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Abstract
Method of calculation of space charge field of the

beam using an expansion of space charge potential and
space charge distribution as Fourier-Bessel series is
discussed. Coefficients of series are connected by an
algebraic equation, which substantially simplifies solution
of the problem. Efficiency and accuracy of the method are
discussed. Suggested method is effective in
multidimensional problems of study of intense charged-
particle beams.

1   INTRODUCTION

Accurate calculation of space charge potential of
the beam is important for precise simulation of high
current beam dynamics in particle accelerators. The most
popular approaches combine finite difference methods
and Fast Fourier Transforms where Poisson's equation is
substituted by a finite-difference equation and resulted
matrix equation is solved to find the grid function of
potential [1]. In spectral methods solution of the problem
is expressed as analytical functions [2], [3]. It provides
more exact solution and simplifies numerical algorithm.
Numerical solution in this case is a Fourier spectrum,
which can be easily verified. However, spectral methods
are usually slow.

2   MATHEMATICAL ALGORITHM

Consider periodic distribution of a space charge
density of the beam in perfect conducting pipe of radius a
(see Fig. 1). Space charge potential of the beam is
calculated via solution of the Poisson's equation:
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with Dirichlet boundary conditions for potential Φ at the
surface of conducting pipe and periodic conditions in
longitudinal direction z:

Φ (a, ϕ, z) = 0 ,                                        (2)

Φ (r, ϕ, z) =  Φ(r, ϕ,  z+L)  .                    (3)

Let us express unknown potential Φ(r, ϕ , z) and space
charge distribution ρ(r, ϕ, z) as Fourier-Bessel series:
______________________________________________
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Fig. 1. Periodic distribution of charged particles.
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where Jn(x) is the Bessel function of the order n; νnm is
the m-th root of the equation Jn(x) = 0. Coefficients of
space charge potential expansion in Eq. (5) are obtained
from inverse Fourier-Bessel transformation:
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Eq. (6) is obtained using orthogonality of Bessel functions
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After substitution of the expansions (4), (5) into Poisson's

equation (1), the coefficients of potential, Φkmn, and
space charge distribution, ρkmn, are connected by the
algebraic equation:
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Fig. 2. Periodic train of uniformly charged cylindrical bunches.
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Algorithm of space charge potential calculation is
performed as 3 steps:

 - calculation of coefficients of space charge distribution,
Eq. (6),

 - calculation of coefficients of space charge potential, Eq.
(8),

 - calculation of space charge potential, Eq. (4).

In special cases the problem can be simplified. For
example, if the region is limited in longitudinal direction
by conductive surfaces, it is enough to use expression:
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analogously for  ρ(r, ϕ ,z).

3  CONVERGENCE OF ALGORITHM

To estimate convergence of the series (4), (5), let us
calculate potential of the periodic sequence of uniformly
charged bunches of radius R < a, length l < L and charge
density ρo (see Fig. 2). For that problem the coefficients,
Eq. (6), are calculated analytically:
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Analysis shows that the values of ρkmo decrease as
~1/( m k). Substitution of Eq.(10) into Eqs. (8), (4) gives
expression for potential of the train of cylindrical
bunches:
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Coefficients Φkmo decrease in this case as

Φkmo ~ 1
m k (m2 + k2)

  .                 (12)

Example shows that the expression for potential is
fast convergent. Realistic beam usually has a smooth
distribution of space charge density. It is expected, that in
practice the small number of coefficients in series, Eqs.
(4), (5) is enough to obtain the required accuracy.

4    NUMERICAL EXAMPLE

Suggested algorithm was tested for the problem of
space charge potential of the axial - symmetric beam.
Calculations were done for test function

Φ(r,z) = [1- (r
a
)4] (cos πz

L
)4  ,                  (13)

which satisfies the boundary conditions, Eqs. (2), (3). The
corresponding value of space charge is given by:
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Cylindrical region 0 < r < a, 0 < z < L, was covered by the
grid with steps hr = a / Nr, hz = L / Nz, where Nr, Nz are



the number of grid points in r and z, respectively.
Coefficients in space charge density expansion, Eq. (5),
are expressed as :
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where the grid points are used:

zs = s·hz,     s = 0, 1, 2,...... Nz - 1 ,            (16)

rj = j·hr,       j = 0, 1, 2,...... Nr - 1 .            (17)

For z-expansion the Fast Fourier Transform was
used. The number of coefficients in z-direction was equal
to the number of grid points, K = Nz. The number of
coefficients in radial direction M was varied. An averaged
deviation of numerical solution, Φ(rj, zs), from the exact
analytical solution, Φ(r, z), was calculated as an error δ:
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Results of calculation are summarized in Table 1.
For comparison, the same problem was tested by the

finite-difference method. Poisson's equation (1) was
substituted by the finite-difference analog:
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Calculations started with Fourier expansion of unknown
potential, Uk, j, in z-direction

Uk,j = Um(j) exp( - i 2π (k-1) (m-1)

Nz
)∑
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  ,           (20)

Table 1. Error  δ of the test problem.

______________________________________________

                         Spectral method             Finite -difference

Grid                  M=5     M=10   M=40           method

 ______________________________________________

16 x 16             3.10-4    3.10-4    3.10-4             3.10-4

32 x 32             1.10-4    4.10-5    3.10-5             4.10-5

64 x 64             6.10-5   1.10-5    4.10-6               6.10-6

128 x 128         3.10-5    5.10-6   5.10-7              1.10-6

256 x 256         1.10-5    2.10-6   1.10-7              1.10-6

______________________________________________

similar for space charge density ρk,j. Coefficients of

Fourier expansion, Um(j), were expressed via inverse
Fourier transform:

Um(j) = 1
Nz

 Ukj  exp (i 2π (k-1) (m-1)
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and similar for ρm(j). Substitution of expansion, Eq. (21),
into the finite-difference analog of the Poisson's equation,
Eq. (19), results in a three-diagonal matrix equation:

α j Um(j+1) + βj Um(j) + γj Um(j-1) = wj  ,             (22)

which was solved utilizing the Gauss elimination method
[1]. After that, the potential in grid points was calculated
using Fourier series, Eq. (20).

Comparison of numerical results shows that spectral
method gives better accuracy than the finite-difference
one using relatively small  number of  harmonics M in
radial direction.
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