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A generic F-theory compactification containing many D3 branes develops multiple

brane throats. The interaction of observers residing inside different throats involves tun-

neling suppression and, as a result, is very weak. This suggests a new mechanism for

generating small numbers in Nature. One application is to the hierarchy problem: large

supersymmetry breaking near the unification scale inside a shallow throat causes TeV-

scale SUSY-breaking inside the standard-model throat. Another application, inspired by

nuclear-decay, is in designing naturally long-lived particles: a cold dark matter particle

residing near the standard model brane decays to an approximate CFT-state of a longer

throat within a Hubble time. This suggests that most of the mass of the universe today

could consist of CFT-matter and may soften structure formation at sub-galactic scales. The

tunneling calculation demonstrates that the coupling between two throats is dominated

by higher dimensional modes and consequently is much larger than a naive application of

holography might suggest.
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1. Introduction

The enormous differences in scales that appear in Nature present a formidable chal-

lenge for any unified theory of forces. Grand unification addresses this problem by pos-

tulating an energy desert separating the gravitational and the electroweak scale [1]. The

supersymmetric version of this picture [2], the supersymmetric standard model (SSM),

has had a quantitative success: the unification prediction of the value of the weak mixing

angle [2], subsequently confirmed by the LEP and SLC experiments. While this picture

is attractive, it leaves many fundamental questions unanswered. There are 125 unex-

plained parameters, many of them mysteriously small; these include the masses of the

three generations of particles and the cosmological constant. String theory provides a nat-

ural framework for addressing these questions. Many scenarios for string phenomenology

involve localized gauge fields. Perhaps the simplest is the minimal Hořava-Witten theory

[3,4]; other models use “D-brane” defects on which gauge dynamics occurs [5]. A striking

possibility emerging from these ingredients is a new explanation the weakness of gravity

[6]. These ideas are providing new avenues for exploring physics beyond the Standard

Model, and novel mechanisms for explaining small numbers [7,8,9].

Hořava-Witten theory and the perturbative E8 × E8 heterotic string [10] have been

well studied in calculable, weakly-coupled regimes. In this note we will study string phe-

nomenology in a different calculable regime, which can arise when there are many branes

transverse to the compactification manifold M . The tension of the branes curves the space

around them. The backreaction is proportional to the sum of brane tensions, and therefore

to the total number of branes in some region of space. Hence solitary branes have little

effect and their neighborhood is nearly flat. Such “dilute gases” of branes are commonly

studied in e.g. perturbative string orientifold constructions. In other regimes of couplings

where a (super)gravity description is valid, large stacks of branes in the compactification

manifold M significantly alter the metric on M . The regions of space where the branes

reside may be viewed as gravitational funnels, or throats. Examples in this regime arise

in F-theory compactifications on elliptic Calabi-Yau fourfolds [11]. From the 4d point of

view the geometry is “warped” – the scale factor of the 4d metric depends on the distance

down the throat.
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Fig. 1: The Calabi-Yau octopus. Ni is the number of branes in a given region.

One class of such scenarios was suggested by H. Verlinde [11], who noted that a wide

class of F-theory backgrounds have this property. In F-theory on a Calabi-Yau fourfold

X, tadpole cancellation accommodates the introduction of

N =
χ(X)

24
(1.1)

D3 branes transverse to X [12]. N >> 1 is readily achieved for simple choices of X. In

a suitable limit of couplings, the correct F-theory geometry will involve D3-brane throats

glued into the base B of the elliptically fibered fourfold. A generic possibility is that

there are several such throats glued into B; these correspond to different stacks of branes

separated on B. The ensuing geometry of the compactification resembles an “octopus,”

where the legs represent throats arising from brane stacks, as depicted in Fig. 1. The

(super)gravity modes in the throat and the low-energy field theory on the branes are dual

to each other [13]: the degrees of freedom localized at the ends of the throats are dual to

infrared (IR) excitations of the field theory, while the excitations closer to the mouth of

the throat are dual to the ultraviolet (UV) degrees of freedom.
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This geometry suggests a new mechanism for generating small numbers in 4d physics.

The mutual couplings of the IR degrees of freedom residing in different throats are sup-

pressed, as these modes must tunnel through the bulk to communicate. This leads to small

couplings between degrees of freedom localized in different throats.

We make this intuition precise in a 5d toy model of Fig. 1, which appears in Fig.

2. The detailed form of the metric in the throats does not play an important role in our

mechanism. The small numbers do not arise from exponential redshifting associated with

long throats, but rather from the tunneling suppression emerging due to an effective poten-

tial barrier for localized KK modes. Thus the effects we study would persist with generic

warped metrics (including those with only power-law warping). However for simplicity

and to facilitate a holographic interpretation we will take AdS metrics in the throats of

our toy model1. We will join these brane throats by a “UV brane” playing the role of

the bulk of M , choosing the scale of physics at the UV brane to be 1/L for simplicity.

In general one could choose this scale MUV to be unrelated to either L or M4, reflecting

the freedom to vary the geometrical moduli near the stacks of branes in the microscopic

Calabi-Yau picture. The AdS throats terminate at infrared branes on either side. Such

“end-of-the-world” branes mimic a mass gap or be IR-freedom of a generic low energy the-

ory below some scale ΛIR. We can use the scale-radius duality to cut off the gravitational

background at a radius dual to ΛIR.

We then show explicitly that the KK modes in adjacent throats must tunnel to com-

municate between different throats, and that this effect generates small numbers.

To gain the insight in the physics of this mechanism one should understand it from the

point of view of an effective 4d theory. To deduce it, one recalls that the string dynamics

far down each throat is dual to a strongly coupled field theory. For AdS warping, a natural

guess for any single throat is that the low energy effective theory is a conformal field theory

coupled to 4d gravity, with a Lagrangian of the form

L = LCFT +
∑

n>0

(
1

M4
)nOn ; (1.2)

1 Another option, which would not change the generic physics of the results, would be to use

the multi-center D3-brane solution and generalize the computations of Klebanov et al [14,15] to

this case of tunneling between threebrane throats. An intermediate option would be to introduce

a flat space between the AdS slices in Figure 2, as in [16]. Here we will stick with the simplest

case depicted in Figure 2.
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 z = l2

"UV brane"

z = -l 1 z = 0

Potential

Left "IR brane" Right "IR brane"

Fig. 2: A cartoon of two throats. The five-dimensional wave equation, for fixed

four-momentum, reduces to a one-dimensional Schrödinger equation with a poten-

tial barrier as shown. When the throat geometry is anti-de Sitter, the potential is

simply the warp factor in conformal coordinates.

here M4 is the 4d Planck scale and the On are irrelevant operators of dimension 4 + n. In

the two throat case, one might naively expect the effective theory to be two conformal field

theories coupled to each other and to gravity, with an effective Lagrangian of the form

Ltot = LCFT1(φ) + LCFT2(ψ) +
∑

n>0

(
1

M4
)nOn(φ,ψ) ; (1.3)

here φ and ψ represent the fields in the two CFTs.

