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I. INTRODUCTION

Light-cone Hamiltonian diagonalization methods offer a number of attractive advantages
for solving nonperturbative problems in quantum field theory, such as a physical Minkowski
space description, boost invariance of the bound-state wave functions, no requirement for
fermion doubling, and a consistent Fock-state expansion well matched to physical problems.
In the discretized light-cone quantization (DLCQ) method, the light-cone Hamiltonian Hy,¢
of a quantum field theory is diagonalized on a discrete Fock basis defined by assuming peri-
odic boundary conditions in the light-cone coordinates [[[,]. The eigenvalues of Hyc give the
mass spectrum of the theory, and the respective eigenfunctions projected on the free Fock
basis provide the frame-independent light-cone wave functions needed for phenomenology [J]
including the amplitudes needed to compute exclusive B decays [{-f], deeply virtual Comp-
ton scattering [, and other hard exclusive processes [[. The DLCQ method has been
successfully used to solve a large number of one-space and one-time theories [f], including
supersymmetric gauge theories [[J]. It also has found application in analyzing confinement
mechanisms ([T}, string theory [[J], and M-theory [[J].

The application of DLCQ to physical, (341)-dimensional space-time quantum field the-
ories is computationally challenging because of the rapid growth of the number of degrees of
freedom as the size of the Fock representation grows. A promising alternative is the trans-
verse lattice method [[4] which combines light-cone methods in the longitudinal light-cone
direction with a spacetime lattice for the transverse dimensions. Recently Dalley [[[7] and
Burkhart and Seal [[{] have extended the transverse lattice method to estimate the shape of
the valence light-cone wave function of a pion, a key input to much hadron phenomenology.
Burkhart and Seal have also given an explicit calculation of the Isgur—Wise function for
semi-leptonic B decays [[[7].

Another major difficulty in applying DLCQ to quantum field theory in 3+1 dimensions
is the implementation of a nonperturbative renormalization method. Most methods of reg-
ulating nonperturbative calculations in the light-cone representation, such as momentum
cutoffs, do not allow a correct renormalization even of perturbative calculations. The prob-
lem can be traced to the fact that any momentum cutoff violates Lorentz invariance as well
as gauge invariance [[§]. Since dimensional regularization is not available in DLCQ, one
needs to introduce new fields or degrees of freedom to render the ultraviolet behavior of
the theory finite. One intriguing possibility is to analyze ultraviolet-finite supersymmetric
theories and then introduce breaking of the theory. The heavy supersymmetric partners
then regulate the ordinary sector of the theory in a manner analogous to Pauli—Villars (PV)
regulation [[[9]. String theory also provides mechanisms for regulating quantum field theory
at short distances which are equivalent to an infinite spectrum of PV particles [PJ]. The
introduction of PV fields can thus regulate a theory covariantly, after which the discretized
momentum grid of DLCQ acts only as a numerical tool in the manner of performing a
numerical integral.

In our previous work [[§,2]]] we have shown that a model field theory in 3+1 dimensions
can be solved by combining DLC(Q with PV regulation of the ultraviolet regime. In our
first application [[[§], a model theory was constructed to have an exact analytic solution by
which the DLCQ results could be checked, for both accuracy and rapidity of convergence.
The model was regulated in the ultraviolet by a single PV boson, which was included in



the DLCQ Fock basis in the same way as the “physical” particles of the theory. We then
extended this approach to a more realistic model which mimics many features of a full
quantum field theory [B)]. Unlike the analytic model which contained a static source, the
light-cone energies of the particles in this model have the correct longitudinal and transverse
momentum dependence.

An important question is whether the generalized PV method with a finite number of
fields can regulate a field theory at all orders. Paston and Franke [P have studied the
relation between perturbation theory in the light-cone representation and standard Feyn-
man perturbation theory, and they have developed general rules for testing regularization
procedures. For full Yukawa theory, Paston, Franke and Prokhvatilov [23 have shown that
one PV boson and two PV fermions can regulate the theory in such a way as to allow a
correct perturbative renormalization.

In this paper we shall apply generalized PV regularization and discrete light-cone quan-
tization to the nonperturbative solution of (3+1)-dimensional Yukawa theory in a single-
fermion truncation. We allow any number of bosons in the Yukawa theory but only one
fermion in the Fock representation; fermion pair terms and any other terms that involve
anti-fermions are neglected. We shall thus consider a field-theoretic model where one par-
ticle, which we take to be a fermion of mass M, acts as a dynamical source and sink for
bosons of mass p. In addition, three heavy PV scalars, including two with negative norm,
will be used to regulate the theory so that the chiral properties of the renormalized theory
are maintained, at least to one loop in perturbation theory. In particular, the mass of the
renormalized fermion constituent vanishes as its bare mass vanishes. A distinct advantage
of our approach is that the counterterms are generated automatically by the PV particles
and their negative-metric couplings.

The extra degrees of freedom of the PV scalars and their negative-metric couplings intro-
duces new computational challenges. However, the matrix eigenvalue problem can be solved
for the lowest-mass state by the use of a new, indefinite-metric Lanczos algorithm which we
describe in an Appendix. We also calculate the light-cone wave function of each Fock-sector
component and the values for various physical quantities, such as average multiplicities and
average momenta of constituents, bosonic and fermionic structure functions, and a form
factor slope. We also verify that with our choice of PV conditions, the DLCQ calculations
of the nonperturbative theory at weak coupling coincide with the covariant perturbation
theory through one loop, although numerical resolution does start to become a problem
even on a supercomputer.

In our convention, we define light-cone coordinates [4] by

vt =24 2%, x, = (2, 2%). (1.1)

The time coordinate is taken to be z+. The dot product of two four-vectors is
1
p-a=gptaT +ptr) —prozL. (1.2)

Thus the momentum component conjugate to = is p*, and the light-cone energy is p~. We
use underscores to identify light-cone three-vectors, such as

p= " pi). (1.3)
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For additional details, see Appendix A of Ref. [I§ or a review paper [[].

The following is an outline of the remainder of the paper. In Sec. [ we discuss the
regularization and renormalization of the Yukawa Hamiltonian. Our numerical methods
and results are presented in Sec. [I]. Section [V] contains our conclusions and plans for
future work. Details of the numerical diagonalization method are given in the Appendix.

II. YUKAWA THEORY
A. Light-cone Hamiltonian

The light-cone Hamiltonian for Yukawa theory has been given by McCartor and Robert-
son [BY. Here we consider a single-fermion truncation and therefore neglect pair terms and
any other terms that involve anti-fermions. We also neglect longitudinal zero modes. To
regulate the theory, we include three PV bosons. The resulting Hamiltonian is
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where M is the fermion mass, j = jg is the physical boson mass, p; and (—1)¢ are the mass

and norm of the i-th PV boson, and €25 = —%(25, i). The nonzero commutators are
(i @l | = (1) 0550mm s {buss B o } = OnOee (2.2)

The different boson couplings are denoted by &;g, where £ = 1 corresponds to the physical
boson; the other &; are chosen to arrange cancellations discussed below. Fermion self-induced
inertia terms cancel in a sum over bosons and therefore do not appear. The bare parameters
are the coupling ¢ and the mass shift §M2.

