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ABSTRACT

We present preliminary results of a new measurement of the inclusive b quark fragmen-
tation function in Z0 decays using a novel kinematic B hadron energy reconstruction
technique. The measurement is performed using 350,000 hadronic Z0 events recorded
in the SLD experiment at SLAC between 1997 and 1998. The small and stable SLC
beam spot and the CCD-based vertex detector are used to reconstruct topological B-
decay vertices with high e�ciency and purity, and to provide precise measurements of
the kinematic quantities used in this technique. We measure the B energy with good
e�ciency and resolution over the full kinematic range. We compare the measured scaled
B hadron energy distribution with several functional forms of the B hadron energy dis-
tribution and predictions of several models of b quark fragmentation. Several functions
are excluded by the data. The average scaled energy of the weakly decaying B hadron is
measured to be xB = 0.710 � 0.003 (stat) � 0.005 (syst) � 0.004 (model) (preliminary).
In addition, we reconstruct the decay vertices of both the leading B and �B hadrons in
a large sample of events, and measure their energies. We present the �rst (preliminary)
measurement of the correlation between the B and �B energies in Z0 ! b�b events, and
compare with the leading order QCD prediction.
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1 Introduction

The production of heavy hadrons (H) in e+e� annihilation provides a laboratory for
the study of heavy-quark (Q) jet fragmentation. This is commonly characterised in
terms of the observable xH � 2EH=

p
s, where EH is the energy of a B or D hadron

containing a b or c quark, respectively, and
p
s is the c.m. energy. In contrast to

light-quark jet fragmentation one expects [1] the distribution of xH, D(xH), to peak at
an xH -value signi�cantly above 0. Since the hadronisation process is intrinsically non-
perturbative D(xH) cannot be calculated directly using perturbative Quantum Chromo-
dynamics (QCD). However, the distribution of the closely-related variable xQ � 2EQ=

p
s

can be calculated perturbatively [2, 3, 4] and related, via model-dependent assumptions,
to the observable quantity D(xH); a number of such models of heavy quark fragmenta-
tion have been proposed [5, 6, 7]. Measurements of D(xH) thus serve to constrain both
perturbative QCD and the model predictions. Furthermore, the measurement of D(xH)
at di�erent c.m. energies can be used to test QCD evolution, and comparison of D(xB)
with D(xD) can be used to test heavy quark symmetry [8, 9]. Finally, the uncertainty on
the forms of D(xD) and D(xB) must be taken into account in studies of the production
and decay of heavy quarks, see eg. [10]; more accurate measurements of these forms will
allow increased precision in tests of the electroweak heavy-quark sector.

We consider the measurement of the B hadron scaled energy distribution D(xB)
in Z0 decays. Earlier studies [11] used the momentum spectrum of the lepton from
semi-leptonic B decays to constrain the mean value < xB > and found it to be approx-
imately 0:70; this is in agreement with the results of similar studies at

p
s = 29 and 35

GeV [12]. In more recent analyses [13, 14, 15] the scaled energy distribution D(xB) has
been measured by reconstructing B hadrons via their B ! DlX decay mode. In this
case the reconstruction e�ciency is intrinsically low due to the small branching ratio
for B hadrons to decay into the high-momentum leptons used in the tag. Also, the
reconstruction of the B hadron energy using calorimeter information usually has poor
resolution for low B energy, resulting in poor sensitivity to the shape of the distribution
at low energy.

Here we describe the preliminary results of a new method for reconstructing B hadron
decays, and the B energy, inclusively, using only charged tracks, in the SLD experiment
at SLAC. We use the upgraded CCD vertex detector, installed in 1996, to reconstruct
B-decay vertices with high e�ciency and purity. Combined with the micron-size SLC
interaction point (IP), precise vertexing allows us to reconstruct accurately the B ight
direction and hence the transverse momentum of tracks associated with the vertex with
respect to this direction. Using the transverse momentum and the total invariant mass
of the associated tracks, an upper limit on the mass of the missing particles is found for
each reconstructed B-decay vertex, and is used to solve for the longitudinal momentum
of the missing particles, and hence for the energy of the B hadron. In order to improve
the B sample purity and the reconstructed B hadron energy resolution, B vertices with
low missing mass are selected. The method is described in Section 3. In Section 4
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we compare the B energy distribution with predictions of heavy quark fragmentation
models. We also test several functional forms of B hadron energy distributions. In
Section 5, we unfolded the B hadron energy distribution. In Section 6, we discuss the
systematic errors.

We have also studied events in which we reconstructed the energies of both leading
B hadrons produced via e+e� ! b�b! BB+X. As proposed in [16], we have measured
moments of the correlated scaled-energy distribution d2N=dxB1dxB2:

Dij �
Z Z

xiB1x
j
B2d

2N=(dxB1dxB2) dxB1dxB2;

where xB1 and xB2 are the scaled energies of the twoB hadrons, and the label is arbitrary.
By comparing these with the moments of the single inclusive distribution D(xB):

Di �
Z
xiBdN=dxB dxB

we have tested the ansatz of factorization as applied to pQCD calculations of e+e� ! b�b (g)
events. This analysis is described in Section 7. In Section 8 we summarize the results.

