature. One considers one isolated D8-brane and one assumes that

on one side of the D8-brane, for example the right hand side, there is a bulk defined

by massless supergravity,

mrhs = 0 ⇒ D0 .

Therefore on the right hand side of the D8-brane the usual D0-branes are possible

since they solve equations of motion of massless supergravity. On the other side of the

D8-brane the bulk is assumed to have a non-vanishing mass, i. e. the bulk is defined

by the massive supergravity. The usual D0-brane can not exist there without a Bµν -

field. Thus a string must be created as soon as the D0-brane crosses the D8-branes

and appears on the other side where

mlhs 6= 0 ⇒ D0 + F1 .

In our case when we have two O8-D8 domain walls at the fixed points of the orien-

tifold, the mass changes the sign across the wall, but is nowhere vanishing. Therefore
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we expect to find a solution which everywhere has a modified string combined with

some modified charged D-particle.

We will start from d=10 Lagrangian for dual IIA which is given in eq. (2.23) of

[1] with the independent fields 2.

{
eaµ, Bµν , φ,G

(0), G(2)
µν , G

(4)
µ1 ···µ4

, A(5)
µ1···µ5

, A(7)
µ1···µ7

, A(9)
µ1···µ9

, ψµ, λ
}
. (1)

The bulk action is

S5,7,9
bulk = − 1

2κ2
10

∫
d10x
√−g

{
e−2φ

[
R
(
ω(e)

)
− 4
(
∂φ
)2

+ 1
2
H ·H − 2∂µφχ

(1)
µ +H · χ(3) +

+2ψ̄µΓµνρ∇νψρ − 2λ̄Γµ∇µλ + 4λ̄Γµν∇µψν
]

+
∑

n=0,1,2
1
2
G(2n) ·G(2n) +G(2n) ·Ψ(2n) +

− ?
[

1
2
G(4)G(4)B − 1

2
G(2)G(4)B2 + 1

6
G(2)2B3 + 1

6
G(0)G(4)B3 − 1

8
G(0)G(2)B4 +

+ 1
40
G(0)2B5 + e−BGd(A(5) −A(7) +A(9))

]}
+ quartic fermionic terms , (2)

where G =
∑5

n=0 G
(2n) is a formal sum and

χ(1)
µ = −2ψ̄νΓ

νψµ − 2λ̄ΓνΓµψν ,

χ(3)
µνρ = 1

2
ψ̄αΓ[αΓµνρΓ

β]Pψβ + λ̄Γµνρ
βPψβ − 1

2
λ̄PΓµνρλ ,

Ψ(2n)
µ1 ···µ2n

= 1
2
e−φψ̄αΓ[αΓµ1 ···µ2nΓβ]Pnψβ + 1

2
e−φλ̄Γµ1 ···µ2nΓβPnψβ +

− 1
4
e−φλ̄Γ[µ1 ···µ2n−1

PnΓµ2n ]λ .

The fields G(0), G
(2)
µν , G

(4)
µ1 ···µ4 are auxiliary since they enter into the action without

derivatives and can be integrated out so that the action will depend on the field

strength of A
(5)
µ1···µ5 , A

(7)
µ1···µ7 , A

(9)
µ1···µ9 R-R forms. Alternatively, it was explained in [1],

one can dualize this action and bring it to the form closely related to the original

action of Romans [5] where the 1-form C
(1)
µ and the 3-form C

(3)
µνλ appear and the

mass is constant. The change of the basis for RR-forms must be performed for such

transition, A = C ∧ e−B. The action in stringy frame is given in eq. (2.33) of [1].

None of these actions, neither the one in (2) nor the Romans-type action, can

be used directly to find a solution we are looking for, since we need both a 1-form

for D0 and a 9-form for O8-D8 wall. However, it is easy to bring the action (2) to a

desirable form.

Our goal therefore is to construct a partially dual Lagrangian in terms of inde-

pendent fields

{
eaµ, Bµν , φ,G

(0), G(4)
µ1 ···µ4

, A(1)
µ , A(5)

µ1···µ5
, A(9)

µ1···µ9
, ψµ, λ

}
(3)

that will correspond to the D0-F1-D8 brane system. We can express the auxiliary

field G(2) via A(1), G(0) and B using the field equations for A(7) following from (2)

−
∫

e−BG∧dA(7) =

∫
(de−BG)∧A(7) + d[· · · ] ⇒ d(G(2) −G(0)B) = 0

2We keep all notation of [1].
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The most general solution is [1]: G(2) = dA(1) +G(0)B +G
(2)
flux, where dG

