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Abstract

Method of calculation of space charge field of the beam using an
expansion of space charge potential and space charge distribution as
Fourier-Bessel series is discussed. Coefficients of series are connected
by an algebraic equation, which substantially simplifies solution of the
problem. Efficiency and accuracy of the method are discussed.
Suggested method is effective in multidimensional problems of study of
intense charged-particle beams.

Presented at 2001 Particle Accelerator Conference, Chicago, Illinois, 18-22 June 2001

Work supported by the Department of Energy contract DE-AC03-76SF00515



SPECTRAL METHOD FOR 3-DIMENSIONAL POISSON'S EQUATION IN
CYLINDRICAL COORDINATES WITH REGULAR BOUNDARIES *

Yuri K. Batygin
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA

Abstract 1p

Method of calculation of space charge field of the 0.8¢
beam using an expansion of space charge potential and 0.6
space charge distribution as Fourier-Bessel series is 0.4F
discussed. Coefficients of series are connected by ang 0.2¢
algebraic equation, which substantially simplifies solution = 0F

of the problem. Efficiency and accuracy of the method are 0.2F
discussed. Suggested method is effective in -0.4F
multidimensional problems of study of intense charged- -0.6F
particle beams. -0.8
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Accurate calculation of space charge potential of

the beam is important for precise simulation of high
current beam dynamics in particle accelerators. The most
popular approaches combine finite difference methods
and Fast Fourier Transforms where Poisson's equation is
substituted by a finite-difference equation and resulted
matrix equation is solved to find the grid function of
potential [1]. In spectral methods solution of the problem

is expressed as analytical functions [2], [3]. It provideg, —
more exact solution and simplifies numerical algorithm. K
Numerical solution in this case is a Fourier spectrum,
which can be easily verified. However, spectral methods
are usually slow. p= Z

2 MATHEMATICAL ALGORITHM k=Kn

Fig. 1. Periodic distribution of charged particles.
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Consider periodic distribution of a space chargghe m-th root of the equatiom(k) = 0. Coefficients of
density of the beam in perfect conducting pipe of radius@, ;e charge potential expansion in Eq. (5) are obtained

(see Fig. 1). Space charge potential of the beam 43, inverse Fourier-Bessel transformation:
calculated via solution of the Poisson's equation:
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with Dirichlet boundary conditions for potentid@ at the ) ) ) ) )
surface of conducting pipe and periodic conditions ifd- (6) is obtained using orthogonality of Bessel functions
longitudinal direction z:
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Let us express unknown potentia_(r, ¢, z) and Space After substitution of the expansions (4), (5) into Poisson's
charge distributiomp(r, ¢, z) as Fourier-Bessel series: equation (1), the coefficients of potentigkmn, and

space charge distributiopgmn, are connected by the
I-:ailgebraic equation:
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Fig. 2. Periodic train of uniformly charged cylindrical bunches.
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Algorithm of space charge potential calculation is
performed as 3 steps: I1(Vom Ra) sin (K1)

R L Jo(Uom 1) cos(ZI_m). (12)

|
- calculation of coefficients of space charge distribution@” " % (uom) (M)
Eq. (6), L
- calculation of coefficients of space charge potential, Eq. o
(8), Coefficients®xmo decrease in this case as

- calculation of space charge potential, Eq. (4).

In special cases the problem can be simplified. For ‘karfﬁ . (12)
example, if the region is limited in longitudinal direction mk (n7 + K)

by conductive surfaces, it is enough to use expression: ) o
Example shows that the expression for potential is

M fast convergent. Realistic beam usually has a smooth

> Pkmn 3 Wnpmb) e Nt ginakz)’ ©) distribution of space charge density. It is expected, that in

N =1 a L practice the small number of coefficients in series, Egs.
(4), (5) is enough to obtain the required accuracy.
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analogously forp(r, ¢ ,z).

4 NUMERICAL EXAMPLE

3 CONVERGENCE OF ALGORITHM Suggested algorithm was tested for the problem of
space charge potential of the axial - symmetric beam.
To estimate convergence of the series (4), (5), let G&@lculations were done for test function
calculate potential of the periodic sequence of uniformly
charged bunches of radius R < a, lenigthL and charge o(r,z) = [1- 941 (cosT@)* | (13)
densitypo (see Fig. 2). For that problem the coefficients, L
Eq. (6), are calculated analytically:
which satisfies the boundary conditions, Egs. (2), (3). The
. corresponding value of space charge is given by:
. e rJl(UomRa)]sm(nTkl)] p g p geisg y
=po— M~ . (10
Pkmo = Po Uom (a)(L)L J%_(Uom) Il (m) ] (10) pg,z) -1
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Analysis shows that the values pfmo decrease as M1 - MY[(cosT@)* - 3 (cos2Z)?] . (14)
~1/(/m k). Substitution of Eq.(10) into Eqgs. (8), (4) gives L a L 4 L

expression for potential of the train of cylindrical = . )
bunches: Cylindrical region 0 <r <a, 0 <z <L, was covered by the

grid with steps hp=a / N, hz =L / N2, where N, N, are



the number of grid points in r and z, respectivelyTable 1. Errord of the test problem.
Coefficients in space charge density expansion, Eq. (5),
are expressed as :

_ 2 Spectral method Finite -difference
Pkmo=——""—"" .
\]%(Vom) Ny N, Grid M=5 M=10 M=40 method
Nz1 Ny -1
> Z ij( )Jo(vmr) eXD(ZT‘k z), (15 16x16 404 3104 3104 3104
=0 =1 32 x 32 104 4105 3105 4105
5 1105 1076 106
where the grid points are used: 64 x 64 a0~ 110~ 410 610
128 x 128 30° 5106 5107 1106
zs=s-h, $=0,1,2,... N1, (16) 256 x 256 105 2106 1107 110

=il =012 N-1. 17)

similar for space charge densipk,j. Coefficients of
For z-expansion the Fast Fourier Transform was
used. The number of coefficients in z-direction was equieurier expansionUm(j), were expressed via inverse
to the number of grid points, K =,NThe number of Fourier transform:

coefficients in radial direction M was varied. An averaged

deviation of numerical solutior®p(rj, zg), from the exact - Nz 21t (k-1) (m-1
analytical solution®(r, z), was calculated as an erdor Um(@) = NL > Uy exp ('% ' (21)
Z k=1 z
N-1 Ny-1 - . - .
® -® 2 18 and similar forpm(j). Substitution of expansion, Eq. (21),
N N Z Z [(r, 2) - (1}, 9]% . (18) into the finite-difference analog of the Poisson's equation,
zr s=0 j=1 Eq. (19), results in a three-diagonal matrix equation:

Results of calculation are summarized in Table 1.
For comparison, the same problem was tested by the ¢ Un(i+1) +Bj Un() + i Un(-1) =w

finite-difference method. Poisson's equation (1) was
substituted by the finite-difference analog: which was solved utilizing the Gauss elimination method

[1]. After that, the potential in grid points was calculated
using Fourier series, Eq. (20).

(22)

Uk jrr (141 ) - 20Uk j (1+hr ) + Uk ja (1- Comparison of numerical results shows that spectral
2(-1) he 2(1 1) method gives better accuracy than the finite-difference
. one using relatively small number of harmonics M in
+ Uk (M2 + U (2= - PR 2 (19) radial direction.
h; h €o
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