2 Apparatus and Hadronic Event Selection

This analysis is based on roughly 350,000 hadronic events produced in e+e� annihilations
at a mean center-of-mass energy of

p
s = 91:28 GeV at the SLAC Linear Collider

(SLC), and recorded in the SLC Large Detector (SLD) in 1997 and 1998. A general
description of the SLD can be found elsewhere [17]. The trigger and initial selection
criteria for hadronic Z0 decays are described in Ref. [18]. This analysis used charged
tracks measured in the Central Drift Chamber (CDC) [19] and in the upgraded Vertex
Detector (VXD3) [20]. Momentummeasurement is provided by a uniform axial magnetic
�eld of 0.6T. The CDC and VXD3 give a momentum resolution of �p?=p? = 0:01 �
0:0026p?, where p? is the track momentum transverse to the beam axis in GeV/c. In the
plane normal to the beamline the centroid of the micron-sized SLC IP is reconstructed
from tracks in sets of approximately thirty sequential hadronic Z0 decays to a precision
of �r� ' 4 � 2 �m. The IP position along the beam axis is determined event by event
using charged tracks with a resolution of �z ' 20 �m. Including the uncertainty on the
IP position, the resolution on the charged-track impact parameter (d) projected in the
plane perpendicular to the beamline is �r�d = 8�33/(p sin3=2 �) �m, and the resolution in
the plane containing the beam axis is �zd = 10�33/(p sin3=2 �) �m, where � is the track
polar angle with respect to the beamline. The event thrust axis [21] is calculated using
energy clusters measured in the Liquid Argon Calorimeter [22].

A set of cuts is applied to the data to select well-measured tracks and events well
contained within the detector acceptance. Charged tracks are required to have a distance
of closest approach transverse to the beam axis within 5 cm, and within 10 cm along
the axis from the measured IP, as well as j cos �j < 0:80, and p? > 0:15 GeV/c. Events
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are required to have a minimum of seven such tracks, a thrust axis polar angle w.r.t.
the beamline, �T , within j cos �T j < 0:71, and a charged visible energy Evis of at least
20 GeV, which is calculated from the selected tracks assigned the charged pion mass.
The e�ciency for selecting a well-contained Z0 ! q�q(g) event is estimated to be above
96% independent of quark avor. The selected sample comprised 218,953 events, with
an estimated 0:10 � 0:05% background contribution dominated by Z0 ! �+�� events.

For the purpose of estimating the e�ciency and purity of the B hadron selection
procedure we made use of a detailed Monte Carlo (MC) simulation of the detector.
The JETSET 7.4 [23] event generator is used, with parameter values tuned to hadronic
e+e� annihilation data [24], combined with a simulation of B hadron decays tuned [25]
to �(4S) data and a simulation of the SLD based on GEANT 3.21 [26]. Inclusive
distributions of single-particle and event-topology observables in hadronic events are
found to be well described by the simulation [18]. Uncertainties in the simulation are
taken into account in the systematic errors (Section 6).

3 B Hadron Selection and Energy Measurement

3.1 B Hadron Selection

The B sample for this analysis is selected using a topological vertexing technique based
on the detection and measurement of charged tracks, which is described in detail in
Ref. [27]. Each hadronic event is divided into two hemispheres by a plane perpendicular
to the thrust axis. In each hemisphere the topological vertexing algorithm is applied to
the set of `quality' tracks having (i) at least 23 hits in the CDC and 2 hits in VXD3;
(ii) a combined CDC and VXD3 track �t quality of �2=Ndof <8; (iii) a momentum in
the range 0.25< p <55 GeV/c, (iv) an impact parameter of less than 0.3 cm in the r�
plane, and less than 1.5 cm along the z axis; (v) a transverse impact parameter error no
larger than 250 �m.

Vertices consistent with photon conversions or K0 and �0 decays are discarded. In
hemispheres containing at least one found vertex the vertex furthest from the IP is
retained as the `seed' vertex. Those events are retained which contain a seed vertex
separated from the IP by between 0.1 cm and 2.3 cm. The lower bound reduces con-
tamination from non-B-decay tracks and backgrounds from light-avor events, and the
upper bound reduces the background from particle interactions with the beam pipe.

For each hemisphere containing an accepted seed vertex, a vertex axis is formed by
the straight line joining the IP to the seed vertex, which is located at a distance D from
the IP. For each quality track not directly associated with the vertex, the distance of
closest approach to the vertex axis, T, and the distance from the IP along the vertex
axis to the point of closest approach, L, are calculated. Tracks satisfying T< 1 mm and
L=D> 0:3 are added to the vertex. These T and L cuts are chosen to minimize false
track associations to the seed vertex, since typically the addition of a false track has a
much greater kinematic e�ect than the omission of a genuine B-decay track, and hence
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has more e�ect on the reconstructed B hadron energy resolution. Our Monte Carlo
studies show that, on average, this procedure attaches 0.85 tracks to each seed vertex,
91.9% of the tracks from tagged true B decays are associated with the resulting vertices,
and 98.0% of the vertex tracks are from true B decays.

The large masses of the B hadrons relative to light-avor hadrons make it possible to
distinguish B hadron decay vertices from those vertices found in events of light avors
using the vertex invariant mass, M . However, due to the missing particles, which are
mainly neutrals,M cannot be fully determined. In the rest frame of the decaying hadron,
M can be written as

M =
q
M2

ch + P 2
t + P 2

chl +
q
M2

0 + P 2
t + P 2

0l (1)

where Mch and M0 are the total invariant masses of the set of vertex-associated tracks
and the set of missing particles, respectively. Pt is the total charged track momentum
transverse to the B ight direction, which is identical to the transverse momentum of
the set of missing particles by momentum conservation. Pchl and P0l are the respective
momenta along the B ight direction. In the B rest frame, Pchl = P0l. Using the set of
vertex-associated charged tracks, we calculate the total momentum vector ~Pch and its
component transverse to the ight direction Pt, and the total energy Ech and invariant
mass Mch, assuming the charged pion mass for each track. The lower bound for the
mass of the decaying hadron, the `Pt-corrected vertex mass',

MPt =
q
M2

ch + P 2
t + jPtj (2)

is used as the variable for selecting B hadrons. The majority of non-B vertices haveMPt

less than 2.0 GeV/c2. However, occasionally the measured Pt may uctuate to a much
larger value than the true Pt, causing some charm vertices to have a MPt larger than 2.0
GeV/c2. To reduce this contamination, we calculate the `minimum Pt' by allowing the
locations of the IP and the vertex to oat to any pair of locations within the respective
one sigma error-ellipsoids, We substitute the minimum Pt in Equation (2) and use the
modi�ed MPt as our variable for selecting B hadrons [28].