However, in the higher-dimensional gravitational theory the communication between

the throats arises from tunneling of the KK modes, and they obey an effective Schrödinger

equation which only depends only on the background geometry in the two throats, and not

on the 4d Planck scale. So in (1.2),(1.3), M4 should be replaced by a scale MUV arising

from the background geometry. There is a large regime where the geometrical moduli of

the compactification are chosen so that MUV � M4, so communication between distinct

throats can be much larger than is suggested by (1.3), as is clear from the Calabi-Yau

picture of Figure 1. To see this, one can take a double scaling limit where the volume of

B diverges, while the throats are kept at a fixed relative distance. While M4 → ∞, the

communication between the throats persists. This shows that in the 4d effective theory,

M4 arises due to contributions from both the bulk of B and the throats, as

M2
4 = M3

5L+M2
4,0 . (1.4)

Thus we can take M4,0 to be large while fixing M5 and L.

Further we find that CFT modes generically mix with 10d or 5d gravity modes. In

the strict near-horizon limit of [13], such modes are non-normalizable and non-fluctuating
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due to the infinite volume of AdS space [17,18]. In the finite volume setup of Fig. 1,

they become normalizable and fluctuating. So the operators On are not just made up

of operators from the original CFT. We will find that this significantly enhances some

phenomenologically interesting processes. This highlights new aspects of the relationship

between the physics of RS scenarios and the AdS/CFT correspondence.

The organization of this paper is as follows. In section 2, we will directly compute the

amplitude for an excitation in the left throat to tunnel into the right throat. In section 3, we

discuss a potential application of this process in designing candidates for the astrophysical

dark matter. In section 4, we discuss the spectrum of 4d excitations in our system and in a

closely related system with supersymmetry broken in one of the two throats. We begin an

exploration of phenomenological aspects of this “tunneling-mediation” of supersymmetry

breaking. In section 5 we present a discussion of the phenomenological aspects of tunneling

mediation. We discuss the holographic 4d field theory interpretation of our 5d gravity

calculations in section 6. A companion paper, which summarizes the essential physics of

this paper but with detailed calculations omitted, appears in [19].

2. Tunneling and Glueball Decay

Our generic compactification (Figs 1, 2) has a four-dimensional description involving

multiple coupled gauge theory sectors. The gauge-invariant excitations in each gauge

theory sector will mix to some extent as long as the interactions respect the symmetries

of the problem. By the AdS/CFT correspondence, the gauge theory degrees of freedom in

the different throats are all comprised of the same bulk degrees of freedom of M theory. At

the level of the low-energy gravity modes, this rephrases the question about the mixing of

the two gauge theory sectors into a relatively simple double-well potential problem which

we now analyze in detail.

For our explicit calculations we will work with the schematic double well background

of Figure 2. The metric is given by

ds2 =
L2

(|z|+ L)2
(ηµνdx

µdxν + dz2), −l1 ≤ z ≤ l2 (2.1)

in conformally flat coordinates. The proper distances between the UV branes and left and

right branes respectively are R1,2 where lk = LeRk/L. We will assume l1 ≥ l2 throughout

the remainder. It will be useful to consider the limit where the UV brane is removed, and

5



4d gravity is decoupled. This is readily obtained if we replace L in the denominator of

the warp factor in (2.1) by ζL and take the limit of the dimensionless parameter ζ → 0,

removing the cutoff in the AdS space.

The analysis of the KK spectrum is a straightforward generalization of that in [8].

Decompose the transverse traceless mode of the 5d graviton as:

hµν(x, z) =

√
L

|z|+ L
eip·xψµν(z) ,

and drop the µν indices. The equation of motion for ψ is:

ψ′′ + (m2 − 15

4(|z|+ L)2
)ψ = 0, −l1 ≤ z ≤ l2 , (2.2)

where m2 = p2 is the mass of the 4D KK mode. M4,5 do not appear in this effective

Schrödinger equation. The solutions are given in terms of Bessel and Neumann functions

in each AdS throat:

ψ(z) =
√
m(|z|+ L)

(
AJ2[m(|z|+ L)] +BN2[m(|z|+ L)]

)
, (2.3)

where A and B are constants.

To compute the tunneling probability through the barrier to the right side, we should

impose the proper tunneling boundary conditions. This means that for z > 0 the wavefunc-

tion ψ will be purely outgoing, propagating toward larger z, asymptotically approaching

eiz/L for large z. Since J2(x) and N2(x) behave as
√

2
πx

cos(x− 5
4
π) and

√
2
πx

sin(x− 5
4
π)

respectively for large argument x, the purely outgoing wave to the right must be the Hankel

function H+
2 (x) = J2(x) + iN2(x). On the left, we will have both incoming and reflected

waves, and so the wavefunction is a linear combination of both Hankel functions H±2 (x).

The solution takes the form:

ψ1 =
√
m(|z|+ L)

(
AH+

2 (m(|z|+ L)) +BH−2 (m(|z| +L))

)
, z < 0

ψ2 = C
√
m(|z|+ L)H+

2 (m(|z| +L)), z > 0

(2.4)

At the UV brane we must impose: continuity of the wavefunction,

ψ1(0) = ψ2(0) ; (2.5)
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and a matching condition, which comes from perturbing the background geometry junction

condition on the UV brane:

ψ′2(0)− ψ′1(0) = − 3

L
ψ(0). (2.6)

These imply:

B =
H+

2 (mL)

H−2 (mL)
(C −A)

C =
H−1 (mL)H+

2 (mL) −H+
1 (mL)H−2 (mL)

H+
1 (mL)H−2 (mL) +H−1 (mL)H+

2 (mL)
A .

(2.7)

The transition probability is

P =
|~jout|
|~jin|

(2.8)

where ~ji are the currents obtained from the wavefunctions (2.4), (2.7). The z-component

of the current jz = −i(ψ∗ψ′ −ψψ∗′ ) is constant; we can evaluate it at large |z|, where the

Hankel functions turn into Fourier modes. The tunneling probability is:

P =

∣∣∣∣
H−1 (mL)H+

2 (mL)−H+
1 (mL)H−2 (mL)

2H+
1 (mL)H+

2 (mL)

∣∣∣∣
2

(2.9)

When the left throat is terminated by an IR brane at z = −l1, there is an additional

boundary condition,

ψ′1 =
3

2(l1 + L)
ψ1(l1) .

