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Abstract

We present a Plasma Wakefield Acceleration (PWFA) scheme that can in principle provide

an acceleration gradient above 100 GeV/m, based on a reasonable modification of the existing

SLAC beam parameters. We also study a possible up-grade of the Stanford Linear Collider (SLC)

to hundreds of GeV center-of-mass energy using such a PWFA as a booster. The emittance

degradation of the accelerated beams by the plasma wakefield focus is relatively small due to

a uniform transverse distribution of the driving beam and the single stage acceleration.
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Introduction

Since the introduction of the plasma accelerator concepts [1, 2], there has been

substantial progress both experimentally and theoretically that further advances the

schemes [3]. Nevertheless, a macroscopic demonstration of a high gradient plasma

acceleration with reasonable accelerated-beam quality, is still lacking. In the case of

Laser Wakefield Accelerator (LWFA) [1], very high acceleration gradients have been ob-

served. But the challenge has been to overcome the laser Rayleigh divergence in the

plasma so as to extend the distance of acceleration. The propagation of the laser in a

hollow plasma channel appears to be a promising idea [4]. On the other hand, while the

electron-beam driven Plasma Wakefield Accelerator (PWFA) [2] can indeed be staged in

macroscopic scale [5], the expected acceleration gradient tends to be lower than that in

the LWFA scheme unless the driving beam pulse is shaped in either the linear [6, 7] or

the nonlinear [8, 9] regime to optimize the transformer ratio [6, 7].

In this paper we present our study of PWFA parameters based on a reasonable ex-

tension of existing beam conditions at the Stanford Linear Accelerator Center (SLAC).

We invoke the scheme of a multi-stage bunch compression that would both compress

and shape the 50 GeV SLAC beam to tens of micrometers in length. Such high den-

sity shaped beams can then excite plasma wakefields that would provide acceleration

gradients of more than 100 GeV/m. We also study the beam dynamics of the trailing

accelerated beam, the associated beam-beam interaction effects and the luminosity de-

liverable. Specifically a rough design is presented for a high energy linear collider built

upon adding a PWFA “booster” to the Stanford Linear Collider (SLC). We demonstrate

that the collider operation at several hundred GeV center-of-mass energy is possible.

It is interesting to note that such a “Plasma Booster” was actually proposed when the

PWFA concept [10] was first introduced.

Plasma Wakefields

Our main motivation is to find a physically realizable parameter set for a linear

collider application of the PWFA scheme. The fundamental principles have already

been laid down when the concept was originally introduced [2, 10], and studied in
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some detail [11, 12]. For concreteness, we invoke the existing SLAC beam parameters

as our starting point. Several conditions must be satisfied to use the SLAC beam as a

driver. A number of assumptions are made.

First, we assume that the SLAC beams can be “bunch compressed” to a much shorter

length. This is essentially the rotation of the beam in its longitudinal phase space, where

the adiabatically damped relative energy spread, δp/p, is exchanged with the length

of the bunch. We second assume that during bunch rotation one is able to shape the

beam into an asymmetric head-to-tail density distribution for large transformer ratios,

applicable to the linear regime of plasma perturbation, or a uniform distribution from

head to tail for the application to the nonlinear regime. Finally, to minimize transverse

focusing of the accelerated beams, we assume that the driving beam is also transversely

shaped into a uniform distribution. This can in principle be accomplished by applying

proper octupole magnetic fields in the beam line.

The general expressions for the longitudinal and transverse plasma wakefields

are[13]

W‖ = −4πenb
k2
p

∂ζZ(ζ)R(r) , (1)

W⊥ = −4πenb
k2
p

Z(ζ)∂rR(r) , (2)

where

Z(ζ) = kp
∫∞
ζ
dζ′ρ(ζ′) sinkp(ζ′ − ζ) , (3)

and ρ(ζ) is the normalized longitudinal density distribution of the driving bunch. As

we assume a uniform transverse distribution, the function R(r) is

R(r) =



1− kpaK1(kpa)I0(kpr) , r < a ,

kpaI1(kpa)K0(kpr) , r > a .
(4)

Here ζ = z − ct is the beam comoving coordinate, kp =
√

4πrenp is the plasma wave

number, re = e2/mc2 is the classical electron radius, np is the ambient plasma density

and nb is the beam density. Ki’s and Ii’s are the modified Bessel functions.