The number of PV flavors is determined by the cancellations needed to regulate the
theory and restore chiral invariance in the M = 0 limit [PG[I§. The one-loop self-energy of

Q)

the fermion is [[§]

2 a2 A2y o &Y A_z_ 2 2 2 2 pt
I(M,M,A)~2Wl<2 p InA°+ p”In —2A2>
9 du
+M? <3lnA — 31n 2 ———I— A2> (2.3)



with A? a cutoff such that A2 > p? > M?. In order that the self-energy be finite and
proportional to M?, the relative coupling strengths & must satisfy the constraints

3 3 3
LY (=D =0, 2+ (=1)'Ep; =0, > (-1)'&ui In(y;/p?) =0. (2.4)
i=1 i=1 i=1
In addition, the norm of the i-th PV field must be chosen as (—1)°.

The third constraint in (B.4) is peculiar to the one-loop calculation. For higher-order
or nonperturbative calculations, it must be replaced by a more general renormalization
condition. However, to simplify the numerical work, we use the one-loop constraint and
then check for failure of cancellation in the zero-mass limit.

As it stands, Hy,c contains infrared divergences associated with the instantaneous fermion
interaction, which is singular at the point where the instantaneous fermion has zero longi-
tudinal momentum. The divergences are partly cancelled by crossed-boson contributions.
To cancel the remainder we need to add an effective interaction, modeled on the missing
fermion Z graph. The effective interaction is constructed from the pair creation and annihi-
lation terms in the Yukawa light-cone energy operator [R5

€-2s - 62*5 achn —PL)] togt
Py air — I~ fzb Sd az + h.c. 2.5

1
&bt dl_ _ai,+he.
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The denominator for the intermediate state is

M _MP4p? M2+ (gl -p)? MP+ph
P+ pspoctators p/+ q/+ _ p+ p+ :

To guarantee the cancellation of the singularity in the numerical calculation, the instanta-
neous interaction is kept only if the corresponding crossed-boson graph is permitted by the
numerical cutoffs.

The Fock-state expansion for the single-fermion eigenstate of the Hamiltonian is

dptd®p, s dgydPqu
&, = V1673 P / / & 0 (2.7)
n07n1mzzn3 =0’ V 167T3p+ H \/167T3
Ntot 1 Ntot

n; T
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where ng is the number of physical bosons, n; the number of PV bosons of flavor i, ny. =
% o ni, and i; is the flavor of the j-th constituent boson. It solves the eigenvalue problem
Hyc®, = M?*®,. The normalization is

(2.6)

. D, = 1673 PTO(P — P). (2.8)



B. Renormalization conditions

Mass renormalization is carried out by rearranging the eigenvalue problem into one for
SM? at fixed M?

M? + p? pi +ats]
x Mz—Tl —ZTl ¢(QZ)

— [ T dy,da Vr'Kla,, 48 () = 5M3d(g,) (2.9)
J

Here © = p™/P7 is the fermion momentum fraction, K is shorthand for the interaction
kernel, and the ¢ = ¢/+/x are new wave functions.

The coupling is fixed by setting a value for the expectation value (:¢?(0):) = ®1 :¢2(0): ®,,
for the boson field operator ¢. This quantity is useful because it can be computed fairly
efficiently in a sum similar to a normalization sum

Ntot

o) = > [ 11 g, S0 (2.10)
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with (—1)) being the norm of the state with boson flavor partitioning (n;).
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III. RESULTS
A. Numerical methods

The principal tools for the solution of the Hamiltonian eigenvalue problem are DLCQ [}]
and the Lanczos diagonalization algorithm [7. The first converts the problem to a matrix
form, and the second quickly generates one or more eigenvectors. The use of negatively-
normed states makes the ordinary Lanczos algorithm inapplicable; however, an efficient
generalization has been developed for this situation. It is discussed in the Appendix. The
constraint for the coupling renormalization is solved iteratively.

The discretization is based on the standard DLCQ approach where longitudinal and
transverse momenta are assigned discrete values ¢ = mn/L and ¢, = n,7/L,, with L and
L, chosen length scales. Momentum conservation requires the individual m to sum to a fixed
constant K, where PT = K7 /L is the total longitudinal momentum. The integer K is called
the harmonic resolution [, because longitudinal momentum fractions y = ¢*/PT = m/K
are resolved to order 1/K. The positivity of longitudinal momenta forces a natural cutoff
such that m < K. Also, the eigenvalue problem for M? is independent of L; the length scale
cancels between P™ and P~.

The boundary conditions in the longitudinal direction are chosen to be periodic for the
boson fields but antiperiodic for the fermion field. This means that the integers m are even



for bosons, and the corresponding fermion momentum index is odd. The harmonic resolution
K is then also odd for the single-fermion state considered here.

The transverse direction requires an explicit cutoff A2, which we impose on individual
light-cone energies

(W +min®/L7)/m < A*/K. (3.1)

The total transverse momentum is taken to be zero. The integers n, and n, are limited to
a range [—N,, N, |, which, along with the cutoff, determines the transverse scale L .

Given this discretization, the eigenvalue problem is converted to a matrix problem by
a trapezoidal approximation to any momentum integrals. We have found useful modifi-
cations [[[§,21]] which include non-constant weighting factors near the integral boundaries.
These weights are adjusted to compensate for the DLCQ grid being incommensurate with
the boundaries. In the present calculation, these weights are kept only in the two-body
sector where maximal symmetry can be maintained. For higher Fock sectors, sensitivity
to cancellations is of greater concern than boundary effects, and the weights disrupt the
cancellations.

Unlike an ordinary eigenvalue problem, the presence of negatively normed states allows
unphysical states to be lower in mass than the physical one-fermion state. Criteria must
be employed to select the correct state in a numerical calculation. We used the following:
a positive norm, a real eigenvalue, a minimum number of nodes (preferably zero) in the
parallel-helicity boson-fermion wave function, and the largest bare-fermion probability be-
tween 0 and 1. Each of these characteristics can be computed without constructing the
full eigenvector, provided one saves a few components of each Lanczos vector q; (see the
Appendix).

As a check on the calculation, we took advantage of an exact solution that exists for
the unphysical situation of equal-mass PV bosons [B§]. In a particular (null) basis the
matrix representation is purely triangular. Each wave function of the dressed fermion is
then directly computable in a finite number of steps.