Therefore the spectrum of the left-localized states has a gap; the mass m of the tunneling

glueball mode is of order m ∼ n/l1 ∼ n
Le
−R1/L, where n is an integer. Since mL ∼

e−R1/L << 1, we can expand the Hankel functions appearing in our result (2.9) for small

argument and find that:

P ∼ m4L4 ∼ n4e−4R1/L . (2.10)

Since the incoming flux goes like 1/l1 ∼m/n, the tunneling rate is given by

Γ ∼ π2

16n
L4m5 ∼ π2n4

16

1

L
e−5R1/L (2.11)

In four-dimensional terms, this is the decay rate of a glueball from the left gauge theory

sector into glueballs from the right gauge theory sector. This is important for our discussion

of dark matter in §3.
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3. Dark Matter

It is fascinating to contemplate the possibility that the dark matter which constitutes

about 90 % of the mass of the universe is described by a CFT, and that we are immersed

inside an ocean of scale-free matter.2 In its simplest form this idea is in conflict with

observation: CFT matter would have a relativistic equation of state, acting as hot dark

matter (HDM); but the large scale structure of the universe suggests that non-relativistic,

cold dark matter (CDM) dominates the dynamics of the universe since about t ∼ 104 years,

when the temperature of the visible matter was ∼ 10eV . A way to bypass this difficulty

is to postulate that the universe has, until recently, been dominated by an unstable CDM

particle which decays into CFT matter, with a lifetime of order of the age of the universe.

This requires a coincidence: the CDM particle must have the right abundance to be a good

DM candidate, as well as the right couplings to predominantly decay into CFT matter with

a lifetime about as long as the age of the universe. How likely is this coincidence? To answer

this we need a concrete model of the CDM, the CFT matter, and their couplings.

A simple model is suggested by the setup of the previous section: Consider the left

brane in figure 2 to be at some finite scale, perhaps not far from the electroweak scale ∼
TeV , and eliminate the right brane by moving it off to infinity. Imagine that the primordial

CDM particles are the lowest-energy, left-localized modes of some five-dimensional field –

the gravitons or some other bulk particles – located next to the left IR brane. These modes

decay by tunneling into the CFT matter residing in the right AdS throat. This setup is

sufficiently concrete that it allows a detailed calculation of the abundance and the decay

properties of the CDM. The lifetime for the decay of CDM into CFT states is given by

Eq. (2.11) and depends on the mass of the particle and the AdS radius.

We can use further data to constrain our model. Several observations suggest that

the universe has been dominated, at least until recently, by CDM at the critical density of

∼ 10−29gr/cm3. Under certain conditions, it is possible to infer the necessary microscopic

properties that can lead to this abundance. For example, particles that are in thermal and

chemical equilibrium –with zero chemical potential– when the universe is at a temperature

of order of their mass have an abundance determined by the non-equilibrium dynamics of

the expanding universe. Their leftover abundance today can be calculated; it is the result

of their failure to totally annihilate with their antiparticles because of the expansion of

2 This possibility has been entertained independently by many physicists, including T. Banks,

M. Dine, and J. Maldacena.
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the universe. The energy density, for particles that are non-relativistic when they stop

annihilating, is:

ρ

ρc
' 1

103 < σv >

1

MPl × 2.7K
' 1

103 < σv >

1

TeV 2
, (3.1)

where we have used the fact that TeV is the geometric mean between the Planck scale

and the millimeter, TeV '
√
MPl × 2.7K. Here ρ is the energy density of these particles

at temperature T (which we have set to the present day temperature), ρc is the critical

energy density, and σ is the annihilation cross-section of dark matter:

σ ' α2

m2
N . (3.2)

Here α = g2/4π is the coupling which dominates annihilation, m is the particle’s mass, so

that their average speed is v ∼ 10−3c, and N ∼ 100 is the number of SM particles [20].

We see that a weakly interacting particle, such as the LSP, must weigh about 100 GeV to

critically close the universe. However, a strongly interacting particle whose annihilation

cross section saturates unitarity will critically close the universe if its mass is about TeV .

Introduce a bulk particle called the “bulky”, different than the graviton; let it carry

a “Bulk Parity” or B-parity symmetry, under which it changes sign. Decomposing the 5-d

bulky into 4-d KK modes, we find that the lightest particle is the massless bulky living

deep inside the right throat. On the left we have a quasi-stable bulky which decays to

right-bulkies with a lifetime of order of (2.11). Identify the left-brane with the standard

model brane on which there are ∼ 100 particles. B-parity prevents the lightest left-bulky

from rapidly decaying into SM particles. On the other hand, pairs of left-bulkies annihilate

predominantly into SM particles which reside close by in the fifth dimension. The couplings

responsible for bulky annihilation are:

Sint =

∫
d4x
√
g4(x, zb)

(
g2

5 Φ2
b(x) Φ2

B(x, zb) + g5 Φb(x) λb(x) λB(x, zb)
)
, (3.3)

where Φb, λb are brane scalars and fermions respectively; ΦB, λB are bulk scalars and

fermions at the brane; and zb is the location of the left IR brane in the coordinates of

(2.1). In deriving the effective 4D interactions, we normalize the fields so that they have

canonical kinetic terms in the 4D metric:

φ4D i = adiΦi . (3.4)
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Here a = L/(|z| + L) is the scale factor in conformally flat coordinates; di is the mass

dimension of φi; and Φ can be a bulk or brane field. Next we perform the mode expansion

for the bulk fields,

φB(x, z) =
∑

m

φBm(x)Ψm(z)

λB(x, z) =
∑

m

λBm(x)Ψm(z)
. (3.5)

Ψm are solutions of the Schrödinger equation

Ψ′′m + (m2 − V (z))Ψm = 0 , (3.6)

with the potential V determined by the spin and bulk couplings of φB. As a function of

z, the bulk wavefunctions behave as simple waves in a box. They depend explicitly on the

locations of the IR branes in the conformally flat coordinates; and only implicitly on the

AdS radius.

Next we expand the action (3.3) in terms of the 4D modes. In addition to the renor-

malizations above, we must also take into account the overlap between the bulk modes

and the brane, ΨB(yb) in (3.3). This can be calculated by computing the normalization

for the bulk modes which reside between the left IR and the UV brane. Wavefunctions for

light, left-localized states are linear combinations of Bessel functions:

Ψm = N
√
m(z + L){Jα[m(z +L)] + (mL)αNα[m(z + L)]} .