Figure 1 shows the distribution of the MPt for the 76,421 hemispheres in the data
sample with a found secondary vertex, and the corresponding simulated distribution
(histogram). B hadron candidates are selected by requiring MPt > 2.0 GeV/c2. We
further required MPt � 2 � Mch to reduce the contamination from fake vertices in
light quark events [28]. A total of 42,093 hemispheres are selected, with an estimated
e�ciency for selecting a true B-hemisphere of 43.7%, and a sample purity of 98.2%.
The contributions from light-avor events in the sample are 0.34% for primary u,d and
s events and 1.47% for c events.

3.2 B Hadron Energy Measurement

The energy of each B hadron, EB, can be expressed as the sum of the reconstructed-
vertex energy, Ech, and the energy of those particles not associated with the vertex,
E0.
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We can write E0 as
E2
0 = M2

0 + P 2
t + P 2

0l (3)

The two unknowns, M0 and P0l, must be found in order to obtain E0. One kinematic
constraint can be obtained by imposing theB hadron mass on the vertex,M2

B = E2
B�P 2

B,
where PB = Pchl+P0l is the total momentum of the B hadron, and Pchl is the momentum
component of the vertex-associated tracks along the vertex axis. From Equation (1) we
derive the following inequality,

q
M2

ch + P 2
t +

q
M2

0 + P 2
t �MB; (4)

where equality holds in the limit where both P0l and Pchl vanish in the B hadron rest

frame. Equation (4) e�ectively sets an upper bound on M0, and a lower bound is given
by zero:

0 �M2
0 �M2

0max; (5)

where
M2

0max = M2
B � 2MB

q
M2

ch + P 2
t +M2

ch: (6)

Since M0 is bounded from both above and below, we expect to obtain a good estimate
of M0, and therefore of the B hadron energy, when M2

0max is small.
We have used our simulation to study this issue. Assuming MB = 5.28 GeV/c2,

the true value of M0 tends to cluster near its maximum value M0max. Figure 2 shows
the relative deviation of M0max from M0true for all B hadrons. Although approximately
20% of the B hadrons are B0

s and �b which have larger masses, the values of M0max

obtained using MB=5.28 GeV/c2 in Equation (6) are typically within about 10% of
M0. The distribution of the reconstructed M2

0max for vertices in the selected B hadron
sample is shown in Figure 3. The simulation indicates that the non-b�b background is
concentrated at high M2

0max; this because most of the light avor vertices have small
MPt and therefore, due to the strong negative correlation between MPt and M0max,
large M0max. The negative tail in Figure 3 is an e�ect of detector resolution, and the
Monte Carlo simulation shows good agreement with the data.

Because M0 peaks near M0max, we set M2
0 = M2

0max if M2
0max �0, and M2

0 = 0 if
M2

0max <0. We then calculate P0l:

P0l =
M2

B � (M2
ch + P 2

t )� (M2
0 + P 2

t )

2(M2
ch + P 2

t )
Pchl; (7)

and hence E0 (Equation (3)). We then divide the reconstructed B hadron energy,
Erec
B = E0+Ech, by the beam energy, Ebeam =

p
s=2, to obtain the reconstructed scaled

B hadron energy, xrecB = Erec
B =Ebeam.

The resolution of xrecB depends on both M2
0max and the true xB, xtrueB . Vertices in

the negative tail of the M2
0max distribution that have M2

0max < �1:0(GeV=c2)2 are often
poorly reconstructed and are not used in further analysis. Vertices with small values of
jM2

0maxj are typically reconstructed with better resolution and an upper cut on M2
0max
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is hence applied. For an xB-independent cut, the e�ciency for selecting B hadrons is
roughly linear in xtrueB . In order to obtain an approximately xB-independent selection
e�ciency we choose the following upper cut:

M2
0max < f1:1 + 0:007(Ebeam � Erec

B ) + 4:0exp[�(Erec
B � 5:5)=3:5]g2 ; (8)

where the two terms that depend on the reconstructed energy Erec
B increase the e�ciency

at lower B hadron energy.
Only about 0.6% of the selected vertices are from light-avor events, but they are

concentrated in the lowest energy bin. To further remove this background, a vertex is
required to contain at least 3 quality tracks with a normalized impact parameter greater
than 2. This eliminates about 36% (30%) of the uds (charm) background overall and
78% (44%) in the few lowest energy bins. This cut helps to reduce the dependence of
the reconstructed B hadron energy distribution on the light avor simulation in the low
energy region, which is a good step towards �nding the correct shape of the B hadron
energy distribution at low energies. Figure 4 shows the distribution of M2

0max after all
these cuts; the data and Monte Carlo simulation are in good agreement.

A total of 4,164 vertices in the data for 1997-98 satisfy all these selection cuts. The
overall e�ciency for selecting B hadrons is 4.17% and the estimated B hadron purity
is 99.0% with a uds (charm) background of 0.4% (0.6%). The e�ciency as a function
of xtrueB is shown in Figure 5. The dependence is rather weak except for the lowest xB
region; the e�ciency is substantial, about 2.0% even just above the kinematic threshold
for B energy.