For comparison, we also solved the problem using Brillouin—-Wigner perturbation theory,
for which

@U:\/EZ

n=0

1 — bj|0)(0lbxc '
( 5M2_— }Cdiag_ICOH_diag bTK|0> . (32)
The integrals were computed numerically with the same discretization as the nonpertur-
bative DLCQ calculation. The main effort in the perturbative expansion is then matrix
multiplication, just as for the Lanczos algorithm.

B. Computed quantities

Various quantities can be computed from the wave functions ¢(™) for the different Fock
sectors. We compute the slope of the no-flip form factor of the fermion, structure functions
for bosons and the fermion, average momenta, average multiplicities, and a quantity sensitive
to boson correlations. The form factor slope £’(0) is given by [[§
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Foy=-y | Tdg; s, (1) (3.3)

n; =0

Ntot

2k

k=1

v k0 (a5 P =D 4))
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The physical boson structure function for bare helicity s is defined as
fauly Z [ Moy Z (y — g /PF)(~1)™) (3.4)

(nz

(g;; P — Zg

The normalization is such that the integral yields the average multiplicity (ng). We separate
two pieces, for parallel and antiparallel bare helicity

(0 = [ oty (3.5)
and have
(np) = (npy) + (nB-). (3.6)

The average boson momentum is treated analogously, with

() = [ wflu)dy and (ys) = (o) + vs). (.7

As a measure of the correlations in the multiple-boson Fock sectors, we compute ((y1y2) —
(Y)Y )n>2/(y)? where

ax, a, n;
ez = Y [ LIS S I (g (3.8)
no>2,m; S k1#ko
2

5 (4, ,_—Zq

and (y)n>2 is the same as (y) except that only states with two or more bosons are included.

Calculations at low resolutions tend to have difficulty for stronger coupling. This can be
seen already at third order in perturbation theory, where loop integrals are poorly approxi-
mated and subtractions between loops with different boson flavors magnify the errors. Fully
averaged quantities such as (np) are less affected by this, but the structure function fz can
be quite poorly represented. An example is given in Fig. [

Clearly one cure is to work at higher resolution. Limitations on computer storage then
require truncation in the number of constituents. Luckily, even at the strongest coupling
that we consider, states with large numbers of constituents are unimportant, and yet the
results differ significantly from lowest-order perturbation theory. The relative importance of
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TABLE 1. Fock sector probabilities [ |<;5£:§i)|2]_[j dgj, where (n;) = {ng,n1,n2,n3}, n = ng is
the number of physical bosons and n; the number of Pauli—Villars bosons of type i. The helicities o

and s refer to the physical and bare fermion, respectively. The numerical and physical parameters
are K = 17, N| =5, M? = p?, A? = 50p2, p2 = 10p2, p3 = 2042, p3 = 30p2, and (:¢?(0):) = 0.5.
Probabilities smaller than ~ 10~ are not resolved with any accuracy.

Number of bosons Probability # of

total n ny N9 ns oc=3:5 o= -8 total states
0 0 0 0 0 0.9461 — 0.9461 1
1 1 0 0 0 0.0593 0.0444 0.1037 332
1 0 1 0 0 0.0340 0.0571 0.0911 219
1 0 0 1 0 0.0182 0.0300 0.0481 117
1 0 0 0 1 0.0036 0.0044 0.0080 55
2 2 0 0 0 0.0014 0.0021 0.0036 12414
2 1 1 0 0 0.0021 0.0022 0.0043 9969
2 0 2 0 0 0.0006 0.0003 0.0009 1499
2 1 0 1 0 0.0007 0.0007 0.0014 2998
2 0 1 1 0 0.0002 0.0001 0.0003 598
2 0 0 2 0 0.5-107° 0.4-107° 0.9-107° 25
2 1 0 0 1 0.7-107%4 0.7-1074 0.0001 655
2 0 1 0 1 0.7-107° 0.6-107° 0.1-1074 45
3 3 0 0 0 0.0001 0.2:.10~* 0.0001 136568
3 2 1 0 0 0.0002 0.3-10~% 0.0002 102490
3 1 2 0 0 0.6-1074 0.1.1074 0.7-1074 18021
3 0 3 0 0 0.4-107° 0.1-107° 0.5-107° 748
3 2 0 1 0 0.4-1074 0.6-107° 0.5-1074 16631
3 1 1 1 0 0.1.1074 0.3-107° 0.2.1074 2992
3 0 2 1 0 ~ 1076 ~ 1076 ~ 1076 79
4 4 0 0 0 ~ 106 ~ 1076 ~ 1076 624372
4 3 1 0 0 ~ 1076 ~ 1076 ~ 1076 381016
4 2 2 0 0 ~ 1076 ~ 1076 ~ 1076 57132
4 1 3 0 0 ~ 1077 ~ 1077 ~ 1077 2577
4 0 4 0 0 ~ 1079 ~ 1079 ~ 1079 30
4 3 0 1 0 ~ 107 ~ 1076 ~ 1076 28613
4 2 1 1 0 ~ 1077 ~ 1077 ~ 1077 2647
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FIG. 1. The boson structure function fp at various low to moderate numerical resolutions,

with M = p, (:¢%(0):) = 1.0, A? = 50p2, uf = 10p%, u? = 20p2, and p? = 30p%. To compare with
a structure function computed at higher resolutions, see Fig. .

different numbers of constituents can be seen in Table [, where we list probabilities for the
various Fock sector contributions to a calculation with moderate resolution. Truncation to
a maximum of two bosons is seen to offer a very good approximation. For weaker couplings,
lower resolution is sufficient.

Given these considerations for resolution and truncation, we have done two sets of cal-
culations with K between 11 and 29, or even 39. For K = 11 and 13 there is no explicit
truncation and the maximum number of bosons is 5 and 6, respectively. For K = 15, 17,
and 19, the maximum number of bosons used is 4, and for K > 21 the maximum used is
2. Two different sets of cutoff and PV masses were considered: A? = 50u2, u? = 10u2,
w3 = 20p?, and p? = 30p?; and A? = 100p?, p? = 20p?, p? = 40p%, and p? = 60p®. The
transverse resolution NV, was at least 4 and was increased beyond that to the extent allowed
by the available storage on a 16 GB node of an IBM SP. The four processors of the node
were used in parallel.

The full range of explored parameter values can be seen in Tables [IJFXVII. For each
choice of input parameter values, these tables present the results for the bare parameters of
the Hamiltonian, g and M2, and for various expectation values.
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TABLE II.