Far from the UV brane they asymptote to trigonometric functions. The normalization

condition
∫
dz|Ψm|2 = 1 implies that N = 1/

√
l, where l is the conformal distance between

the IR and UV branes. If we take the SM particles to be localized on the left IR brane,

the bulk wavefunction is: Ψm(yb) ∼ 1/
√
l. The 4D couplings can be determined by the

equation:

g2
4 φ

2
b φ

2
Bm = a4(zb) g

2
5 Φ2

b Φ2
Bm(zb) . (3.7)

Since the warp factor on the left IR brane is a(0) ' L/l,

Φb =
1

a(0)
φb =

l

L
φb

ΦBm =
Ψm(0)

a3/2(0)
φBm '

l

L3/2
φBm .

(3.8)

If g5 ' 1/
√
M5, then:

g4 '
1√

M5L .
(3.9)
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The effective 4D interactions are:

Lint =
∑

m

(
g2

4 φ
2
b(x) φ2

Bm(x) + g4 φb(x) λb(x) λBm(x)
)

(3.10)

in canonically normalized field variables.

The annihilation cross section of the bulkies is:

σ ' N
( g2

4

4π

)2 1

m2
' N

16π2(M5L)2m2
. (3.11)

Using (3.1), and the virial velocity of DM particles v ' 10−3c, the relic density of the

bulkies is therefore
ρ

ρc
' 16π2 × 10−2(M5L)2 m2

TeV 2
. (3.12)

From this we see that there is a range of parameters for which left bulkies near the elec-

troweak scale can provide the required dark matter density. For example, if LM5 ∼ 10

and m ∼ 100GeV , then the left bulkies close the universe.

Now, using Eq. (1.4) and assuming for simplicity that the Calabi-Yau volume contri-

bution to M2
4 is comparable to the throats, we find that the value of the AdS radius that

leads to a lifetime of the order of the age of the universe is L−1 ∼ 1014GeV . We should then

take M5 ∼ 10/L ∼ 1015GeV . Finally, assuming down the AdS throat that the extra five

dimensions are an Einstein manifold of volume L5, M10 ∼ (M3
5 /L

5)1/8 ∼ 2.3× 1014GeV .

These rough numbers are within a few orders of magnitude of those expected from stan-

dard heterotic string model building, and are close to the scale of coupling unification in

the MSSM. This rough coincidence suggests that cold dark matter may be decaying into

hot CFT dark matter in our epoch; the hot DM then escapes our galaxy. Such a conversion

may have observational implications: it can lead to a softening of the dark matter density

profile within our galactic halo by spreading it into extragalactic space. (This is the result,

for example, of simulations of decaying dark matter performed by Cen [21]).

What about the more economical possibility that the CDM particle is the graviton?

In contrast to the bulky, the graviton is not protected by B-parity against decay into SM

particles. These decays would be much faster than the slow tunneling into right-gravitons.

One way to avoid this is to place the SM sector on the Planck brane in the middle. To see

this we consider the 4D effective action for massive gravitons coupled to Standard Model

fields, in the linearized approximation. As in Sec. 2, write the graviton fluctuations as:
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gµν → gµν + [L/(|z| + L)]3/2Ψmγµν , where γµν is the transverse, traceless 4D tensor and

Ψm is determined by (3.6). The action for γ is:

Seffective =
∑

m

{∫
d4x
(
γµνK

µν αβ(∂,m)γαβ
)
−
∫
d4x

Ψm(0)

M
3/2
5

γµνT
µν
SM

}
(3.13)

where Kµν αβ(∂,m) is the inverse propagator for massive 4D gravitons, T µν is the stress-

energy tensor for SM fields and we have again normalized the fields to have canonical

kinetic terms on the UV brane.

The KK graviton wavefunctions are described by Bessel functions as explained above,

with index α = 2. Far from the UV brane they are approximated by ordinary trigonometric

functions, and hence as before are properly normalized by ∼ 1/
√
l. On the other hand,

near the UV brane these wave functions are dominated by the Neumann functions, of order

Ψ(0) ∼
√
m(z + L)m2L2N2[m(z +L)]/

√
l ∼

√
mL/l . (3.14)

This provides additional suppressions for the couplings. Because a(0) = 1 on the UV

brane, the coupling of the low-lying left-localized massive 5D gravitons to matter on the

UV brane is g ∼
√

(mL/l)/M
3/2
5 γµνT

µν . Hence the decay rate into SM particles is given

by

ΓCDM→SM ∼ Ng2m3 ∼ m4L4

l(M5L)3
N =

ΓCDM→CFT
(M5L)3

N . (3.15)

Since the rank of the gauge group in the dual CFT is N 2 = (M5L)3, the branching ratio

is:
ΓCDM→SM
ΓCDM→CFT

=
N

N 2
. (3.16)

Using the numbers above, M5L ∼ 10 implies N ∼ 1000, and since (MS)SM has on the

order of a 100 flavors, we find ΓCDM→SM/ΓCDM→CFT ∼ 0.1. Hence when SM is localized

on the UV brane, the main decay mode of CDM is into CFT hot dark matter, simply

because of the universality of their couplings via the stress-energy tensors and the large

number of degrees of freedom in the CFT.

However, since there are no particles on the left-brane, the left-graviton has a small

annihilation cross-section into the now distant SM particles or the right-gravitons. To

determine this, we need the graviton-matter couplings which are quadratic in the graviton

field. It is clear that in terms of the graviton field γµν defined previously, these are

Sint =
∑

m

{∫
d4x
√
g4

Ψ2
m(0)

M3
5

(
O(1)γλµγ

λ
νT

µν
SM +O(1)γµνγ

µνTSM

)}
(3.17)
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where Tµν and T are the brane-localized SM stress-energy tensor and its trace. Since

Ψm(0) ∼
√
mL/l, the quadratic graviton coupling is

g ∼ mL

lM3
5

(3.18)

and because it has dimension −2, the annihilation cross section for the process γγ → SM

is

σ ∼ g2m2 ∼ m4

l2M6
5

L2 (3.19)

For the lightest KK gravitons, m ∼ 1/l and hence σ ∼ (m/M5)6L2. This cross section

is so small that when the gravitons are relativistic their annihilation ceases, so that their

“freezeout” abundance is comparable to that of photons. This means that they are not

cold but hot dark matter which is disfavored by the observed structure formation at small

scales. After freezeout the gravitons are decoupled from the rest of the particles whereas

the photons continue to get “heated-up” at every threshold and, as a result, the photon

abundance today would be one to two orders of magnitude larger than that of gravitons.