We examine the B-energy resolution of this technique. The distribution of the
normalized di�erence between the true and reconstructed B hadron energies, (xrecB �
xtrueB )=xtrueB , for Monte Carlo events is �tted with a sum of two Gaussians. A feature of
the analysis is that the distribution is symmetric and the �tted mean values are generally
consistent with zero. The �t yields a core width (the width of the narrower Gaussian)
of 9.6% and a tail width (the width of the wider Gaussian) of 21.2% with a core fraction
of 83.6%. Figure 6 shows the core and tail widths as a function of xtrueB . In order to
compare the widths from di�erent xB bins, we �x the ratio between core and tail frac-
tions to that obtained in the overall �t above. The xB-dependence of the resolution is
weak, indicating that the absolute resolution on xB, xrecB � xtrueB , is very good at low B
energy, which is an advantage of this energy reconstruction technique.

Figure 7 shows the distribution of the reconstructed scaled B hadron energy for
the data, Ddata(xrecB ), and for the Monte Carlo simulation, DMC(xrecB ). The small non-
b�b background, the high B selection e�ciency over the full kinematic coverage, and the
good energy resolution combine to give a much improved sensitivity of the data to the
underlying true shape of the B energy distribution (see next section).

The event generator used in our simulation is based on a perturbative QCD `parton
shower' for production of quarks and gluons, together with the phenomenological Pe-
terson function [7] (Table 4.1) to account for the fragmentation of b and c quarks into
B and D hadrons, respectively, within the iterative Lund string hadronisation mecha-
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nism [23]; this simulation yields a `generator-level' primary B hadron energy distribution
with < xB > = 0.693�. It is apparent that this simulation does not reproduce the data
well (Figure 7); the �2 for the comparison is 70.3 for 16 binsy.

The distribution of the non-b�b background, S(xrecB ), is also shown in Figure 7. The
background is subtracted bin-by-bin from the Ddata(xrecB ) before we proceed to test var-
ious fragmentation models.

4 The Shape of the B Hadron Energy Distribution

Given the raw reconstructed B energy distribution in the data shown in Figure 7, there
are several ways of estimating the true underlying B energy distribution. Here we take
two approaches, each described in a subsection.

In the �rst part, we test several b fragmentation models, f(z; �) embedded within
Monte Carlo generators, where z is an internal, experimentally inaccessible variable,
corresponding roughly to the fraction of the momentum of the fragmentating b quark
carried by the resulting B hadron, and � is the set of parameters associated with the
model in question. In the second part, we test several functional forms for the distribu-
tion of xB itself, f(xB; �), where � represents the set of parameters associated with each
functional form.

4.1 Tests of b Quark Fragmentation Models f(z; �)

We �rst consider testing models of b quark fragmentation. Since the fragmentation func-
tions for various models are usually functions of an experimentally inaccessible variable
(e.g. z = (E+pk)H=(E+pk)Q or z = pkH=pkQ ), it is necessary to use a Monte Carlo gen-
erator to generate events according to a given input heavy quark fragmentation function
f(z; �), where � represents the set of parameters.

We consider the phenonmenological models of the Lund group [5], Bowler [6], Pe-
terson et al. [7] and Kartvelishvili et al. [30]. We also consider the perturbative QCD
calculations of Braaten et al.(BCFY) [4], and of Collins and Spiller (CS) [31]. We use
the JETSET [23] parton shower Monte Carlo and each fragmentation model in question
to generate the simulated events without detector simulation. Table 4.1 contains a list
of the models. In addition, we test the UCLA [33] fragmentation model with default
parameters, as there is no explicit parameter controlling the B hadron energy. For b
fragmentation, we also test the HERWIG [32] event-generator using both possible values
of the parameter cldir = 0 and 1.

In order to make a consistent comparison of each model with the data we adopt the
following procedure. For each model, starting values of the arbitrary parameters, �, are
assigned and the corresponding fragmentation function f(z; �) is used along with the

�We used a value of the Peterson function parameter �b = 0.006 [29].
yWe exclude several bins with very few events in the comparison. For details see Section 4.1.
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Model f(z; �) Reference

BCFY
z(1� z)2

[1� (1� r)z]6
[3 +

P4
i=1(�z)ifi(r)] [4]

Bowler 1
z(1+rbbm

2

?
) (1 � z)aexp(�bm2

?=z) [6]

CS (1� z
z +

(2� z)�b
1 � z )(1 + z2)(1� 1

z � �b
1� z )

�2 [31]

Kartvelishvili z�b(1 � z) [30]

Lund 1
z (1� z)aexp(�bm2

?=z) [5]

Peterson 1
z (1 � 1

z � �b
1� z )

�2 [7]

Table 1: b quark fragmentation models used in comparison with the data. For the BCFY
model, f1(r) = 3(3 � 4r), f2(r) = 12� 23r + 26r2, f3(r) = (1� r)(9� 11r + 12r2),
and f4(r) = 3(1 � r)2(1� r + r2).

JETSET Monte Carlo to produce the corresponding scaled primary B hadron energy
distribution, DMC(xtrueB ) in the MC-generated b�b event sample, before simulation of the
detector. Then each simulated B hadron is weighted according to its true B hadron
energy, xtrueB ; the weight is determined by the ratio of the generated B hadron energy
distribution, DMC(xtrueB ), to that of our default simulation Ddefault(xtrueB ). After simu-
lation of the detector, application of the analysis cuts and background subtraction, the
resulting weighted distribution of reconstructed B hadron energies, DMC(xrecB ), is then
compared with the background-subtracted data distribution and the �2 value, de�ned
as

�2 =
NX
i=1

 
Ndata
i � rNMC

i

�i

!2

(9)

is calculated, where N is the number of bins to be used in the comparison, Ndata
i is the

number of entries in bin i in the data distribution, and NMC
i is the number of entries

in bin i in the simulated distributionz. �i is the statistical error on the deviation of the
observed number of entries for the data from the expected number of entries in bin i,
which can be expressed as

�2i =
�q

rNMC
i

�2
+
�
r
q
NMC
i

�2
; (10)

where
�q

rNMC
i

�2
is the expected statistical variance on the observed data number of

entries in bin i, assuming the model being tested is correct, and
�
r
q
NMC
i

�2
is the

statistical variance on the expected number of entries in bin i. Since the �2-test is not

z
r is the factor by which the total number of entries in the simulated distribution is scaled to the

number of entries in the data distribution; r ' 1/12.
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a statistically e�ective test for bins with a very small number of entries, the third, the
fourth, and the last three bins in Figure 7 are excluded from the comparison.

