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Abstract

In particle-in-cell (PIC) simulation, errors in space charge forces are of

random character. It results in an unphysical increase of effective beam

emittance, even while symplectic integrator is used. To establish

quantitative measure of this effect on beam dynamics, an analytical model

of equilibrium beam affected by random errors in space charge field

calculations is considered. An explicit expression connecting beam

emittance growth with beam brightness, integration step and the value of

random error in space charge field  is discussed.
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Abstract
In particle-in-cell (PIC) simulation, errors in space

charge forces are of random character. It results in an
unphysical increase of effective beam emittance, even while
symplectic integrator is used. To establish quantitative
measure of this effect on beam dynamics, an analytical
model of equilibrium beam affected by random errors in
space charge field calculations is considered. An explicit
expression connecting beam emittance growth with beam
brightness, integration step and the value of random error in
space charge field  is discussed.

1 INTRODUCTION

In PIC simulations space charge forces of the beam are
calculated via direct solution of Poisson's equation at every
elementary step of simulation. Numerical solution is
affected by various errors caused by discrete charge
representation used in the macroparticle method,
approximation formulas used in place of the exact
derivatives of the Poisson's equation, differentiation of the
potential function to obtain values of electric field
components, and computer round-off errors. These errors
act on beam dynamics as a noise which eventually
transforms into unphysical emittance growth of the beam
(see Fig. 1).

2 BEAM EMITTANCE GROWTH

Consider linear oscillator x + ω2x = 0, where ω is the
space-charge-depressed oscillation frequency, affected by
random errors in space charge field calculations. Matrix of

particle transformation in coordinates (x, p = 1
ω

 dx
dt

) at every

elementary step, δt, is given by

xn+1

pn+1
 = cos θ       sin θ

- sin θ         cos θ
  xn 

pn + ∆pn

 ,       (1)

where θ = ω·δt is a tune shift of particle oscillation per
integration step and ∆pn is a random kick due to error δEn

in space charge field:

∆pn = q δEn δt
m ω

  .                      (2)

For further analysis, let us introduce a reduced value of
error in space charge field:
________________________________________________
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ϑ  = δE(R)

E(R)
  ,                            (3)

where E(R) is an exact value of space charge field at the
beam boundary:

E(R) = I
2πεoβzcR

 ,                     (4)

and δE(R) is a deviation of space charge field from the
value of E(R).

Solution of matrix equation (1) after n steps of
integration is [1]

{
xn = R cos (nθ + Ψ)  + ∆pi sin (n-i) θ∑

i=0

n-1

pn = - R sin (nθ+ Ψ)   + ∆pi cos (n-i) θ∑
i=0

n-1   ,      (5)

where Ψ is an initial phase of oscillations. Second-order
momentum of particle distribution in phase space are

<xn
2> = 1

2π
 xn

2 dΨ
-π

π

,                           (6)

<pn
2> = 1

2π
 pn

2 dΨ
-π

π

  .                        (7)

Random kicks ∆pi  are not correlated, therefore

∆pksin (n-k)θ ∆pisin(n-i)θ∑
i=0

n-1
 = {  0,                  k ≠ i

∆p2sin2(n-k)θ, k = i
, (8)

where ∆p is an amplitude of random kicks. After n steps,
the rms values are

<xn
2> = R

2

2
 [1 + (∆p

R
)
2

n],                          (9)

<pn
2> = R

2

2
 [1 + (∆p

R
)
2

n] .                      (10)

Therefore, beam emittance after n steps,
εn = 4 <xn

2> <pn
2> , is related to initial emittance, εo, as

εn

εo
 = 1 + (∆p

R
)
2

n .                   (11)

Let us rewrite the value of kick, Eq.(2), as



I = 0                                                  I ≠ 0
n=0
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Fig. 1. Evolution of phase space area of the circular beam after 103 integration steps with (right column) and without (left
column) space charge forces.