Therefore in order that left-gravitons close the universe today, they must weigh about

10eV . So the conformal distance between the left IR brane and the UV brane is l ∼
(10eV )−1. Furthermore, in order that its lifetime be the Hubble time the AdS radius must

be L ∼ GeV −1, and so M5 ∼ 1013GeV .

An alternative possibility would be to postulate a time dependence in the distance

of the left brane from the UV brane which allows for the annihilation cross section of the

gravitons to be large at some early epoch. This, or any other mechanism enhancing the

early graviton annihilation cross section could allow for heavy CDM gravitons. However,

this amounts in practice to giving up calculability and simply postulating the existence of

a mechanism giving rise to the correct CDM abundance for ∼ TeV gravitons.

Cosmological models with standard cold dark matter consisting of weakly interacting

massive particles (WIMPS) successfully account for the large scale structure of the universe

at extragalactic scales. However, there have been suggestions of a number of problems at

subgalactic scales, associated with an apparent excess of small scale structure. Simulations

predict cuspy halo density profile at subgalactic scales which give rise to galaxy and cluster

cores that appear to be overly dense. They also predict a large number of subhalos which

are disfavored by the scarcity of satellite galaxies in clusters. There have been several

proposals to account for these discrepancies including collisional dark matter [22], fluid
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DM [23], decaying DM [21] and so on. The common theme is the presence of a mechanism

that spreads the localized CDM energy into a larger region of space.

Our proposal is similar to these ideas and its implications for structure formation are

close to the scenario of [21] where the CDM particle decays to light, invisible particles –

neutrinos, for example – which escape our galaxy. There it was shown by detailed computer

simulations that if a significant fraction (e.g., one-half) of the CDM decays into neutrinos,

then at least some of the problems with excess small-scale structure are avoided. The

only difference in our case is that the decay product is CFT-matter instead of neutrinos.

A potential difficulty of this scenario is that it predicts that younger galaxies should be

heavier by an amount which may be too large 3.

A variation of this scenario is to add a right IR brane. If the characteristic length

scale of this brane is larger than a galactic halo ∼ Mpc the previous discussion is not

significantly altered: we are again dealing with an approximate CFT. If the scale of the

right brane is less than a galactic halo then the IR dynamics of confinement sets in before

the right localized gravitons escape our halo and may prevent them from leaving it. The

detailed computation of sub-galactic structure formation is expected to be involved in this

case. After all, even for the simple dissipationless cold dark matter structure computation

gave surprising results, such as the excess subgalactic structure we are attempting to undo.

Nevertheless, it is clear that the possibility of confining the right-gluons within the galaxy

will eliminate the problem of heavier young galaxies mentioned earlier. Still, depending on

the scale of confinement, the decaying CDM model suggests that faraway galaxies should

have denser and more compact cores because they are younger.

4. Spectrum and Tunneling-Mediated Supersymmetry Breaking

Low-energy SUSY is one of the most attractive scenarios for physics beyond the Stan-

dard Model, because it stabilizes scalar masses at the SUSY breaking scale [2]. We must

still explain the origin of the low SUSY breaking scale and the 125 physical parameters

in the MSSM [24]. The standard lore is to postulate that supersymmetry is broken in a

hidden sector, and that the breaking communicated to the visible sector via some mes-

senger fields. There is a variety of SUSY breaking mediation mechanisms such as gravity

[25,26,27], gauge [28,29], anomaly [30], gaugino [31] mediation, in hidden sector scenarios.

3 We thank Paul Steinhardt for pointing this out.
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In brane world models, supersymmetry can be broken on a brane located “elsewhere”

in the extra dimensions [3][32]. The warped compactifications provide a new calculable

regime for this kind of idea. Specifically tunneling effects between brane throats provide a

new mechanism for generating a small SUSY breaking scale. Here we consider the following

scenario. We take both IR branes to be close to the UV brane. SUSY is broken on the

left IR brane via soft mass-like terms for bulk modes. This induces SUSY breaking mass

splittings on the right IR brane, where the SSM resides. A hierarchy is generated because

SUSY breaking at a high scale on the left IR brane induces small SUSY breaking mass

splittings in the SSM, due to tunnelling supression. We choose the distance between the

right IR brane and the UV brane, as well as the bulk parameters M5 and L, to be near

the GUT scale MGUT ∼ 1016GeV . This ensures that the cutoff on the right SSM brane is

MGUT ; consequently supersymmetric gauge coupling unification [2,33] can be preserved.

We find that there is a regime where the 5D tunneling effects could be the dominant

channel for transmitting SUSY breaking to the visible sector.

There may be different sources of SUSY breaking in the distant throat. The simplest

way to break supersymmetry is by considering a bulk hypermultiplet with a massless scalar

φ, and breaking supersymmetry explicitly with a mass-like term for φ. We will consider

this example first, and later will consider a more realistic but involved case when SUSY

is broken by Majorana-like mass terms for bulk fermions, which is necessary to generate

gaugino masses.

In order to separate the effects of hierarchy generation by warp factor scaling as in [8]

from the effects of the tunneling, we consider two cases:

1) Direct SUSY breaking: We live on the left IR brane at z = −l1, and SUSY is broken in

the left throat. The effects of the right throat on SUSY breaking are negligible. This case

provides a contrast for the next case, which is our main focus.

2) Tunneling mediation: In the two-throat geometry of Figure 2, supersymmetry is broken

in the left throat, and our world is right IR brane at z = l2.

We then compute the mass splittings these effects induce on particles localized on the

relevant branes: the left IR brane for case 1), and the right IR brane for case 2).

We discuss two (qualitatively different) types of supersymmetry breaking:

Type A) SUSY is broken everywhere in the left throat, for example by taking a IIB string

theory background of the form AdS5×X, where X is an Einstein manifold or deformation

thereof which breaks supersymmetry (simple examples, from orbifolds or RG flows starting

from AdS5×S5, appear in [34]). We model this with a step function mass squared for bulk

15



particles m2
0+q̄2 for z < 0 and m2

0 for z > 0, where only the q̄2 piece breaks supersymmetry

(i.e. it is zero for the superpartner.)

Type B) Supersymmetry-breaking is localized on the left IR brane. In the AdS/CFT

correspondence, this corresponds to a case where the gauge theory dual to closed strings

in the left throat dynamically breaks supersymmetry, and so is supersymmetric down to a

low scale. We model this with a localized, δ-function mass on the left brane.

In §4.1 we consider the spectra of bulk modes in the presence of the SUSY breaking

terms of types A) and B). We also discuss the decomposition into modes localized in the left

and right throat, and delineate the approximations made in the process. In §4.2 we discuss

type A) SUSY breaking in detail and determine the couplings of the left and right localized

bulk modes to the right IR brane. In §4.3, we redo this for type B) SUSY breaking. In

§4.4 we calculate the splittings of superpartners on the right IR brane. We also find the

splittings on the left IR brane in the various cases, to compare type 1) and type 2) SUSY

breaking.