For kpa� 1 and r/a� 1 we get

W‖ = −4πenb
k2
p

Z′(ζ)
(

1− kpa
√

π
2kpa

e−kpa
)
, (5)

W⊥ = 4πenb
k2
p

Z(ζ)
√

2π
4
k5/2
p a1/2e−kpar . (6)
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We see that the transverse wakefield is exponentially suppressed, whereas the longitu-

dinal wakefield is slightly reduced by the form factor F(kpa) given by

F(kpa) ≡
(

1− kpa
√

π
2kpa

e−kpa
)
≈ 1 . (7)

There is a quarter-wavelength region in the wake with simultaneous acceleration and

focusing, which is the phase suitable for placing the accelerating beam.

Longitudinal Bunch Shaping

The wakefield acceleration gradient is sensitive to the longitudinal bunch shape of

the driving beam. In order to search for the optimal acceleration gradient, we shall

consider three representative cases of longitudinal bunch shaping that ranges from

Case A: a parabola beam; Case B: a “doorstep,” or optimized, beam; and Case C: a “flat-

top” (uniform density) beam in the nonlinear beam-plasma interaction regime. The

first two cases are in the linear regime, where the plasma density is sufficiently higher

than that of the beam. In Case A we intend to study the plasma wakefield generated

by an unshaped, high energy beam, which is typically in Gaussian distribution. Since

mathematically the parabolic density distribution is found to be easier to handle an-

alytically than the Gaussian distribution [12], while the characteristics of the excited

plasma wakefields are essentially the same, we shall invoke the parabolic, instead of

the Gaussian, distribution, for Case A.

The idea is to use the existing SLC beam with compression and appropriate profile

shaping as a driver for the plasma wakefield based accelerator setup in a high density

plasma (or gas). This beam is characterized by an energy of 48 GeV, number of particles

N = 2 × 1010, normalized emittance εn = 3 × 10−5m and σz = 700µm. However, to

produce tens to hundreds of GeV/m field we need to further shorten the bunch. Such

shortening can be achieved by several bunch compression stages utilizing rotation in

the longitudinal phase space of the beam. Assuming that the beam energy injected

from the Damping Ring into the LINAC is 1.2 GeV, one can in principle achieve a total

reduction of the bunch length by a factor of 40 when the beam reaches its final energy

of 48 GeV. With the initial bunch length at σz = 700µm, the final bunch length would
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be σz = 17.5µm. Of course, when such a Gaussian bunch is further shaped, the total

length of the beam will be different from this rms value.

Our goal is to achieve an acceleration gradient of the order of a 100 GeV/m. For this

purpose we choose a high plasma density. The actual plasma densities in the following

three different cases will be determined by different constraints. Secondly, we wish to

maximally reduce the transverse wakefield, i.e., we insist that kpa� 1. Thirdly, we want

to accelerate the particles over a distance of the order of 1m to achieve significant final

energy. When all three constraints are put together, we find it a reasonable compromise

to choose a = 2σr = 20µm, and the betatron wavelength of the beam becomes β =
γσ 2

r /εn ≈ 30 cm. These should allow us to meet the above requirements.