We vary the values of the set of parameters � and repeat the above procedure. The
minimum �2 is found by scanning through the input parameter space, yielding a set
of parameters which give an optimal description of the reconstructed data by the frag-
mentation model in question. Each of the nine plots in Figure 8 shows the background-
subtracted distribution of reconstructed B hadron energy for the data (points) and the
respective B energy distribution (histogram) resulting either from the optimised input
fragmentation function f(z) embedded within the JETSET parton shower simulation,
or from the predictions of the HERWIG event-generator and the UCLA fragmentation
model. Data points excluded from the �t are represented in Figure 8 by open circles.
Table 4.1 lists the results of the comparisons.

Model �2=dof Parameters hxBi
JETSET + BCFY 105/16 r = 0:085 0.694
JETSET + Bowler* 17/15 a = 1:4; b = 1:2; (rb = 1) 0.709
JETSET + Collins and Spiller 142/16 �b = 0:003 0.691
JETSET + Kartvelishvili* et al. 32/16 �b = 10:0 0.708
JETSET + Lund* 17/15 a = 1:4; b = 0:4 0.712
JETSET + Peterson et al. 70/16 �b = 0:0055 0.700
HERWIG cldir=0 1015/17 � 0.632
HERWIG cldir=1 149/17 � 0.676
UCLA* 27/17 � 0.718

Table 2: Results of fragmentation model tests for JETSET + fragmentation models, the
HERWIG model and the UCLA model. Minimum �2, number of degrees of freedom,
coresponding parameter values, and the mean value of the corresponding B energy
distribution are listed. A * indicates the models used below to correct the data.

We conclude that with our resolution and our current data sample, we are able to
distinguish between several fragmentation models. Within the context of the JETSET
Monte Carlo, the Lund and Bowler models are consistent with the data with �2 prob-
abilities of 31% and 35%, respectively, the Kartvelishvili model is consistent with the
data at the 1% level, while the Peterson, the BCFY and the CS models are found to
be inconsistent with the data. The UCLA model is consistent with the data to a level
of 6% �2 probability. The HERWIG model with cldir = 0 is con�rmed to be much too
soft. Using cldir = 1 results in a substantial improvement, but it is still inconsistent
with the data.
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4.2 Tests of Functional Forms f(xB ; �)

We then consider the more general question of what functional forms of the B energy
distribution, f(xB; �), can be used as estimates of the true underlying B energy distri-
bution. In particular, we would like to test a wide variety of functional forms and ask
how many di�erent forms are consistent with the data. Each consistent functional form
will add to the list of our estimates of the true underlying B energy distribution.

For convenience we consider the functional forms of the BCFY, Collins and Spiller,
Kartvelishvili, Lund, and Peterson groups in the variable xB. In addition we consider ad
hoc generalisations of the Peterson function (F), an 8th-order polynomial and a `power'
function. These functions are listed in Table 3. Each function vanishes at xB = 0 and
xB = 1.

Function f(xB; �) Reference

F
(1 + b(1� xB))

xB
(1� c

xB
� d

1� xB
)�2 [13]

8th-order Polynomial xB(1� xB)(xB � x0B)(1 +
P5

i=1 pix
i
B) (see text)

Power x�B(1� xB)� (see text)

Table 3: B energy functional forms used in comparison with the data. A polynomial
function and a power function are included (see text for discussion). x0B is the low
kinematic threshold for B energy.

For each functional form, a testing procedure similar to that described in subsec-
tion 4.1 is applied. The optimised �tting parameters � and the minimum �2 values
are listed in Table 4.2. The corresponding DMC(xrecB ) are compared with the data in
Figure 9.

Two sets of optimised parameters are found for the generalised Peterson function F
to describe the data. `F1', obtained by setting the parameter b (shown in Table 3) to
in�nity, behaves like xB as xB ! 0 and (1�xB)3 as xB ! 1 and yields a �2 probability
of 18%; `F2', obtained by setting b to zero, has a �2 probability of 1.0%. A constrained
polynomial of at least 8th-order is needed to obtain a �2 probability greater than 0.1%.
The Peterson functional form marginally reproduces the data with a �2 probability
of about 1%. The remaining functional forms are found to be inconsistent with our
data. The widths of the BCFY and CS functions are too large to describe the data;
Kartvelishvili, Lund and the `power' functional form vanish too fast as xB approaches
zero. We conclude that, within our resolution and with our current data sample, we
are able to distinguish between some of these functional forms. But most importantly,
consistent functional forms will help us evaluate the uncertainty on the true B energy
distribution.
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Function �2=dof Parameters hxBi
F1* 20/15 c = 0:884 � 0:014 0.707�0.003

d = 0:0181 � 0:0015
F2* 31/15 c = 0:976 � 0:029 0.710�0.003

d = 0:039 � 0:002
BCFY 73/16 r = 0:248 � 0:007 0.704�0.003
Collins and Spiller 75/16 �b = 0:0519 � 0:0036 0.706�0.003
Kartvelishvili et al. 138/16 �b = 3:904 � 0:072 0.710�0.003
Lund 252/15 a = 1:88 � 0:08 0.715�0.003

bm2
? = 0:32� 0:05

Peterson et al.* 31/16 �b = 0:0382 � 0:0016 0.709�0.003
Polynomial* 12/12 p1 = �9:99� 0:25 0.709�0.003

p2 = 40:84 � 0:25
p3 = �82:26 � 0:68
p4 = 80:90 � 0:76
p5 = �30:60 � 0:54

Power 133/15 � = 3:73 � 0:17 0.713�0.003
� = 0:84 � 0:07

Table 4: Results of the �2 �t of fragmentation functions to the reconstructed B hadron
energy distribution after background subtraction. The minimum �2 value, the number
of degrees of freedom, the coresponding parameter values, and the mean value of the
corresponding B energy distribution are listed. Errors are statistical only. A * indicates
those forms used below to correct the data.