(2)
flux = 0. We

will choose G
(2)
flux = 0 and will substitute the solution

G(2)(A1, G(0), B) = dA(1) +G(0)B (4)

into (2) which will give us a partially dual action we are looking for :

S1,5,9
bulk = − 1

2κ2
10

∫
d10x
√−g

{
e−2φ

[
R
(
ω(e)

)
− 4
(
∂φ
)2

+
1

2
H ·H − 2∂µφχ(1)

µ +H · χ(3) +

+ 2ψ̄µΓµνρ∇νψρ − 2λ̄Γµ∇µλ+ 4λ̄Γµν∇µψν
]

+
1

2
G(0) ·G(0) +

1

2
G(4) ·G(4) +

1

2
(dA(1) + G(0)B)(dA(1) +G(0)B) (5)

+ G(0)Ψ(0) + (dA(1) +G(0)B) ·Ψ(2) +G(4) ·Ψ(4)

− ?
[1
2
G(4)G(4)B − 1

3
G(0)G(4)B3 +

1

15
G(0)2B5 +

1

6
dA(1)dA(1)B3

+ (
5

24
G(0)B4 − 1

2
G(4)B2)dA(1) + (G(4) −BdA(1) − 1

2
G(0)B∧B)dA(5) +G(0)dA(9)

]}

+ quartic fermionic terms .

Substitution of (4) into supersymmetry transformation rules found in [1] for the

action (2) gives the supersymmetry transformations of our new partially dual action

(5):

δεψµ =
(
∂µ + 1

4
6ωµ + 1

8
Γ11 6Hµ

)
ε+ 1

8
eφ
(
G(0)Γµ + 1

2
(2 ∂[νA

(1)
ρ] Γνρ +G(0) 6B)ΓµΓ11 + 1

24
6G(4)Γµ

)
ε ,

δελ =
(
6∂φ− 1

12
Γ11 6H

)
ε+ 1

4
eφ
(

5G(0) + 3
2
(2 ∂[νA

(1)
ρ] Γνρ +G(0) 6B)Γ11 + 1

24
6G(4)

)
ε ,

δεφ = 1
2
ε̄λ ,

δG(0) = 0 ,

δA(1) = −e−φε̄Γ11

(
ψµ − 1

2
Γµλ

)
,

δG(2) = dE1 +G(0)
∧δεB = δ(dA(1) +G(0)B) ,

δG(4) = dE3 +G(2)
∧δεB −H∧E1 ,

δA(5) = E5 −B∧E3 + 1
2
B∧B∧E1 ,

δA(9) = E9 −B∧E7 + 1
2
B∧B∧E5 − 1

6
B∧B∧B∧E3 + 1

24
B∧B∧B∧B∧E1 , (6)

where

E(2n−1)
µ1 ···µ2n−1

≡ −e−φ ε̄Γ[µ1 ···µ2n−2
(Γ11)

n
(

(2n− 1)ψµ2n−1 ] − 1
2
Γµ2n−1 ]λ

)
.

We now make an assumption that our solution has G(4) = 0, A(5) = 0, B ∧ B = 0,

dA ∧B = 0, dA ∧ dA = 0. The full action whose variation will define the D0-D8-F1

solution will consist of the bulk action and source actions. The brane source action

for domain walls was presented in [1]. The sources for F1-D0 are not known and we

hope to find them when the bulk solution will be established. Thus we take

Sbulk&brane = Sbulk + SO8D8 + SF1D0 . (7)
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The simplified form of the bulk bosonic action (5) which we need for our solution is:

Sbulk = − 1

2κ2
10

∫
d10x
√−g

{
e−2φ

[
R
(
ω(e)

)
− 4
(
∂φ
)2

+
1

12
(Hµνλ)2

]

+
1

2
(G(0))2 +

1

2
(dA(1) +G(0)B)2 − ?

[
G(0)dA(9)

]}
. (8)

The action of O8D8 (which is a D8-brane action in a static gauge, with excitations

on the brane frozen) is

SO8+D8 = −µ8

∫
d10x {e−φ

√
|g(9)|+ α

1

9!
ε(9)A(9)} (δ(z)− δ(z − πR)) , (9)

where µ8 = 1
2κ2

10

2(n−8)
(2π`s)

. Here −16 is the contribution to the tension from each orien-

tifold plane. The positive part of the tension comes from D8 branes coincident with

the O-planes.

. .

.

..

.

.

.

.