Bare parameters and observables. The input parameter values are M? = p2,
A? =507, pf = 104, p3 = 20p°, and pf = 30°,

2
K Ny (62(0)) g SM? /2 o 2 ~1004°F(0) Hova) ) Jnzz
11 4 0.100 1.279 0.062 0.988 0.090 3653.
11 5 0.100 1.339 0.060 0.989 0.092 3938.
11 6 0.100 1.366 0.066 0.989 0.095 3150.
13 4 0.100 1.274 0.035 0.988 0.092 4117.
13 5 0.100 1.335 0.037 0.989 0.093 3426.
15 4 0.100 1.306 0.084 0.988 0.086 3671.
15 5 0.100 1.361 0.087 0.988 0.091 3108.
17 4 0.100 1.292 0.055 0.988 0.088 3331.
17 5 0.100 1.342 0.055 0.989 0.097 2868.
19 4 0.100 1.287 0.054 0.988 0.091 3324.
19 5 0.100 1.349 0.056 0.988 0.096 3375.
21 4 0.100 1.281 0.055 0.988 0.088 4075.
21 5 0.100 1.350 0.057 0.988 0.095 3257.
21 6 0.100 1.378 0.058 0.989 0.099 2788.
21 7 0.100 1.392 0.058 0.989 0.101 2977.
21 8 0.100 1.400 0.059 0.989 0.104 2920.
29 4 0.100 1.302 0.062 0.987 0.091 3572.
29 5 0.100 1.353 0.063 0.988 0.096 3441.
29 6 0.100 1.386 0.065 0.989 0.099 2920.
29 7 0.100 1.400 0.066 0.989 0.103 2983.

TABLE III. Additional observables. The input parameter values are the same as for Table [
The dashes represent values not extracted from early, lower-resolution calculations.

K N, (6%(0):) ) (n5,_o) (np) ) (VB0 (yB)

11 4 0.100 — — 0.021 — — 0.01191
11 5 0.100 — — 0.021 — — 0.01209
11 6 0.100 — — 0.021 — — 0.01213
13 4 0.100 — — 0.021 — — 0.01170
13 5 0.100 — — 0.022 — — 0.01219
15 4 0.100 — — 0.021 — — 0.01198
15 5 0.100 — — 0.022 — — 0.01225
17 4 0.100 — — 0.022 — — 0.01220
17 5 0.100 — — 0.022 — — 0.01234
19 4 0.100 — — 0.022 — — 0.01231
19 5 0.100 — — 0.022 — — 0.01238
21 4 0.100 0.0147 0.0072 0.0219 0.00836 0.00417 0.01253
21 5 0.100 0.0133 0.0086 0.0218 0.00735 0.00506 0.01241
21 6 0.100 0.0128 0.0091 0.0220 0.00712 0.00540 0.01252
21 7 0.100 0.0125 0.0094 0.0219 0.00695 0.00556 0.01251
21 8 0.100 0.0125 0.0096 0.0220 0.00691 0.00566 0.01257
29 4 0.100 0.0145 0.0076 0.0221 0.00808 0.00444 0.01252
29 5 0.100 0.0135 0.0086 0.0221 0.00753 0.00508 0.01260
29 6 0.100 0.0129 0.0092 0.0221 0.00711 0.00546 0.01257
29 7 0.100 0.0126 0.0095 0.0221 0.00697 0.00564 0.01261
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TABLE IV. Same as Table [, but for stronger coupling.

(1v2) = ()%)n>2

K Ny (:¢%(0):) 9 SM? /i |0l —1004° F'(0) e

1 1 0.250 2.110 0.164 0.971 0.218 561.3

11 5 0.250 2.190 0.155 0.972 0.221 611.5

11 6 0.250 2.226 0.171 0.973 0.238 490.6

13 4 0.250 2.058 0.088 0.971 0.225 645.1

13 5 0.250 2.161 0.092 0.972 0.233 535.1

15 4 0.250 2.192 0.222 0.971 0.190 559.1

15 5 0.250 2.259 0.228 0.972 0.207 481.2

17 4 0.250 2.126 0.141 0.971 0.205 515.2

17 5 0.250 2.175 0.138 0.972 0.238 453.7

19 4 0.250 2.100 0.137 0.970 0.222 521.6

19 5 0.250 2.192 0.142 0.972 0.233 532.8

21 4 0.250 2.098 0.141 0.970 0.212 632.5

21 5 0.250 2.202 0.145 0.972 0.231 514.1

21 6 0.250 2.234 0.148 0.972 0.246 444.1

21 7 0.250 2.255 0.147 0.973 0.250 474.7

21 8 0.250 2.262 0.148 0.973 0.258 467.5

29 4 0.250 2.137 0.158 0.970 0.215 560.2

29 5 0.250 2.206 0.162 0.971 0.231 540.4

29 6 0.250 2.256 0.166 0.972 0.237 464.9

29 7 0.250 2.274 0.167 0.973 0.249 475.7

TABLE V. Same as Table , but for stronger coupling.

K N, (:¢%(0):) (nB,o) (nB,—o) (ng) (yB,o) (YB,—0) (yB)
1 1 0.250 - - 0.053 - - 0.02987
11 5 0.250 - - 0.054 - - 0.03025
11 6 0.250 - - 0.054 - - 0.03033
13 4 0.250 - - 0.053 - - 0.02941
13 5 0.250 - - 0.054 - - 0.03060
15 4 0.250 - - 0.053 - - 0.02968
15 5 0.250 - - 0.054 - - 0.03033
17 4 0.250 - - 0.054 - - 0.03027
17 5 0.250 - - 0.054 - - 0.03069
19 4 0.250 - - 0.054 - - 0.03064
19 5 0.250 - - 0.054 - - 0.03082
21 4 0.250 0.0356 0.0190 0.0546 0.02012 0.01099 0.03111
21 5 0.250 0.0320 0.0225 0.0545 0.01770 0.01324 0.03094
21 6 0.250 0.0310 0.0238 0.0548 0.01718 0.01401 0.03119
21 7 0.250 0.0303 0.0244 0.0547 0.01676 0.01438 0.03114
21 8 0.250 0.0302 0.0247 0.0549 0.01667 0.01454 0.03121
29 4 0.250 0.0349 0.0201 0.0550 0.01928 0.01172 0.03100
29 5 0.250 0.0325 0.0226 0.0551 0.01801 0.01324 0.03125
29 6 0.250 0.0308 0.0241 0.0549 0.01699 0.01419 0.03118
29 7 0.250 0.0304 0.0248 0.0552 0.01673 0.01457 0.03130
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TABLE VI. Same as Table [V], but for stronger coupling.