5 Correction of the B Energy Distribution

In order to compare our results with those from other experiments and potential future
theoretical predictions it is necessary to correct the reconstructed scaled B hadron energy
distribution Ddata(xrecB ) for the e�ects of non-B backgrounds, detector acceptance, event
selection and analysis bias, and initial-state radiation, as well as for bin-to-bin migration
e�ects caused by the �nite resolution of the detector and the analysis technique. Due to
the known rapid variation of the yet-unknown true B energy distribution at large xB,
any correction procedure will necessarily be more or less model-dependent. We choose a
method that explicitly evaluates this model-dependence and gives a very good estimate
of the true energy distribution using all of the above models or functional forms that
are at least marginally consistent with the data.

We apply a 25� 25 matrix unfolding procedure to Ddata(xrecB ) to obtain an estimate
of the true distribution Ddata(xtrueB ):

Ddata(xtrueB ) = ��1(xtrueB ) � E(xtrueB ; xrecB ) � (Ddata(xrecB )� S(xrecB )) (11)
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where S is a vector representing the background contribution, E is a matrix to correct
for bin-to-bin migrations, and � is a vector representing the e�ciency for selecting true
B hadron decays for the analysis. The matrices S, E and � are calculated from our MC
simulation; the matrix E incorporates a convolution of the input fragmentation function
with the resolution of the detector. E(i; j) is the number of vertices with xtrueB in bin i
and xrecB in bin j, normalized by the total number of vertices with xrecB in bin j.

We evaluate the matrix E using the Monte Carlo simulation weighted according
to an input generator-level true B energy distribution found to be consistent with the
data in Section 4. We have seen that several B energy distributions can reproduce
the data. We consider in turn each of these eight consistent distributions, using the
optimised parameters listed in Table 4.1 and 4.2. The matrix E is then evaluated by
examining the population migrations of true B hadrons between bins of the input scaled
B energy, xtrueB , and the reconstructed scaled B energy, xrecB . Using each DMC(xtrueB ),
the data distribution Ddata(xrecB ) is then unfolded according to Equation (11) to yield
Ddata(xtrueB ), which is shown for each input fragmentation function in Figure 10.

It can be seen that the shapes of Ddata(xtrueB ) di�er systematically among the input
b quark fragmentation models and the assumed B energy functional forms. These dif-
ferences are used to assign systematic errors. Figure 11 shows the �nal corrected xB
distribution D(xB), which is the bin-by-bin average of the eight unfolded distributions,
where the inner error bar represents the statistical error and the outer error bar is the
sum in quadrature of the r.m.s. of the eight unfolded distributions and the statistical
error within each bin. Since two of the eight functions (the Kartvelishvili model and
the Peterson functional form) are only in marginal agreement with the data, and the
8th-order polynomial has a slightly unphysical behavior near xB = 1, this r.m.s. may be
considered to be a rather reasonable envelope within which the true xB distribution is
most likely to vary. The model dependence for this analysis is signi�cantly smaller than
those of previous direct B energy measurements, indicating the enhanced sensitivity of
our data to the underlying true energy distribution.

6 Systematic Errors

We have considered sources of systematic uncertainty that potentially a�ect our mea-
surement of the B hadron energy distribution. These may be divided into uncertainties
in modelling the detector and uncertainties on experimental measurements serving as
input parameters to the underlying physics modelling. For these studies our standard
simulation, employing the Peterson fragmentation function, is used.

For each source of systematic error, the Monte Carlo distribution DMC(xtrueB ) is re-
weighted and then the resulting Monte Carlo reconstructed distribution DMC(xrecB ) is
compared with the data Ddata(xrecB ) by repeating the �tting and unfolding procedures
described in Section 4 and 5. The di�erences in both the shape and the mean value
of the xtrueB distribution relative to the standard procedure with nominal values of pa-
rameters are considered. Due to the strong dependence of our energy reconstruction
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technique on charged tracks, the dominant systematic error is due to the discrepancy
in the charged track transverse momentum resolution between the Monte Carlo and the
data. We evaluate this conservatively by taking the full di�erence between the nominal
results and results using a resolution-corrected Monte Carlo event sample. The di�er-
ence between the measured and simulated charged track multiplicity as a function of
cos� and momentum is attributed to an unsimulated tracking ine�ciency correction.
We use a random track-tossing procedure to evaluate the di�erence in our results.

Source Variation � hxBi
Monte Carlo statistics 0.0008

Tracking e�ciency correction on/o� 0.0022
Track impact parameter on/o� 0.0012
Track polar angle 2 mrad �0.0009
Track 1=P? 0.0008 �0.0025
Hadronic event selection standard 0.0005
Total Detector Systematics 0.0037

B0 mass e�ect �2� 0.0001
B lifetimes �� 0.0002
B+=B0=B0

s=�b production �2� 0.0010
B decay fraction �2� 0.0006
B decay < nch > 5.3�0.3 0.0012
D lifetimes �� 0.0002
D decay < nch > �� 0.0005
D ! K0 multiplicity �� 0.0013
D ! no �0 fraction �� 0.0005
g ! b�b (0.31�0.15)% 0.0002
g ! c�c (2.4�1.2)% 0.0008
K0 production 0.66�0.07 trks 0.0009
� production 0.12�0.01 trks 0.0002
Rb 0.2170�0.0009 <0.0001
Rc 0.1733�0.0048 <0.0001
Total Systematics 0.0047

Table 5: Source and systematic errors.