0-pR pR

Figure 1: At z = 0 there is an O8-plane with 2n D8-branes on it, at |z| = πR there is a

second O8-plane with 2(16− n) D8-branes on it (counting the images). The configuration

includes an orthogonal to domain walls ‘F1-D0’ collection of strings sitting at positions ~xk,

all in static equilibrium, 1/4 of supersymmetry unbroken.

We will find the following D0-D8-F1 solution3 on S1/Z2. It depends on 2 har-

monic functions, h(z), where z is a coordinate transverse to the D8 brane, and f(xi)

3Our ansatz is motivated by the results from [8] where a closely related solution was obtained in

Romans theory [5] with everywhere constant mass. On the other hand, for G(0)(x) = − ?G(10)(x),

when the string harmonic function f is trivial, Nk = 0 and f = 1, our solution is reduced to the

one for two O8-D8 domain walls on S1/Z2 derived in [1].
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where xi are the 8 coordinates transverse to the string.

ds2 = −h− 1
2f−

3
2dt2 + h

1
2f−

1
2dz2 + h−

1
2f

1
2 (dxi)2 (10)

eφ = h−
5
4f

1
4 Bzt = af−1 , At = bhf−1 (11)

G
(2)
it = bh∂if

−1 , G
(2)
zt = 0 (12)

G(0) = − ? G(10) = α
n− 8

2πls
ε(z) = −α∂zh (13)

where α2 = a2 = b2 = 1, b = α a and G(2) = dA + G(0)B as in (4). Harmonic

functions are defined as follows:

f(~x) = 1 +
∑

k

Nk c
10
f

|~x− ~xk|6
(14)

h(z) = 1− n− 8

2πls
|z| , α2 = 1 , (15)

where

c10
f =

2κ2
10

2πl2s6ω7

ω7 =
2π7/2

Γ(7/2)
. (16)

The solutions of the equations of motion given above solve the equation of the action

Sbulk + SO8D8 everywhere but at the positions of the F1-D0 strings at ~x = ~xk. The

form of the solutions suggest that one can find the source action for F1-D0 strings

so that the total action has equation of motion for which (10)-(16) gives a solution

everywhere, including the position of the strings at ~x = ~xk. We find the appropriate

action in the form:

SF1D0 = − 1

2πα′

[ ∫
d10x

∑

k

Nkδ
8(~x− ~xk)

{(
e−φ
√−gtt − bAt

)
+
(√−gttgzz −

a

2!
ενλBνλ

) e−φ√
gzz

}]
. (17)

Here ν, λ take values t, z. As we see here, the action is not simply related to D0 or F1

solution. The first part somehow reminds a D0 action in a static gauge, however it

is integrated over z and not only over t which would correspond to a D0 brane. The

second part is almost an F1 string action in a static gauge. However, there is a term
e−φ√
gzz

which for our solution is equal to h(z) and is related to O8-D8 domain wall.

This term breaks the O(1, 1) symmetry of the fundamental string and is unusual.

We will present below all equations of motion following from the bulk & brane

action and show that they are solved by (10)-(16). Our total bulk & brane action

6



which is a subject for variation over
{
gµν , Bµν , φ,G

(0), A
(1)
µ , A

(9)
µ1···µ9

}
fields is:

Stotal = Sbulk + Sbranes =
1

2κ2
10

[ ∫
d10xLbulk

− T̃8

∫
d10x

(
δ(z)− δ(z − πR)

)(
e−φ
√
|g9|+ α

1

9!
ε(9)A(9)

)

− T̃2

∫
d10x

∑

k

Nkδ
8(~x− ~xk)

{(
e−φ
√−gtt − bAt

)

+
(√−gttgzz −

a

2!
ενλBνλ

) e−φ√
gzz

}]
. (18)

The covariant equations of motion that follow from the bulk action (8) are:

δS

δgµν
|bulk = −

√−g
2κ2

10

(
e−2φ

[
Rµν −

1

2
gµνR+ 2gµν∇2φ− 2∇µ∇νφ

−2gµν∂
σφ∂σφ−

1

24
gµνHλρσH

λρσ +
1

4
H{µλσH

λσ
ν}

]

−1

4
gµν(G

(0))2 − 1

8
gµν(G

(2))λσ(G(2))λσ +
1

2
(G(2)){µλ(G(2))λν}

)
(19)

δS

δφ
|bulk = −

√−g
κ2

10

e−2φ
(

4∇2φ− 4∂µφ∂
µφ−R− 1

12
HλρσH

λρσ
)

(20)

δS

δBµν
|bulk = −

√−g
2κ2

10

(
−Dλ

(
e−2φ1

2
Hµνλ

)
+

1

2
G(0)(G(2))µν

)
(21)