These calculations illustrate how SM matter fields obtain their SUSY breaking masses.

To understand gaugino masses, we must break R-symmetry, and we give an example in §4.5.

We discuss the parameter values of the 5d model which would lead to phenomenologically

interesting and viable SUSY breaking in §5.

4.1. Spectra of Bulk Modes with Broken SUSY

We study a scalar field φ with supersymmetric bulk mass m0 propagating in the

background metric (2.1). The IR branes function as orbifold planes for the purposes of

defining boundary conditions for bulk fields, as in [3,8]. We will assume thatl1 > l2 both

for model building purposes and in order to use nondegenerate perturbation theory for

determining the spectra of bulk modes. If we had taken l1 = l2 instead, the low-lying modes

would have had nearly degenerate states, even or odd under z → −z. However l1 > l2

automatically selects the left- and the right-localized states as the natural basis of bulk

modes. We can then immediately determine the mass splitting for all bulk states, avoiding

the complications arising from the near-degeneracy of symmetric and antisymmetric modes

when l1 = l2.

With SUSY breaking mass terms M2
0 = m2

0 + q̄2θ(−(z + l1)) and 2q (where q̄ param-

eterizes the type A) breaking and 2q the type B) breaking), the scalar equation is

1√
−G∂a(

√
−GGab∂b)φ =

(
M2

0 + 2q

√
G4

G
δ(z + l1)

)
φ , (4.1)
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where G is the 5D metric, G4 is the induced 4D metric and the indices a, b run over all

5 dimensions. Making the KK ansatz appropriate for modes of fixed 4d mass m (which

satisfy the 4D Klein-Gordon equation ∂2
4φ = m2φ), and defining

ψ = (
L

|z|+ L
)3/2φ , (4.2)

one finds that ψ satisfies Bessel’s equation

ψ′′ +

(
m2 − 15 + 4M2

0L
2

4(|z|+ L)2
− 2q

L

l1 + L
δ(z + l1)

)
ψ = 0 , (4.3)

where we take the supersymmetric brane-localized terms to vanish, since they do not alter

the conclusions qualitatively. Using the new variable

w = m(|z|+ L) (4.4)

we can rewrite the mode equation (4.3) in the bulk as

d2ψ

dw2
+

(
1− 15 + 4M2

0L
2

4w2

)
ψ = 0 (4.5)

The solutions are

ψ(w) = ψL(w) =
√
w (aLJνL(w) + bLJ−νL(w)) , z < 0 (4.6)

ψ(w) = ψR(w) =
√
w (aRJνR(w) + bRJ−νR(w)) , z > 0 (4.7)

where Jα are the Bessel functions of index α, and where

ν =
√

4 +M2
0L

2 (4.8)

Note that the indices of the Bessel functions differ in the two throats, due to the step

function mass. We have taken νL,R to be noninteger numbers to simplify the calculations;

otherwise J−α should be replaced by Neumann functions Nα. This assumption will not

affect our final result.

The wavefunctions satisfy the boundary conditions

ψ′(−l1) = q
L

l1 + L
ψ(−l1), left IR brane

ψ(0+) = ψ(0−), ψ′(0+) = ψ′(0−), UV brane

ψ′(l2) = 0, right IR brane

(4.9)
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The first equation comes from the δ-function SUSY breaking mass term on the left IR

brane. In the absence of this term, the wavefunction would satisfy Neumann boundary

conditions on the left IR brane, as it does on the supersymmetric IR brane on the right.

In general, the boundary conditions corresponding to the supersymmetric limit may be

different, but that does not change our qualitative conclusions.

The solutions depend on five integration parameters aL,R, bL,R,m. Removing the

overall scale of the wavefunction, and imposing the four boundary conditions at z = 0

and z1 = −l1, z2 = l2 (4.9) , we find a discrete tower of solutions for m. We now discuss

separately the cases when supersymmetry is broken in the whole left throat and when it

is broken only on the left IR brane.

4.2. SUSY Breaking in the Left Throat

Let us first set q̄ 6= 0, q = 0. The superpartner has mass m0, so SUSY is unbroken

in the right throat. We compute the mass splittings in the 4d Kaluza-Klein tower and the

effective 4d couplings to the fields on the IR branes.

For the case q̄ << m0,

νR = ν =
√

4 +m2
0L

2

νL =
√

4 +M2
0L

2 ∼ ν +
q̄2L2

2ν

. (4.10)

This approximation is very good because of the quadratic dependence of νL on q̄.

Substituting the solutions (4.6), (4.7) into the eqs. (4.9) gives

bR = αaR + βaL bL = β̄aR + ᾱaL

bR = γaR bL = γ̄aL
(4.11)
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where the coefficients are

α =

JνR−1(mL)−(νR−1/2)JνR(mL)/mL

J−νL+1(mL)+(νL−1/2)J−νL(mL)/mL
− JνR (mL)

J−νL(mL)

J−νR+1(mL)+(νR−1/2)J−νR(mL)/mL

J−νL+1(mL)+(νL−1/2)J−νL(mL)/mL +
J−νR(mL)

J−νL(mL)

β =

JνL−1(mL)−(νL−1/2)JνL (mL)/mL

J−νL+1(mL)+(νL−1/2)J−νL (mL)/mL
+

JνL (mL)

J−νL(mL)

J−νR+1(mL)+(νR−1/2)J−νR (mL)/mL

J−νL+1(mL)+(νL−1/2)J−νL(mL)/mL +
J−νR (mL)

J−νL (mL)

ᾱ =

JνL−1(mL)−(νL−1/2)JνL(mL)/mL

J−νR+1(mL)+(νR−1/2)J−νR(mL)/mL −
JνL (mL)

J−νR(mL)

J−νL+1(mL)+(νL−1/2)J−νL(mL)/mL

J−νR+1(mL)+(νR−1/2)J−νR(mL)/mL +
J−νL(mL)

J−νR(mL)

β̄ =

JνR−1(mL)−(νR−1/2)JνR (mL)/mL

J−νR+1(mL)+(νR−1/2)J−νR (mL)/mL +
JνR(mL)

J−νR (mL)

J−νL+1(mL)+(νL−1/2)J−νL(mL)/mL

J−νR+1(mL)+(νR−1/2)J−νR (mL)/mL +
J−νL (mL)

J−νR (mL)

γ =
JνR−1(m(l2 + L)) − (νR − 1/2)JνR(m(l2 + L))/m(l2 + L)

J−νR+1(m(l2 + L)) + (νR − 1/2)J−νR(m(l2 + L))/m(l2 +L)

γ̄ =
JνL−1(m(l1 + L)) − (νL − 1/2)JνL(m(l1 + L))/m(l1 + L)

J−νL+1(m(l1 + L)) + (νL − 1/2)J−νL(m(l1 + L))/m(l1 + L)
.