A large number of measured quantities relating to the production and decay of charm
and bottom hadrons are used as input to our simulation. In b�b events we have considered
the uncertainties on: the branching fraction for Z0 ! b�b; the rates of production of B�,
B0 and B0

s mesons, and B baryons; the lifetimes of B mesons and baryons; and the
average B hadron decay charged multiplicity. In c�c events we have considered the
uncertainties on: the branching fraction for Z0 ! c�c; the charmed hadron lifetimes,
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the charged multiplicity of charmed hadron decays, the production of K0 from charmed
hadron decays, and the fraction of charmed hadron decays containing no �0s. We have
also considered the rate of production of s�s in the jet fragmentation process, and the
production of secondary b�b and c�c from gluon splitting. The world-average values [10, 29]
of these quantities used in our simulation, as well as the respective uncertainties, are
listed in Table 6. Most of these variations have e�ect on normalisation, but very little
on the shape or the mean value. In no case do we �nd a variation that changes our
conclusion about which functions are consistent with the data. Systematic errors on the
mean value are listed in Table 6.

The model-dependence of the unfolding procedure is estimated by considering the
envelope of the unfolded results illustrated in Figure 11. Since eight functions provide
an acceptable �2 probablity in �tting to the data, in each bin of xB we calculated the
average value of these eight unfolded results as well as the r.m.s. deviation. In each bin
the average value is taken as our central value and the r.m.s. value is assigned as the
unfolding uncertainty.

Other relevant systematic e�ects such as variation of the event selection cuts and
the assumed B hadron mass are also found to be very small. As a cross-check, we
vary the M0max cut (Equation (8)) in selecting the �nal B sample within a large range
and repeat the analysis procedure. In each case, conclusions about the shape of the B
energy distribution hold. In each bin, all sources of systematic uncertainty are added in
quadrature to obtain the total systematic error.

7 Measurement of B - B Energy Correlations

We next considered events in which we found secondary vertices corresponding to both
the leading B and �B hadrons. In order to maximize our e�ciency for �nding both ver-
tices, and eliminate events in which we found two vertices from the same B/ �B hadron,
we followed the selection procedure described in Section 3 with the following modi�-
cations: 1) The Durham algorithm was applied to selected hadronic events, with a yc
parameter value of 0.015, in order to de�ne a jet structure in each event. 2) Events were
retained in which a secondary vertex was found in exactly two of the reconstructed jets,
labelled arbitrarily 1 and 2, and in which: both vertices satisi�ed �1 < M2

0max < 12
(GeV/c2)2, both vertices had a distance from the IP of at least 1 mm, at least one vertex
contained at least two tracks with a normalised impact-parameter signi�cance of at least
2� w.r.t. the IP, at least one vertex satisifed MPt > 2 GeV/c2, both reconstructed B
energies satis�ed 0 < Erec

B < 60 GeV, and the angle (�) between the vertex axes of jets
1 and 2 satisi�ed cos� < 0.99. A sample of 17707 events was selected, estimated to
be 99.9% pure in Z0 ! b�b events, and the e�ciency for selecting a true b�b event was
estimated to be 32%.

We quanti�ed the correlation between the two B hadrons in terms of the moments
proposed in [16]. We �rst evaluated the moments of the one dimensional D(xB) from
the raw measured distribution. The procedure was the same as described in Section 3,
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except that instead of Eq. 8 we imposed the requirement:

M2
0max < 15(GeV 2=c4):

The moments
Drec
i �

Z
(xrecB )idN=dxrecB dxrecB ;

were evaluated, from which we calculated the factors M rec
i , where

Drec
i = M rec

i Pi

and the Pi were evaluated at leading order in pQCD and are tabulated in [16].
We then evaluated the double moments of the correlated B energy distribution

d2N=dxB1dxB2.
Using this sample we formed the correlated B-energy distribution d2N=(dxrecB1dx

rec
B2)

and evaluated the double moments:

Drec
ij (�) �

Z Z
(xrecB1)

i(xrecB2)
jd2N(�)=(dxrecB1dx

rec
B2) dx

rec
B1dx

rec
B2;

where xrecB1 and xrecB2 are the reconstructed scaled energies of the two B hadrons. We then
formed the quantities:

P rec
ij (�) = Drec

ij (�)=(M rec
i M rec

j )

and corrected them for detector e�ects using a standard bin-by-bin method. The cor-
rected, normalized quantities Pij(�)=P11(�) are shown in Fig. 12. A LO pQCD calcula-
tion [16] of the corresponding normalised double moments is also shown in Fig. 12; the
calculation reproduces the data, which veri�es the ansatz of factorisation used in this
calculation of b fragmentation.

8 Summary and Conclusions

We have used the excellent tracking and vertexing capabilities of SLD to reconstruct the
energies of B hadrons in e+e� ! Z0 events over the full kinematic range by applying a
new kinematic technique to an inclusive sample of topologically reconstructed B hadron
decay vertices. The overall B selection e�ciency of the method is 3.9%. We estimate
the resolution on the B energy to be about 10.4% for roughly 83% of the reconstructed
decays. The energy resolution for low energy B hadrons is signi�cantly better than
previous measurements.