(1v2) = ()%)n>2

K Ny (:¢%(0):) 9 SM? /i |0l —1004° F'(0) e

11 1 0.500 3.246 0.363 0.944 0.434 125.1

11 5 0.500 3.299 0.325 0.946 0.434 141.4

11 6 0.499 3.327 0.370 0.946 0.542 113.4

13 4 0.500 3.013 0.179 0.942 0.446 156.4

13 5 0.500 3.170 0.184 0.946 0.488 127.8

15 4 0.500 3.432 0.492 0.948 0.316 124.1

15 5 0.500 3.462 0.493 0.948 0.366 111.0

17 4 0.500 3.202 0.293 0.947 0.374 120.4

17 5 0.500 3.195 0.279 0.946 0.472 110.7

19 4 0.500 3.122 0.280 0.943 0.429 125.5

19 5 0.500 3.246 0.290 0.946 0.448 128.9

21 4 0.500 3.138 0.292 0.943 0.404 149.3

21 5 0.500 3.277 0.297 0.947 0.443 124.3

21 6 0.500 3.288 0.301 0.947 0.503 109.2

21 7 0.499 3.317 0.299 0.948 0.502 117.4

21 8 0.500 3.316 0.302 0.948 0.527 115.8

29 4 0.500 3.214 0.331 0.944 0.390 133.6

29 5 0.500 3.280 0.333 0.946 0.437 129.6

29 6 0.500 3.350 0.341 0.948 0.449 113.7

29 7 0.500 3.358 0.343 0.948 0.478 117.5

TABLE VII. Same as Table [V], but for stronger coupling.

K Ni (:9%(0):) (nB,o) (nB,—0) (np) (YB.0) (yB,—0) (yB)
11 4 0.500 - - 0.108 - - 0.06145
11 5 0.500 - - 0.109 - - 0.06145
11 6 0.499 - - 0.109 - - 0.06177
13 4 0.500 - - 0.107 - - 0.05923
13 5 0.500 - - 0.109 - - 0.06189
15 4 0.500 - - 0.106 - - 0.05893
15 5 0.500 - - 0.107 - - 0.06021
17 4 0.500 - - 0.107 - - 0.06001
17 5 0.500 - - 0.108 - - 0.06102
19 4 0.500 - - 0.108 - - 0.06100
19 5 0.500 - - 0.108 - - 0.06135
21 4 0.500 0.0670 0.0417 0.1088 0.03770 0.02396 0.06166
21 5 0.500 0.0600 0.0488 0.1088 0.03321 0.02852 0.06173
21 6 0.500 0.0582 0.0509 0.1092 0.03238 0.02986 0.06224
21 7 0.500 0.0571 0.0519 0.1089 0.03155 0.03034 0.06189
21 8 0.500 0.0571 0.0522 0.1092 0.03150 0.03044 0.06194
29 4 0.500 0.0646 0.0443 0.1089 0.03549 0.02567 0.06117
29 5 0.500 0.0606 0.0488 0.1095 0.03347 0.02838 0.06185
29 6 0.500 0.0573 0.0518 0.1091 0.03151 0.03027 0.06178
29 7 0.500 0.0568 0.0527 0.1095 0.03119 0.03072 0.06191
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TABLE VIII. Same as Table [V], but for stronger coupling.

(1v2) = ()%)n>2

K Ny (:¢%(0):) 9 SM? /i |0l —1004° F'(0) e

11 1 1.000 5417 0.863 0.891 1.310 21.42

11 5 1.001 5.325 0.699 0.899 1.073 27.77

11 6 1.000 5.105 0.819 0.883 2.849 22.06

13 4 1.000 4.520 0.362 0.886 0.929 36.62

13 5 0.998 4746 0.362 0.893 1.244 28.91

15 4 1.000 5.783 1.161 0.918 0.457 22.85

15 5 1.000 5.589 1124 0.913 0.641 23.52

17 4 1.000 5.045 0.619 0.909 0.683 25.69

17 5 0.998 4.806 0.562 0.899 1.032 26.31

19 4 1.000 4.804 0.576 0.895 0.853 28.82

19 5 1.000 4.973 0.597 0.902 0.868 29.83

21 4 1.000 4.925 0.615 0.896 0.774 32.23

21 5 1.000 5.082 0.616 0.903 0.876 28.27

21 6 1.000 4.978 0.619 0.900 1.266 25.64

21 7 0.999 5.046 0.612 0.903 1.140 27.78

21 8 1.000 5.009 0.622 0.901 1.248 27.68

29 4 1.000 5.089 0.713 0.902 0.659 29.23

29 5 1.000 5.072 0.695 0.901 0.837 29.11

29 6 1.000 5.173 0.708 0.907 0.867 26.29

29 7 0.999 5.152 0.712 0.905 0.933 27.62

TABLE IX. Same as Table [VII, but for stronger coupling.

K N, (2(0)) (np) (n5—o) (n5) (U5) UB.—2) ws)
11 1 1.000 - - 0.237 - = 0.1425
11 5 1.001 - - 0.231 - - 0.1342
11 6 1.000 - - 0.233 - - 0.1383
13 4 1.000 - - 0.217 - - 0.1205
13 5 0.998 - - 0.222 - - 0.1280
15 4 1.000 - - 0.210 - - 0.1167
15 5 1.000 - - 0.212 - - 0.1181
17 4 1.000 - - 0.211 - - 0.1192
17 5 0.998 - - 0.214 - - 0.1212
19 4 1.000 - - 0.216 - - 0.1220
19 5 1.000 - - 0.216 - - 0.1217
21 4 1.000 0.1179 0.0994 0.2173 0.06625 0.05649 0.12275
21 5 1.000 0.1044 0.1129 0.2174 0.05788 0.06580 0.12368
21 6 1.000 0.1031 0.1154 0.2185 0.05770 0.06759 0.12529
21 7 1.000 0.1008 0.1162 0.2170 0.05575 0.06751 0.12326
21 8 1.000 0.1016 0.1153 0.2169 0.05608 0.06655 0.12263
29 4 1.000 0.1088 0.1057 0.2145 0.05894 0.06072 0.11966
29 5 1.000 0.1048 0.1122 0.2170 0.05738 0.06452 0.12190
29 6 1.000 0.0982 0.1178 0.2160 0.05363 0.06824 0.12187
29 7 1.000 0.0985 0.1180 0.2165 0.05360 0.06803 0.12163
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TABLE X. Same as Table [l, but for A2 = 1002, pf = 20p%, p3 = 4042, and p3 = 604>

(1v2) =) Dn>2

K Ny (:¢%(0):) 9 SM? /i |0l —1004° F'(0) e

11 4 0.100 1.047 0.094 0.985 0.081 4110.

11 5 0.100 1.145 0.098 0.986 0.089 3654.

11 6 0.100 1.200 0.108 0.987 0.094 3197.

13 4 0.097 1.011 0.050 0.986 0.082 4110.

13 5 0.100 1.135 0.054 0.986 0.091 3585.

15 4 0.100 1.073 0.110 0.986 0.079 3822.

15 5 0.100 1.165 0.123 0.986 0.085 3215.

17 4 0.100 1.053 0.089 0.985 0.079 3707.

17 5 0.100 1.148 0.095 0.986 0.091 3025.

19 4 0.099 1.043 0.077 0.985 0.080 3736.