(4.12)

Eqs. (4.11) are four homogenous equations in four unknowns; for a solution to exist the

coefficients (4.12) must satisfy

(γ − α)(γ̄ − ᾱ)− ββ̄ = 0 . (4.13)

Combined with Eq. (4.12), the roots determine the mass eigenvalues in the spectrum.

The light bulk states which contribute to SUSY breaking satisfy mL << 1,

mlk >> 1, k = 1, 2. Therefore, at z = 0 we can approximate Bessel functions as

Jν(x) ' (x/2)ν/Γ(ν + 1). Eq. (4.12) becomes:

α = O(1)(mL)2νR β = O(1)(mL)νL+νR

ᾱ = O(1)(mL)2νL β̄ = O(1)(mL)νL+νR .
(4.14)

where O(1) denotes unimportant dimensionless parameters of order unity. The eigenvalue

equation (4.13) simplifies to

γγ̄ −O(1)(mL)2νLγ −O(1)(mL)2νR γ̄ −O(1)(mL)2νL+2νR = 0 (4.15)

The information about SUSY breaking is fully encoded in the parameter νL, as is evident

from (4.10).
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The spectrum for low 4d masses contains states roughly localized on each side of the

UV brane. Eqs. (4.11),(4.14) imply that the states localized on the left are characterized

by γ̄ ' 0, γ 6= 0. Therefore in (4.15) we can ignore the last two terms on the LHS;

cancelling γ yields γ̄ = O(1)(mL)2νL . But since mL << 1, SUSY breaking from νL on

the RHS is miniscule compared to SUSY breaking arising from the explicit presence of

νL in the formula for γ̄ in (4.12) . Thus to leading order the SUSY-breaking spectrum of

left-localized modes satisfies

γ̄ = 0 . (4.16)

Using ml >> 1 near the IR branes we can use the large argument asymptotics of the Bessel

functions. Since O(L/l1) << 1, (4.16) leads to

sin[ml1 − (νL + 1/2)π/2] = −νL − 1/2

ml
cos[ml1 − (νL + 1/2)π/2] . (4.17)

The supersymmetric masses take the form

m = O(1)
n− β
l1

, (4.18)

where n is an integer and β is a fraction which depends only on the supersymmetric

parameters and is roughly the same for all states. This formula for the supersymmetric

mass will remain true for all the bulk states in what follows. Eqs. (4.17),(4.10) give the

mass splitting between the scalars and their superpartners, to leading order in q̄:

δmL = O(1)
q̄2L2

l1
(4.19)

For left-localized modes, bL ∼ (mL)2νaL, bR ∼ (mL)2νaL and aR ∼ (mL)2νaL, so

the dominant contribution to the wavefunction comes from the mode ∼ aL localized in the

region z < 0. For ml >> 1 the Bessel functions can be approximated by trigonometric

functions for most of their support in z, and so the normalization condition
∫
dz|ψ|2 = 1

requires that l1a
2
L + l2a

2
R = O(1). This yields aL ∼ O(1)(l1 + l2(mL)4ν)−1/2. Since l1 > l2

and mL < 1, we find aL ∼ O(1)l
−1/2
1 to be an excellent approximation for all left-localized

modes which contribute to SUSY breaking.

The overlap of the left-localized modes with the left IR brane is ∼ aL ∼ 1/
√
l1,

while the overlap with the right IR brane is ∼ aR ∼ (mL)νL+νR/
√
l1 ∼ (mL)2ν/

√
l1. We

renormalize the fields as in sec. 3, to make the kinetic terms canonical. Again, the proper

rescalings leading to correct couplings of canonical 4D fields on the jth-brane are: for
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bulk scalars ΦB = ψ/a(lj )
3/2φB ∼ ψ(lj/L)3/2φB and for brane fields Φb = φ4D/a(lj ) ∼

φ4Dlj/L. A generic interaction term on the brane is: (gIJ 5D)2(ΦJ b)
2(ΦIB)2, where I, J

are indices denoting left (L) and right (R). The effective 4D couplings of the left-localized

bulk states gLI 4D ∼ gLI

gLL 4D =
gLL√
L

to left IR brane states

gLR 4D =
gLR(mL)2ν

√
L

√
l2
l1

to right IR brane states

(4.20)

The couplings to the right IR brane states are very small, due to the high power (mL)2ν ,

mL << 1. This suppression is a manifestation of tunneling.

The right-localized states are characterized by γ ' 0, γ̄ 6= 0. Since we are interested in

the mass splitting δm between the scalars and their superpartners to leading order in q̄, we

need to solve γ = O(1)(mL)2νL+2νR/γ̄ = O(1)(mL)4ν q̄2L2. Substituting the asymptotic

formula for Bessel functions into γ in (4.12) we obtain

sin[ml2−(ν+1/2)π/2]+
ν − 1/2

ml2
cos[ml2−(ν+1/2)π/2] = O(1)(mL)2ν+O(1)(mL)4ν q̄2L2

(4.21)

leading to the supersymmetric masses similar to (4.18),

m = O(1)
n− β
l2

, (4.22)

and SUSY-breaking mass splitting

δmR = O(1) (mL)4ν q̄2L2

l2
(4.23)

The mass splitting for the right-localized states is much smaller, by the factor (mL)4ν ,

than for the left-localized states (4.19). This is an effect of the tunneling suppression of the

wavefunction in the left throat, as seen in the relations bL ∼ (mL)2νaR, bR ∼ (mL)2νaR

and aL ∼ (mL)2νaR. From the form of the Bessel functions for large arguments, the

correct normalization of the wavefunctions requires l1a
2
L + l2a

2
R = O(1). This and aL ∼

aR(mL)2ν yields aR ∼ O(1)(l2 + (mL)4ν l1)−1/2. Note that since l2 < l1 the two terms

in the normalization formula compete. When l1 > l2(mL)−4ν the left side contributions

dominate, and hence they must not be neglected in general. Their presence indicates that

when the space on the right of the barrier is tiny compared to that on the left side, it does

not localize bulk modes efficiently. Those modes leak to the left.