In order to get a good estimate of the model dependence of the unfolded distribution,
the distribution of reconstructed scaled B hadron energy, Ddata(xrecB ), is compared case
1) with predictions of either perturbative QCD and phenomenological b quark fragmen-
tation models in the context of the JETSET parton shower Monte Carlo, or HERWIG
and UCLA fragmentation models, and case 2) with a set of functional forms for the B
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energy distribution. In case 1), the Lund and the Bowler models are consistent with
the data; the model of Kartvelishvili et al. is in marginal agreement with the data. The
models based on the perturbative QCD calculations of Braaten et al., and of Collins and
Spiller, and the Peterson model are disfavored by the data. Although both versions of
the HERWIG model are excluded by the data, the new version is very much improved.
The UCLA model describes the data reasonably well. In case 2), four functional forms,
namely the two generalised Peterson functions F1 and F2, the Peterson function, and a
constrained 8th-order polynomial are found to be consistent with the data.

The raw B energy distribution is then corrected for bin-to-bin migrations caused by
the resolution of the method and for selection e�ciency to derive the energy distribution
of the weakly decaying B hadrons produced in Z0 decays. Systematic uncertainties in
the correction have been evaluated and are found to be signi�cantly smaller than those of
previous direct B energy measurements. The �nal corrected xB distribution Ddata(xtrueB )
is shown in Figure 11. The statistical and unfolding uncertainties are indicated sepa-
rately.

It is conventional to evaluate the mean of this B energy distribution, < xB >.
For each of the eight functions providing a reasonable description of the data (four
from case 1) and four from case 2)), we evaluate < xB > from the distribution that
corresponds to the optimised parameters; these are listed in Table 4.1 and Table 4.2.
We take the average of the eight values of < xB > as our central value, and de�ne the
model-dependent uncertainty to be the r.m.s. deviation within each bin. All detector
and physics modeling systematic errors are included. We obtain

< xB > = 0:710 � 0:003(stat:)� 0:005(syst)� 0:004(model); (12)

It can be seen that < xB > is relatively insensitive to the variety of allowed forms of the
shape of the fragmentation function D(xB).

Finally, we have made the �rst measurement of the correlated B-energy distribution.
From comparison of the double moments of this distribution with the moments of D(xB)
we �nd that a leading-order pQCD calculation reproduces the data, which veri�es the
ansatz of factorisation employed in the pQCD calculation.
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Figure 1: Distribution of the reconstructed Pt-corrected vertex mass in the 1997-98 data
(points). Also shown is the prediction of the Monte Carlo simulation, for which the
avor composition is indicated: b (open), c (light shaded), and uds (dark shaded).
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Figure 2: The relative deviation of the maximum missing mass from the true missing
mass for Monte Carlo simulated B hadron decays, which is divided into three categories:
B0 and B� (open), B0

s (cross-hatched), and �b (dark hatched).
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Figure 3: Distribution of the reconstructedM2
0max for the selected vertices in the 1997-98

data (points). Also shown is the prediction of the Monte Carlo simulation.
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Figure 4: Distribution of the reconstructed M2
0max for the �nal selected B sample (see

text). Also shown is the prediction of the Monte Carlo simulation.
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Figure 5: The Monte Carlo simulated e�ciency for selecting B hadron decay vertices
as a function of the true scaled B hadron energy, xtrue = Etrue

B =Ebeam. The nearly
energy-independent e�ciency (except at very low B energy) improves the sensitivity of
the measured xrecB distribution to the true underlying B energy distribution.
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Figure 6: The �tted core and tail widths of the B energy resolution as a function of the
true scaled B hadron energy. The ratio of the amplitude of the inner Gaussian (core) to
that of the outer Gaussian (tail) is 84:16. The dependence of the core resolution on the
true B energy is small. The very good resolution for low energy B hadrons improves the
sensitivity of the measured xrecB distribution to the true underlying B energy distribution.
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Figure 7: Distribution of the reconstructed B hadron energy for 1997-98 data (points)
and the default Monte Carlo simulation (histogram). The solid histogram shows the
simulated non-b�b background.
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Figure 8: Each �gure shows the background-subtracted distribution of reconstructed B
hadron energy for the data (points) and for the Monte Carlo (histogram) based on the
respective optimised input fragmentation function within the JETSET parton shower
simulation, as well as based on the HERWIG (cldir = 0 and cldir = 1) and the UCLA
fragmentation models. The �2 and the number of degrees of freedom are indicated.
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Figure 9: Each �gure shows the background-subtracted distribution of reconstructed B
hadron energy for the data (points) and for the weighted simulation (histograms) based
on the respective optimised input functional form for the true B energy distribution.
The �2 and the number of degrees of freedom are indicated.
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Figure 10: The e�ciency-resolution corrected distributions of scaled weakly-decaying B
hadron energies for Case 1) fragmentation models of the Lund, the Bowler and the
Karvelishvili within the JETSET parton shower Monte Carlo as well as for the UCLA
fragmentation model; and for Case 2) four functional forms: F1, F2, Peterson, and the
constrained 8th-order polynomial.
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Figure 11: Distribution of the �nal corrected scaled B hadron energies. The central value
is the bin-by-bin average of the eight consistent B energy distributions. In each bin the
statistical error is indicated by the inner error bar, the sum in quadrature of statistical
and unfolding errors frommodel dependence by the outer error bar. Systematic errors are
small compared with the statistical and model dependence errors and are not included
here. Note that the �rst two bins are below the kinematic limit for xB (no point shown).
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Figure 12: Ratio of moments Pij=P11 (see text) vs. cos�. Data: points with error bars;
the inner error bar represents the statistical error and the outer error bar is the sum in
quadrature of the statistical and systematic errors. The lines represent the LO QCD
prediction (see text).
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