δS

δA
(1)
ν

|bulk = −
√−g
2κ2

10

(
−Dµ(G(2))µν

)
(22)

δS

δA
(9)
µ1···µ9

|bulk = − 1

2κ2
10

(
− 1

9!
ε(10)µ1···µ9ν∂νG

(0)
)

(23)

δS

δG(0)
|bulk = −

√−g
2κ2

10

(
G(0) +

1

2
(G(2))µνB

µν − 1

9!
√−g ε

(10)µ1···µ10∂µ1A
(9)
µ2 ···µ10

)
(24)

It is easy to see that the last equation becomes a standard duality equation when

(G(2))µνB
µν = 0, which is indeed a property of our solution (10)-(16). When our

ansatz (10)-(13) is substituted in bulk equations of motion, we find a wonderful

7



simplification

δS

δgtt
|bulk =

gtt
2κ2

10

(
hf−1∆f +

1

2
h−1f∂z∂zh

)
, (25)

δS

δgzz
|bulk =

gzz
4κ2

10

(
hf−1∆f

)
, (26)

δS

δgii
|bulk =

gii

4κ2
10

(
h−1f∂z∂zh

)
, (27)

δS

δφ
|bulk =

1

2κ2
10

(
hf−1∆f + h−1f∂z∂zh

)
, (28)

δS

δBzt
|bulk =

a

4κ2
10

h∆f , (29)

δS

δA1
t

|bulk =
1

2κ2
10

a

α
∆f , (30)

δS

δA
(9)
µ1···µ9

|bulk = − α

2κ2
10

ε(9)

9!

{
∂z∂zh(z)

}
, (31)

δS

δG(0)
|bulk = −

√−g
2κ2

10

(
G(0) + ?G(10)

)
. (32)

In the presence of sources introduced in eq. (18) the complete equations of motion

have additional terms:

δS

δgtt
|bulk&brane =

gtt
2κ2

10

{
hf−1∆f + T̃2hf

−1
∑

k

Nkδ
8(~x− ~xk)

}

+
gtt

4κ2
10

{
h−1f∂z∂zh + T̃8h

−1f
(
δ(z)− δ(z − z̃)

)}
= 0 , (33)

δS

δgzz
|bulk&brane =

gzz
4κ2

10

{
hf−1∆f + T̃2hf

−1
∑

k

Nkδ
8(~x− ~xk)

}
= 0 , (34)

δS

δgii
|bulk&brane =

gii

4κ2
10

{
h−1f∂z∂zh + T̃8h

−1f
(
δ(z)− δ(z − z̃)

)}
= 0 , (35)

δS

δφ
|bulk&brane =

1

2κ2
10

{
hf−1∆f + T̃2hf

−1
∑

k

Nkδ
8(~x− ~xk)

}

+
1

2κ2
10

{
h−1f∂z∂zh + T̃8h

−1f
(
δ(z)− δ(z − z̃)

)
= 0 , (36)

δS

δBzt

|bulk&brane =
a

4κ2
10

{
h∆f + T̃2h

∑

k

Nkδ
8(~x− ~xk)

}
= 0 , (37)

δS

δA1
t

|bulk&brane =
1

2κ2
10

a

α

{
∆f + T̃2

∑

k

Nkδ
8(~x− ~xk)

}
= 0 , (38)

δS

δA
(9)
µ1···µ9

|bulk&brane = − α

2κ2
10

ε(9)

9!

{
∂z∂zh + T̃8

(
δ(z)− δ(z − z̃)

)}
= 0 , (39)

δS

δG(0)
|bulk&brane = −

√−g
2κ2

10

(
G(0) + ?G(10)

)
= 0 . (40)
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All equations of motion of bulk & brane action are miraculously satisfied under

condition that the equations for the harmonic functions f, h include the domain wall

and multi-string source terms:

∆f + T̃2

∑

k

Nkδ
8(~x− ~xk) = 0 (41)

∂z∂zh+ T̃8

(
δ(z)− δ(z − πR)

)
= 0 . (42)

These equations are satisfied by our harmonic functions defined in (14)-(16).

In conclusion, we have found a 1/4 BPS solution of IIA (massive) theory with

domain walls at the fixed points of the orientifold and multiple strings stretched

between domain walls. The configuration has some electric field, At(z, ~x) reminiscent

of the D0-brane and some 2-form Bzt(~x) reminiscent of the F1 multi-string solution.