Case A: Parabola (Linear Regime)

We first examine the wakefield generated by an unshaped beam. As we have ex-

plained, it is mathematically simpler to work with a parabolic, instead of a Gaussian,

distribution. In this approach, we take the half-length of the parabola, b, to be the rms

value of the corresponding Gaussian distribution, i.e., b = σz.
The longitudinal beam density profile is given by

ρ(ζ) ≡ nb(ζ)
nb

= nb(1− ζ2/b2) ,−b ≤ ζ ≤ b (8)

where nb is the peak density of the driving beam determined from

N = nb
∫ a

0

∫ b
−b

2π r drdζ(1− ζ2/b2) = 4
3
nbπa2b → nb = 3N

4πa2b
. (9)

In this case the longitudinal wakefield on axis behind the beam is

W‖ = 4πenbF(kpa)
∫ b
−b
dζ′(1− ζ′2/b2) coskp(ζ′ − ζ)

= −16πenb
k2
pb

[coskpb − 1
kpb

sinkpb]F(kpa) coskpζ . (10)

At locations where kpζ = 2nπ , the longitudinal wakefield W‖ reaches maxima. We

define the maximum value of |eW‖| as the acceleration gradient G.

We want to optimize the acceleration gradient behind the driving beam (with fixed

beam parameters) by matching the bunch length with a properly chosen plasma density.

This can be determined by demanding δG/δ(kpb) = 0. In our case, this results in a
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choice kpb ≈ 2. Unfortunately this solution would correspond to too large a beam-

to-plasma density ratio, α = nb/np ≈ 2/3, which clearly violates the assumption of

linear plasma perturbation. As a compromise (but not much), we choose kpb = π so

as to increase the plasma density and reduce α0. For the given b = 17.5µm, we find

np = 9.2×1017cm−3. The density ratio is now reduced to α = 1/4 � 1. With a = 20µm,

we have kpa = 3.6, and thus F(kpa) = 0.93. Then the acceleration gradient on the axis

is

G = 16πe2nb
k2
pb

[coskpb − 1
kpb

sinkpb]F(kpa) ≈ 28GeV/m . (11)

We see that this acceleration gradient, though substantial, falls short of achieving the

100 GeV/m goal.

Case B: “Doorstep” (Linear Regime)

The distribution for a “doorstep" bunch is defined as

nb(ζ) = α0np




1 , 0 < ζ < π
2kp ,

1+ kp(ζ − π
2kp ) , ζ > π

2kp .
(12)

Then the wake potential inside the bunch is

Z− = α0




1− coskpζ , 0 < ζ < π
2kp ,

1+ kp(ζ − π
2kp ) , ζ >

π
2kp .

(13)

To find the wake potential Z+ behind the bunch, we start with the general expression

Z+ = C1 coskpζ + C2 sinkpζ . (14)

Matching the boundary conditions at the end of the bunch ζ = b, Z−(ζ = b) = Z+(ζ =
b) and Z−

′
(ζ = b) = Z+′(ζ = b), we get

C1 = α0

{
− sinkpb + coskpb

[
1+ kpb(1− π

2kpb
)
]}

, (15)

C2 = α0

coskpb

{
1− sin2 kpb + sinkpb coskpb

[
1+ kpb(1− π

2kpb
)
]}

(16)

An interesting special case is when kpb = nπ . Then

C1 = α0

[
1+nπ(1− 1

2n
)
]
, (17)

C2 = α0 . (18)
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Therefore the transformer ratio becomes

R = W
+
‖max

W−
‖max

= 1+nπ
(

1− 1
2n

)
. (19)

The maximum acceleration gradient is

G = α0

[
1+nπ(1− 1

2n
)
]
kpmc2F(kpa) . (20)

Specifically, let us take kpb = 8π . With the total length of the beam assumed to be

b = 2σz = 35µm, this corresponds to a plasma density of np = 7.3 × 1018cm−3. To

ensure self-consistency in the linear approximation of the plasma perturbation, from

Eq.(12) we require that the ratio of the maximum beam density and the end of the bunch

to that of the plasma be much smaller than unity. For definiteness, we set

α = 0.5 = nb(ζ = b)
np

= α0

[
1+ kpb − π

2

]
, (21)

and this fixes the parameter α0 = 0.02. Inserting these values into Eq.(20), we find

G ≈ 180 GeV/m . (22)

Note that this gradient is reasonably smaller than the so-called wavebreaking limit, 270

GeV/m, at the given plasma density.