∆p =  q
mω

 (δE
E

) (δt
T

) E T ,                     (12)

where T = 2π/ω is a period of oscillations. Also take into
account that beam emittance is

∋  = R
2 ω
βzc

 .                                (13)

Therefore, amplitude of random kick is

∆p =  2πR (δE
E

) (δt
T

) 2I
Icβz

3
 R

2 
 ∋ 2

 ,              (14)

where Ic = 4πεοmc3/q = (A/Z).3.13.1 07 amp is a
characteristic value of the beam current.

To evaluate significance of space charge forces on
beam dynamics, consider KV envelope equation for round
beam:

R'' - ∋
2

R3
 +  k(z) R - 2 I

Ic β3γ3R 
  = 0 .            (15)

Equation (15) contains two defocusing terms: one is
proportional to square of beam emittance and another one is
proportional to beam current. Ratio of that two terms gives
estimation, which factor  dominates in beam transport:

b = 2
(βγ)3

 I
Ic

 R
2

∋ 2
 .                                  (16)

Parameter b, Eq. (16), is a ratio of beam brightness, I / ∋ 2,
to normalization value, Ic / R

2, and can be called
dimensionless beam brightness. Space charge dominated



beam transport is performed when b >>1 while emittance
dominated regime is fulfilled for b <<1. Additional factor
of 2 / (βγ) indicates that significance of space charge forces
drops with increasing of beam energy. Finally, beam
emittance growth due to random variations in space charge
field calculations is

εn

εo
 = 1 + (2π b τ  δE

E
)
2
n ,              (17)

where τ  = δt / T  is the dimensionless integration step. From
Eq. (17) it follows that emittance growth is the most
essential for high brightness beams.

3    NUMERICAL SIMULATIONS

In Fig. 2 an example of beam emittance growth due to
errors in space charge field calculations is presented.
Calculations are performed using code BEAMPATH [2].
Integration of equations of motion are done utilizing
symplectic integrator:

pn+1
 

 = pn + τ  En

 
,        xn+1

 
 = xn + τ  pn+1

 

γn+1
  ,           (18)

where electric field, E = Ef + Esc, is a combination of

focusing field, Ef, and space charge field, Esc. After 9000
integration steps emittance growth for the KV beam with
A/Z = 1, I = 4.16 amp, R = 1 mm, βz = 0.015648,
∋  = 6.39 π cm mrad, b = 17, δE(R)/ E(R) = 0.01 is εn / εo =
1.025. Beam is represented by 3·104 particles on the grid
Nx x Ny = 512 x 512. Analytical estimation of beam
emittance growth utilizing formula (17) gives εn / εo = 1.1.
Without space charge forces effective beam emittance is
conserved (see Fig. 2b).

Eq. (17) indicates that emittance increases with the
number of integration steps. Total number of steps at the
integration period [0, τ fin ] is

n = τ fin
τ

  .                                 (19)

Substitution of Eq. (19) into Eq. (17) gives:

εn

εo
 = 1 + (2π b δE

E
)
2
τ fin  τ  .               (20)

According to Eq. (20), emittance growth at the fixed
distance of integration is depressed for smaller values of
integration step, τ. Fig. 3 contains numerical results of
beam dynamics with different values of integration step at
the fixed integration period.

Let us note that presented rms beam emittance growth
does not violate Liouville's theorem, because it is growth of
the effective phase space area occupied by the beam. Both
numerical integrator, Eq. (18) and matrix, Eq.(1), are
symplectic, i.e. conserving microscopic phase space of the
beam. Effective beam emittance can increase while
microscopic emittance is conserved (see for example, Ref.
[3], Fig. 4.8, page 198). Fig. 1 illustrates evolution of  phase
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Fig. 2.  Emittance growth of circular beam, τ = 1/300:
a) b = 17, δE(R)/ E(R) = 0.01, b) b = 0.
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Fig. 3. Emittance growth at the fixed integration
period: a) τ = 1/150, b) τ = 1/300.

space area occupied by the beam. Without space charge
forces beam boundary in phase space remains unchanged.
With space charge forces beam boundary is distorted  due
to random fluctuations in space charge field, which results
in increase of effective phase space area. Meanwhile,
microscopic phase space area and number of particles
inside the area are conserved.
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