There is a piecewise constant 0-form, dual to a 10-form, and both change the sign

across the wall. We leave it to future investigations to find a better interpretation of

this configuration and to understand the possibilities to use it.
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Appendix: 1/4 of Unbroken Supersymmetry

Our solution has an SO(8) symmetry. For simplicity we will switch to polar coordi-

nates and consider one string solution at (~x)2 = r2 = 0. We will find that δλ = 0

and δψt = δψz = δψr = 0. Due to SO(8) symmetry the variation of the gravitino

δψi can be written as follows δψi = δijx
jΨ. The relation to δψr is

δψr = δψi
xi

r
=

(xi)2

r
Ψ = Ψ (43)

Thus if we establish that δψr = 0 it will follow that δψi = δijx
jΨ = 0.

We will substitute our solution into the supersymmetry transformations for λ:

δελ =
(
6∂φ− 1

12
Γ11 6H

)
ε+ 1

4
eφ
(

5G(0) + 3
2
(2 ∂[νA

(1)
ρ] Γνρ +G(0) 6B)Γ11

)
ε

4http://itp.stanford.edu/ zunger/
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and use for our ansatz that

6∂φ = Γµ∂µφ =
1

4
h

1
4 f−

5
4 ∂rfΓr − 5

4
h−

5
4f

1
4 ∂zhΓz

− 1
12

Γ11 6H = −αa
2
h

1
4 f−

5
4 ∂rfΓrztΓ11

5
4
eφG(0) = − 5

4α
h−

5
4f

1
4∂zh

3
4
eφG

(2)
rt ΓrtΓ11 = −3a

4
h

1
4f−

5
4∂rfΓrtΓ11.

Collecting all terms we have:

δελ =
1

4
h

1
4f−

5
4∂rfΓr

(
1− 2aαΓztΓ11 − 3aΓtΓ11

)
ε− 5

4α
h−

5
4 f

1
4∂zh

(
1 + αΓz

)
ε = 0 .(44)

We impose the following projectors:

αΓzε = −ε
αΓztΓ11ε = βε , β2 = 1 (45)

ΓtΓ11ε = γε , γ2 = 1

The first one is for D8, the second one is related to F1 and the third one (a product

of the first two) is related to D0. Thus we have 1/4 of supersymmetry unbroken,

since only two projectors are independent.

The dilatino transformation (44) vanishes under conditions that a(2αβ+3γ) = 1.

Therefore there are two possibilities:

(1) αβ = 1 (α = ±1, β = ±1) , γ = −1 ⇒ a = −1

(2) αβ = −1 (α = ∓1, β = ±1) , γ = 1 ⇒ a = 1

and it is easy to check the compatibility of these projectors.

In our next step we have to consider the supersymmetry transformations for ψ

δεψµ =
(
∂µ + 1

4
6ωµ + 1

8
Γ11 6Hµ

)
ε+ 1

8
eφ
(
G(0)Γµ + 1

2
(2 ∂[νA

(1)
ρ] Γνρ +G(0) 6B)ΓµΓ11

)
ε

and we assume that ε = (−gtt)
1
4 ε0. (In polar coordinates ε0 depends on angles). The

set of useful expressions is:

ett = h−
1
4f−

3
4 , 6ωt = −3

2
f−2∂rfΓrt − 1

2
h−

3
2f−

1
2∂zhΓzt

ezz = h
1
4f−

1
4 , 6ωz =

1

2
h

1
2f−

3
2∂rfΓrz

err = h−
1
4 f

1
4 , 6ωr =

1

2
h−

3
2f

1
2∂zhΓzr

Collecting all terms we get:

δεψt = −1

8
f−2∂rfΓr

(
3Γt + 2αaΓzΓ11 + aΓ11

)
ε+

1

8α
h−

3
2f−

1
2∂zhΓt

(
1 + αΓz

)
ε

δεψz =
1

8
h

1
2f−

3
2∂rfΓr

(
Γz + 2αaΓtΓ11 + aΓztΓ11

)
ε− 1

8α
h−1∂zh

(
α+ Γz

)
ε

δεψr = −1

8
f−1∂rf

(
3 + 2αaΓztΓ11 − aΓtΓ11

)
ε− 1

8α
h−

3
2f

1
2 ∂zhΓr

(
1 + αΓz

)
ε
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It is easy to show that if the spinors ε satisfy the projector conditions (45)

δψt = δψz = δψr = 0.

As we explained above, it also means that

δψi = 0 i = 1, . . . , 8.

We have shown that our solution (10)-(13) satisfies the condition of 1/4 of unbroken

supersymmetry.
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