Case C: “Flat-Top" (Nonlinear Regime)

Now we examine the case of a “flat-top" bunch in the nonlinear regime. By this we

mean that the longitudinal density distribution of the beam is uniform from head to tail.

Such a bunch distribution, though not optimized, can also provide a transformer ratio

larger than 2, if the plasma density is matched to be exactly twice that of the beam[8].

One can also shape the beam in a more sophisticated manner to further optimize R[9],

similar to that in the linear regime[6, 7]. But for the sake of simplicity, we will consider

the uniform distribution only.

Since the density of the uniform beam is nb = N/πa2b ≈ 4.5 × 1017cm−3, the

matched plasma density, i.e., with α = nb/np = 0.5, is np = 2nb ≈ 9 × 1017cm−3,

which gives 2kpb = 6.3 = τf . Using the results in [8], the maximum accelerating gradi-

ent is

G =
√
χ − 1kpmc2F(kpa) , (23)
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where χ is the solution to

τf = √χ
√
χ − 1+ ln [

√
χ − 1+√χ] . (24)

Eq.(24) leads to χ ≈ 5 and G ≈ 166 GeV/m . The transformer ratio in this case is simply

R = √τf ∼ 2.5 . (25)

Comparing Case B and Case C, we note that operating in the nonlinear regime has the

advantage that it achieves the similar level of acceleration gradient without necessarily

invoking a much higher plasma density. The price to pay, however, is that the trans-

former ratio in the nonlinear case is much smaller. This means with R = 2.5, the driving

beam with initial energy of 48 GeV cannot sustain more than L ∼ 0.72m in acceleration

length.

The parameters discussed above are listed in Table I.

Beam Dynamics and Beam-Beam Interaction Issues

Beam Dynamics Issues

The emittance of the trailing (accelerated) bunch degrades due to the strong wake-

field focusing (combined with structure errors) and binary collisions in the background

plasma. To have a reasonable luminosity we need to start with a high quality beam

and to deliver it to the collision point. The trailing bunch needs to be very short for

two reasons - the shortness of the driver (PWFA) wavelength and to avoid big losses

at the interaction point (IP) ([18]). At present it is not clear if a portion of the driver

can be used as a trailing bunch due to the stringent requirements to its quality and

parameters. If we use the “doorstep” scenario with np = 7.2·1018cm−3 plasma density,

it gives λp = 13µ, which makes the useful accelerating period about 3 microns. We can

calculate the accelerated bunch betatron length using (“flat top” driver)

β =
(
γmc2

G sinΨ

√
8

πkpa
ekpa

kp

)1/2

. (26)

Taking the initial beam energy γmc2 = 1 GeV, G ≈ 180 GeV/m we obtain βi ≈
1cm/

√
sinΨ . If σz = 0.3µm then kpσz ≈ 0.15 so we need to take the phase at least
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TABLE I: Various bunch shapes

Cases A: Parabola B: Doorstep C: Flat-Top

Beam Parameters

E [GeV] 48 48 48

N [1010] 2 2 2

εn [10−5 mrad] 3 3 3

σz [µm] 17.5 17.5 17.5

b [µm] 17.5 35 35

σr [µm] 10 10 10

a [µm] 20 20 20

nb [1017 cm−3] 2.4 6.4 4.5

Plasma Parameters

np [1017 cm−3] 9 72 9

α 0.25 0.5 0.5

kp [cm−1] 1800 5000 1800

kpa 3.6 10 3.6

kpb π 8π 2π

G [GeV/m] 28 180 167

R 2 24.5 2.5

β [cm] 32 32 32

as Ψ = 0.6 which gives βi ≈ 1.5cm. It means that even in a single stage design we

need alignment control [14–16] in the submicron range to preserve the emittance of

the accelerated beam (assuming initial normalized emittance of 2 µm, see Table II).