19 5 0.100 1.147 0.084 0.986 0.093 3021.

21 4 0.100 1.048 0.081 0.985 0.080 3475.

29 4 0.100 1.090 0.090 0.984 0.081 3412.

29 5 0.100 1.156 0.093 0.986 0.092 2893.

29 6 0.100 1.214 0.099 0.986 0.097 2718.

29 7 0.100 1.245 0.102 0.987 0.102 2387.

39 4 0.100 1.058 0.080 0.985 0.081 3460.

39 5 0.100 1.158 0.087 0.986 0.088 3134.

39 6 0.105 1.213 0.091 0.986 0.099 2362.

TABLE XI. Same as Table [[Tl, but for A2 = 10042, 3 = 20p?, p3 = 402, and p3 = 60u2.

K N, (:02(0):) (np.o) (np.—o) (np) (YB.o) YB.—0) (yp)
11 4 0.100 — — 0.021 — — 0.01178
11 5 0.100 — — 0.021 — — 0.01214
11 6 0.100 — — 0.021 — — 0.01225
13 4 0.097 - - 0.021 - - 0.01170
13 5 0.100 — — 0.021 — — 0.01232
15 4 0.100 — — 0.021 — — 0.01148
15 5 0.100 — — 0.021 — — 0.01219
17 4 0.100 — - 0.021 - - 0.01186
17 5 0.100 — — 0.021 — — 0.01234
19 4 0.099 - - 0.021 - - 0.01198
19 5 0.100 — — 0.022 — — 0.01247
21 4 0.100 — — 0.021 — — 0.01217
29 4 0.100 0.0163 0.0066 0.0229 0.00939 0.00390 0.01329
29 5 0.100 0.0135 0.0082 0.0218 0.00757 0.00496 0.01253
29 6 0.100 0.0122 0.0096 0.0218 0.00679 0.00580 0.01259
29 7 0.100 0.0118 0.0103 0.0220 0.00660 0.00621 0.01280
39 4 0.100 0.0154 0.0063 0.0217 0.00865 0.00379 0.01243
39 5 0.100 0.0135 0.0082 0.0218 0.00764 0.00493 0.01256
39 6 0.100 0.0129 0.0102 0.0231 0.00717 0.00616 0.01333
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TABLE XII. Same as Table [X], but for stronger coupling.

(1v2) =) n>2

K Ny (:?(0):) 9 SM? /2 |vo|? —100p%F" (0) e

1 1 0.250 1.770 0.251 0.965 0.189 615.3

11 5 0.250 1.898 0.251 0.967 0.207 553.3

11 6 0.250 1.978 0.278 0.968 0.223 485.3

13 4 0.250 1.660 0.129 0.963 0.210 602.1

13 5 0.250 1.855 0.135 0.966 0.227 552.2

15 4 0.249 1.845 0.303 0.966 0.171 573.8

15 5 0.250 1.976 0.332 0.967 0.185 483.0

17 4 0.249 1.758 0.232 0.965 0.175 586.0

17 5 0.251 1.900 0.246 0.966 0.214 465.5

19 4 0.250 1.749 0.203 0.964 0.194 560.0

19 5 0.251 1.896 0.219 0.966 0.224 462.0

21 4 0.250 1.750 0.211 0.964 0.190 529.9

29 4 0.249 1.828 0.235 0.962 0.188 531.2

29 5 0.250 1.917 0.243 0.966 0.215 450.3

29 6 0.250 2.004 0.257 0.968 0.226 423.3

29 7 0.250 2.041 0.262 0.968 0.244 376.8

39 4 0.250 1.762 0.208 0.964 0.192 539.6

39 5 0.248 1.908 0.222 0.966 0.211 484.9

39 6 0.250 1.993 0.233 0.967 0.234 405.2

TABLE XIII. Same as Table [X], but for stronger coupling.

K Ni (:¢°(0):) (nB,o) (nB,—0) (np) (YB.0) (YB,—0) (yB)
1 1 0.250 - - 0.052 - - 0.02950
11 5 0.250 - - 0.053 - - 0.03019
11 6 0.250 - - 0.053 - - 0.03048
13 4 0.250 - - 0.053 - - 0.03012
13 5 0.250 - - 0.054 - - 0.03101
15 4 0.249 - - 0.051 - - 0.02853
15 5 0.250 - - 0.053 - - 0.03000
17 4 0.249 - - 0.052 - - 0.02881
17 5 0.251 - - 0.054 - - 0.03061
19 4 0.250 - - 0.053 - - 0.03025
19 5 0.251 - - 0.054 - - 0.03122
21 4 0.250 - - 0.053 - - 0.03034
29 4 0.250 0.0382 0.0183 0.0564 0.02194 0.01070 0.03264
29 5 0.250 0.0318 0.0223 0.0541 0.01770 0.01334 0.03105
29 6 0.250 0.0287 0.0256 0.0543 0.01586 0.01540 0.03125
29 7 0.250 0.0275 0.0272 0.0547 0.01541 0.01633 0.03173
39 4 0.250 0.0365 0.0173 0.0539 0.02051 0.01029 0.03080
39 5 0.250 0.0319 0.0220 0.0539 0.01798 0.01310 0.03109
39 6 0.250 0.0293 0.0254 0.0547 0.01635 0.01523 0.03158
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TABLE XIV. Same as Table [KII, but for stronger coupling.

(1v2) =) n>2

K Ny (:9%(0):) 9 SM?/u® |0l —1004° F'(0) mE:

1 1 0.499 2.812 0.555 0.934 0.365 130.8

11 5 0.500 2.882 0.520 0.936 0.408 123.2

11 6 0.500 2.965 0.581 0.938 0.478 109.3

13 4 0.500 2.405 0.256 0.925 0.441 142.6

13 5 0.500 2.763 0.272 0.933 0.472 127.7

15 4 0.501 3.041 0.726 0.940 0.266 117.3

15 5 0.500 3.122 0.753 0.942 0.301 105.7

17 4 0.500 2.732 0.505 0.937 0.298 134.6

17 5 0.500 2.877 0.516 0.937 0.394 109.1

19 4 0.499 2.685 0.428 0.932 0.370 128.9

19 5 0.500 2.849 0.457 0.936 0.435 109.1

21 4 0.499 2.685 0.449 0.932 0.362 122.1

29 4 0.500 2.868 0.512 0.931 0.341 119.5

29 5 0.500 2.926 0.519 0.937 0.392 105.1

29 6 0.500 3.029 0.542 0.940 0.412 100.1

29 7 0.501 3.058 0.550 0.940 0.474 90.2

39 4 0.500 2.739 0.448 0.932 0.358 122.2

39 5 0.500 2.930 0.475 0.937 0.393 108.4

39 6 0.500 2.993 0.486 0.939 0.437 96.9

TABLE XV. Same as Table KIII, but for stronger coupling.

K Ni (:¢°(0):) (nB,o) (nB,—0) (np) (YB.0) (YB,—0) (yB)
1 1 0.499 - - 0.107 - - 0.06126
11 5 0.500 - - 0.108 - - 0.06130
11 6 0.500 - - 0.108 - - 0.06196
13 4 0.500 - - 0.108 - - 0.06124
13 5 0.500 - - 0.109 - - 0.06350
15 4 0.501 - - 0.103 - - 0.05771
15 5 0.500 - - 0.105 - - 0.05922
17 4 0.500 - - 0.102 - - 0.05647
17 5 0.500 - - 0.106 - - 0.06056
19 4 0.499 - - 0.107 - - 0.06082
19 5 0.500 - - 0.108 - - 0.06234
21 4 0.499 - - 0.106 - - 0.06058
29 4 0.500 0.0684 0.0437 0.1121 0.03925 0.02539 0.06464
29 5 0.500 0.0568 0.0507 0.1075 0.03157 0.03009 0.06166
29 6 0.500 0.0509 0.0566 0.1075 0.02807 0.03373 0.06181
29 7 0.500 0.0493 0.0595 0.1088 0.02755 0.03554 0.06309
39 4 0.500 0.0665 0.0410 0.1076 0.03756 0.02418 0.06174
39 5 0.500 0.0574 0.0506 0.1080 0.03239 0.02994 0.06233
39 6 0.500 0.0524 0.0559 0.1084 0.02919 0.03333 0.06252
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TABLE XVI. Same as Table KIV], but for stronger coupling.

(1v2) =) n>2

K Ny (:?(0):) 9 SM? /2 |vo|? —100p%F" (0) e

11 1 0.989 4.661 1.220 0.858 1.195 22.07

11 5 0.998 4.326 0.991 0.868 1.114 26.07

11 6 0.904 4.181 1.063 0.882 1.442 28.64

13 4 1.002 3.378 0.487 0.836 1.122 32.87

13 5 1.000 4.182 0.537 0.863 1.245 27.45

15 4 1.000 5.332 1.849 0.912 0.337 19.69

15 5 1.000 5.142 1.804 0.908 0.458 21.64

17 4 0.998 4.448 1.131 0.896 0.448 28.27

17 5 1.000 4.527 1.094 0.889 0.758 24.09

19 4 1.000 4.317 0.915 0.873 0.759 27.20

19 5 0.999 4.412 0.970 0.880 0.960 24.52

21 4 1.000 4.300 0.966 0.876 0.752 25.75

29 4 1.000 4.795 1.160 0.886 0.565 23.4

29 5 0.999 4.683 1.132 0.893 0.699 22.5

29 6 1.000 4.772 1.164 0.897 0.757 21.9

29 7 0.999 4.706 1.160 0.893 1.079 20.9

39 4 0.998 4.562 1.006 0.884 0.660 23.6

39 5 1.000 4.678 1.026 0.892 0.729 22.3

39 6 1.000 4.656 1.020 0.894 0.833 21.8

TABLE XVII. Same as Table KV], but for stronger coupling.

K Ni (:¢°(0):) (nB,o) (nB,—0) (np) (YB.0) (YB,—0) (yB)
11 4 0.989 - - 0.245 - = 0.1524
11 5 0.998 - - 0.227 - - 0.1310
11 6 0.904 - - 0.206 - - 0.1207
13 4 1.002 - - 0.228 - - 0.1297
13 5 1.000 - - 0.230 - - 0.1370
15 4 1.000 - - 0.205 - - 0.1149
15 5 1.000 - - 0.204 - - 0.1140
17 4 0.998 - - 0.198 - - 0.1078
17 5 1.000 - - 0.212 - - 0.1203
19 4 1.000 - - 0.218 - - 0.1261
19 5 0.999 - - 0.218 - - 0.1271
21 4 1.000 - - 0.215 - - 0.1245
29 4 1.000 0.1051 0.1152 0.2203 0.06028 0.06653 0.12680
29 5 1.000 0.0894 0.1231 0.2125 0.04925 0.07260 0.12185
29 6 1.000 0.0798 0.1317 0.2115 0.04334 0.07794 0.12128
29 7 1.000 0.0787 0.1350 0.2137 0.04357 0.08055 0.12412
39 4 1.000 0.1069 0.1090 0.2159 0.06156 0.06396 0.12552
39 5 1.000 0.0907 0.1232 0.2139 0.05109 0.07272 0.12381
39 6 1.000 0.0836 0.1297 0.2133 0.04611 0.07694 0.12305
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For higher resolution (K = 21 and 29 for A> = 50p® and K = 29 and 39 for A? =
1002) we plot the structure function fp in Figs. . Typical contributions to fp from
one-boson and two-boson states are shown in Figs. [J and [Il The two-boson contribution
to the structure function is further analyzed in terms of its dependence on both longitudinal
momentum fractions in Fig. [3, where

Fooly1,9) = / dquid’ ol 6ty (g, (3.9)

is plotted. We also show typical two-body wave functions in Figs. [3 and [[4; the agreement
with the necessary L, = 1 symmetry in the antiparallel helicity case is an important check
of J, conservation in the calculation.
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FIG. 2. The boson structure function fp at various numerical resolutions, with M = pu,
(:¢2(0):) = 0.1, A2 = 5042, 3 = 10p2, p? = 2042, and p? = 3042, The solid line is from first-order
perturbation theory.
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FIG. 3. Same as Fig. ] but for (:¢%(0):) = 0.25.

As a check on the logarithmic PV coupling constraint in Eq. (B.4), we compute the bare
mass shift §M/? when M? is much less than p?. Figure [[J shows its behavior as a function
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FIG. 4. Same as Fig. || but for (:¢*(0):) = 0.5.
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FIG. 5. Same as Fig. f] but for (:¢?(0):) = 1.0.
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FIG. 6. Same as Fig. ] but for A% = 10042, p? = 20u%, 2 = 40p2, and p? = 602
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FIG. 7. Same as Fig. f§ but for (:¢*(0):) = 0.25.
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FIG. 9. Same as Fig. | but for (:¢*(0):) = 1.0.
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FIG. 10. The one-boson contribution to the boson structure function fg at various numerical

resolutions, with M = p, (:¢%(0):) =1, A2 = 502, p? = 10p2, p2 = 2042, and p? = 30u°.
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FIG. 12. The two-boson structure function fg, for K = 29 and N| = 7, with M = 1
(:0%(0):) = 1, A* = 500, pif = 10p°, pif = 20p°, and pf = 30>
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FIG. 13.  The parallel-helicity, one-boson amplitude QSUIC}O’O’O) as a function of longitudinal

momentum fraction y and one transverse momentum component g, in the g, = 0 plane. The
parameter values are K =29, Ny =7, M = p, A2 =50u2, 2 = 10p2, p3 = 20p2, 13 = 3042, and
(:6(0):) = 0.25.