Following [17], we now consider the emittance growth rate from the multiple scat-

tering in the plasma:
dεn
dz

= γβ
2
d
dz

< Θ2 >p , (27)

where
d
dz

< Θ2 >p= π np
(

4r 2
e

γ2

)
ln (

λD
R0
) , (28)

where R0 = 0.7 × 10−13cm is the effective radius of the proton and λD is the Debye
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length (λD = k−1
p
√
kT/mc2). Assuming γ = γi + γ′ z we integrate and obtain

∆εn = 4π np r 2
e

γ′
ln (

λD
R0
)(βf − βi) , (29)

where βf and βi are the final and the initial betatron lengths, respectively. We used

the fact that β ∝ √γ. In our design the acceleration gradient is 180 GeV/m which

corresponds to γ′ ≈ 3.5 · 105 m−1. In [17] the electron temperature is chosen to be 5

eV , in our case it might be much higher but the result is very insensitive to this value.

In particular for kT = 5 eV and np ≈ 7.2 · 1018 cm−3 we obtain:

∆εn [m] ≈ 3.2 · 10−8 (βf − βi) [m] , (30)

which is clearly negligible compared to the initial emittance.

Beam-Beam Interaction Issues

In the doorstep case the linear calculation gives G ≈ 180GeV/m. The required center

of mass energy of 500 GeV can be achieved in a single stage (for each arm) with a length

of about 1 m. The luminosity requirement we impose is Lg = 1033cm−2s−1 which was

considered in [20]. If we are to work with the SLAC driver with repetition rate of 600

Hz, the number of particles in the accelerated bunch needs to be 5 · 109 which would

cause severe beam loading issues. To study the luminosity distribution at the IP we

use K. Yokoya’s QED code “CAIN” [19]. The Fig. 1 shows three cases which differ

by their repetition frequency at IP and the number of particles in the beam but have

the same geometrical luminosity. The corresponding beam parameters: beam power

Pb, particle number N , repetition frequency fc , normalized emittance εn, IP betatron

length β∗x , IP beam transverse size σx, bunch length σz, the beamstrahlung parameter

Υ , and the relative luminosity in the last simulation bin, are listed in Table II. Clearly,

high repetition frequency is necessary to reduce the number of particles required and

to improve the differential luminosity (to achieve a higher peak at the design 500 GeV

center of mass energy). See Table I and Fig. 1. These results indicate the importance

of studying multibunch loading in a single shot created wakefield.
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Limitations and Unresolved Issues

The primary beam is self focused (by its own wakefield), and to avoid the emittance

growth due to the phase space mixing it should be matched to the focusing. However,
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FIG. 1: Differential luminosity at repetition frequency f = 0.6, 6, and 60 kHz, respectively. The

geometrical luminosity Lg was chosen 1033 cm−2s−1

.
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TABLE II: Trailing beam parameters at the IP for 500 GeV, Lg = 1033cm−2s−1 e+e− linear

collider.

Pb(kW) N(109) fc(kHz) εn(µm) β∗x(µm) σx(nm) σz(µm) Υ L(498<Wcm<500GeV)
Lg

250 5 0.6 2 30 11 0.30 393 0.4

790 1.6 6 2 30 11 0.30 124 0.6

2500 0.5 60 2 30 11 0.30 39 0.7

the focusing is different in the head/tail of the bunch, so there is concern associated

with this.

The primary beam experiences various instabilities: transverse two-stream [7, 21],

Weibel [22], electron-hose [23]. These are summarized in [3] and need investigation for

the discussed scenario.

Stability of the trailing bunch also needs to be studied. It has smaller number of

particles but very high density, so the loading issues might be very important.
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