FIG. 14. Same as Fig. [[3 but for antiparallel bare helicity.

23



of the longitudinal resolution for various bare couplings. If the logarithmic constraint was
sufficient for nonperturbative calculation, §M? should go to zero as M? approaches zero and
the resolution approaches the continuum limit. This appears to work well only for weak
coupling.
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FIG. 15. The bare mass shift §M? as a function of the longitudinal resolution K for various
bare couplings g, with N| =4, M2 = 0.001p2, A2 = 50p2, p2 = 10p%, p2 = 20p2, and pf = 30u2.

IV. CONCLUSIONS AND PROSPECTS FOR THE APPLICATION OF
DLCQ(3+1) TO GAUGE THEORY

We have used the discretized light-cone quantization method to successfully solve for the
mass and light-cone wave functions of a dressed fermionic state in a Yukawa theory in 3 + 1
space-time dimensions. No a priori constraint on the number of bosonic constituents was
necessary; however, since the fermion constituent was treated as heavy, states containing
fermion—anti-fermion pairs were truncated. We have found that the eigensolution at strong
coupling displays features which significantly deviated from first-order perturbation theory.
Numerical resolution in this domain of strong coupling was not a limiting factor in this
analysis.

The regularization procedure which we have chosen, with three PV scalars, functioned
well. However, better convergence of the DLC(Q method at strong coupling could be ob-
tained by constraining the PV couplings non-perturbatively, rather than using the one-loop
perturbative constraints in (2.4).

A number of properties of the Yukawa-theory eigensolution could be extracted from
its light-cone Fock-state wave function. This illustrates the power of the DLCQ method
in making the Fock-state wave functions of the eigenstates explicitly available. It is also
possible to use the derived wave functions to compute the Pauli and Dirac form factors of
the dressed fermion state at general momentum transfers [R9].

There are additional calculations which might be done within the context of the zero
fermion pair approximation. We could consider two-fermion states and study true bound

24



states and scattering solutions. We could also consider dressed spin-3/2 states and the
analog of N7 < A transitions. Extension of these methods to pseudo-scalar Yukawa theory
would make the N7 < A connection stronger.

Although the approach used in this paper to solve (341)-dimensional Yukawa theory at
strong coupling has been successful, future progress for solving other quantum field theo-
ries will require more efficient analytic methods and numerical algorithms. An alternative
ultraviolet regularization procedure, using only one PV scalar and one PV fermion [B0,2§
may potentially provide a more efficient approach for solving Yukawa theories. Not only is
the constraint on the couplings trivial, but the light-cone Hamiltonian is also much simpler.
The simplifications occur because the instantaneous fermion interactions (the terms in (R.1))
of order ¢g?) cancel. Moreover, the DLCQ matrix for the remaining three-point interactions
is much more sparse, allowing calculations at higher resolutions. Our next step will be to
test this alternative regularization.

One can consider two other possibilities for PV regularization [B{] of full Yukawa theory.
One is to use two heavy fermions and one heavy scalar [R3]; the other is to use one less
heavy fermion but make the transverse momentum cutoff part of the regularization rather
than just a numerical procedure. In each case a ¢* term must be added. We plan to explore
both of these methods.

Quantum electrodynamics and quantum chromodynamics in physical space-time, in-
cluding the phenomenon of chiral symmetry breaking remain the central challenge to DLCQ
methods. One attractive possible approach is to use broken supersymmetry as an effective
ultraviolet regulator of the light-cone Hamiltonians of gauge theories.

The PV method also has applicability to the renormalization of non-Abelian Hamiltonian
gauge theories on the light-cone. Paston, Franke and Prokhvatilov [BI,BZ have recently
extended their analysis to the nonperturbative regulation of light-cone QCD, including the
regularization of the infrared singularities introduced by using light-cone gauge. They find
that a combination of light-cone gauge, PV fields, higher derivative regulation, and carefully
chosen momentum cutoffs can regulate the theory in such a way as to provide agreement with
Feynman calculations using the Mandelstam-Leibbrandt prescription [B3] for the spurious
singularity in the gauge propagator. The resulting dynamical operator is rather complex
and several regulating fields are needed, but the regulation procedures appear suitable for
numerical calculations. We plan to test these methods in Abelian theory, including the
calculation of positronium bound states [B4,B5] and the non-perturbative calculation of the
anomalous magnetic moments of leptons at strong coupling [Bg].
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APPENDIX: LANCZOS ALGORITHM FOR INDEFINITE METRIC

The ordinary Lanczos algorithm [P7] was designed for diagonalization of real symmetric
or Hermitian matrices. A more general form, the biorthogonal Lanczos algorithm [B7], can
be applied to non-symmetric cases but is quite cumbersome. In the case of a complex
symmetric matrix, the biorthogonal algorithm can be reduced to a form nearly as simple as
the real symmetric case [B]; this approach was used in previous work [[[§ R1] where imaginary
couplings made negative norms unnecessary. The complex-symmetric approach is not easy to
implement for Yukawa theory because the Hamiltonian is fully Hermitian. Instead, negative
norms are assigned, and the eigenvalue problem becomes one with indefinite metric.

For this case the biorthogonal algorithm can still be reduced to a simpler form. Let n
represent the metric signature, so that numerical dot products are written (¢'|¢) = ¢ - ne.
The Hamiltonian matrix H is constructed to be self-adjoint with respect to this metric,
which means that [B9] H = n~'H'n = H. The Lanczos algorithm for the diagonalization of
H then takes the form

aj =v;q; -nHq;, r;j=Hq; =719, 1 —;q;, Bj =+ \/|r;-nrjl, (A1)

qj1 =7;/B;, vir =sign(r] -nr;), vi=sign(qy -nqi), v =vivib;,

where g, is taken as a normalized initial guess and y = 0. This initial guess is generated
with use of high-order Brillouin-Wigner perturbation theory. To determine when to stop
the Lanczos iterations, the convergence of the eigenvalue and parts of the boson-fermion
wave function are monitored.

Just as for the ordinary Lanczos algorithm, the original matrix H acquires the following
tridiagonal matrix representation 7" with respect to the basis formed by the vectors g;:

(075] 610 0 0 ...
Y1 Q2 620 0...
— 0 Yo Q3 630
H-T=| g @0 | (A2)
0 0 O

By construction, the elements of T' are real. The new matrix is also self-adjoint, but with
respect to an induced metric v = {vy,1s,...}. The eigenvalues of T' approximate some of
the eigenvalues of H, even after only a few iterations. Approximate eigenvectors of H are
constructed from the right eigenvectors ¢; of T as ¢; = > (¢i)rqy-
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