21



The overlap of the right-localized modes with the left IR brane is ∼ aL ∼
(mL)2ν/

√
l2 + (mL)4ν l1, and with the right IR brane it is ∼ aR ∼ 1/

√
l2 + (mL)4ν l1.

As before, the effective 4D theory couplings of the right-localized bulk modes gRi 4D are

given by

gRL 4D =
gRL(mL)2ν

√
L

√
l1

l2 + (mL)4ν l1
to left IR brane states

gRR 4D =
gRR√
L

√
l2

l2 + (mL)4ν l1
to right IR brane states

(4.24)

The couplings to the left IR brane states are now very suppressed due to tunneling as long

as l1 < l2(mL)−4ν , which is the condition for strong localization of right modes.

What about the heavy states with mL > 1? For these states the barrier is lower

than their (bulk) energy and therefore they can fly over it without significant suppression.

Hence they are not strongly localized on different sides of the UV brane, but are only

slightly asymmetric. This means that the tunneling suppression factor ∼ (mL)2ν quickly

converges to unity for these states, once the additional corrections in the mL expansion

are summed up. Hence the masses and the splittings of the left- and right-side modes

become roughly the same, and are controlled by the size of the conformal box inhabited

by the bulk modes, l1 + l2:

m = O(1)
n− β
l1 + l2

δm = O(1)
q̄2L2

l1 + l2

(4.25)

while the couplings are

gLL 4D =
gLL√
L

√
l1

l1 + l2
gLR 4D =

gLR√
L

√
l2

l1 + l2

gRL 4D =
gRL√
L

√
l1

l1 + l2
gRR 4D =

gRR√
L

√
l2

l1 + l2

(4.26)

Here the numerator of the square root comes from the conformal rescaling by the powers on

the warp factor, and is determined by the location of the brane, whereas the denominator

is the normalization factor of the bulk wave function. The calculation is straightforward

along the lines for the light states. This completes the construction of the bulk spectra

when SUSY is broken in the entire left throat.
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It is already apparent that the left-localized modes dominate direct SUSY breaking

(type 1): these modes have large mass splittings and large couplings to the left IR brane,

while the right-localized modes have small mass splittings and small coulings to the left

IR brane.

On the other hand, both the left- and right-localized bulk modes contribute to SUSY

breaking on the right IR brane. The left-localized modes have small couplings gLR 4D

to the right IR brane states, and the right-localized states are only weakly split. The

mass splitting transmitted to the right IR brane will therefore be small We will compute

the transmitted mass splittings explicitly and isolate the leading effects. But first, we

determine the spectrum of bulk states if SUSY is broken only on the left IR brane.

4.3. SUSY Breaking on the Left IR Brane

Now we set q̄ = 0, q 6= 0. In this case,

νL = νR = ν =
√

4 +m2
0L

2 . (4.27)

The substitution of the solutions (4.6), (4.7) into the boundary conditions (4.9) with q̄ =

0, q 6= 0 relates the constants aL,R, bL,R in the same way as in (4.11), except that now the

explicit formulas for the coeficients in terms of Bessel functions are different. Define

q̂ = q
L

l1 +L
(4.28)

which is well approximated by q̂ ' q Ll for l/L >> 1. We find

α = ᾱ =
1

2

[ Jν−1(mL)− (ν − 1/2)Jν(mL)/mL

J−ν+1(mL) + (ν − 1/2)J−ν(mL)/mL
− Jν(mL)

J−ν(mL)

]

β = β̄ =
1

2

[ Jν−1(mL) − (ν − 1/2)Jν(mL)/mL

J−ν+1(mL) + (ν − 1/2)J−ν(mL)/mL
+

Jν(mL)

J−ν(mL)

]

γ =
Jν−1(m(l2 + L)) − (ν − 1/2)Jν(m(l2 + L))/m(l2 +L)

J−ν+1(m(l2 + L)) + (ν − 1/2)J−ν(m(l2 +L))/m(l2 + L)

γ̄ =
Jν−1(m(l1 + L))− (ν − 1/2)Jν(m(l1 + L))/m(l1 + L) + q̂Jν(m(l1 + L))/m

J−ν+1(m(l1 + L)) + (ν − 1/2)J−ν(m(l1 +L))/m(l1 + L) − q̂J−ν(m(l1 + L))/m
(4.29)

The coefficients must still satisfy a consistency condition, leading to the eigenvalue equation

(4.13) as before.
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For light states mL << 1, mlk > 1 we again approximate the Bessel functions at the

IR and UV branes by their asymptotic values for large and small arguments respectively.

As before,

α = O(1)(mL)2ν β = O(1)(mL)2ν (4.30)

and therefore the eigenvalue equation becomes

γγ̄ −O(1)(mL)2ν (γ + γ̄)−O(1)(mL)4ν = 0 (4.31)

Now the SUSY breaking scale is completely contained within γ̄.

The bulk spectrum again naturally splits into left- and right-localized states. The

left-localized states again have bL ∼ (mL)2νaL, bR ∼ (mL)2νaL, aR ∼ (mL)2νaL, and

γ̄ ' (mL)2ν << γ 6= 0. Because we wish to detemine the mass splitting δm to leading

order in q̂, it is sufficient to consider γ̄ = 0, or

Jν−1(ml1) =
(ν − 1/2

ml
− q̂

m

)
Jν(ml1) (4.32)

which at the IR brane can be approximated by:

sin[ml1 − (ν + 1/2)π/2] =
( q̂
m
− ν − 1/2

ml1

)
cos[ml1 − (ν + 1/2)π/2] (4.33)

The supersymmetric masses are the solutions of this equation when q = 0, and are given

by Eq. (4.18). We will find below that q is within an order of magnitude or two of 1/L.

Since q̂l1 ' qL, the ratio q̂/m < 1 for some of the relevant states, and q̂/m > 1 for the rest.

These cases must be treated separately in Eq. (4.33). For the heavy states, the SUSY

breaking terms are small perturbations, so that δm ∼ q̂/(ml1). For the light states, the

SUSY breaking terms are a large perturbation, leading to a change in the mass of order of

O(1)/l1. The results for the mass splittings are

δmL = O(1)
1

l1
when m < q̂

δmL = O(1)
q̂

l1m
when m > q̂

(4.34)

The effective four-dimensional couplings are the same as in type A) breaking as summarized

in Eq. (4.20).

The masses, splittings, and couplings of the right-localized states are computed in the

same way. For these states, bL ∼ (mL)2νaR, bR ∼ (mL)2νaR, aL ∼ (mL)2νaR, γ ' 0, and
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γ̄ 6= 0. Determining the mass splitting is subtler than before. As l2 >> L, the eigenvalue

equation is approximately:

Jν−1(ml2)− ν − 1/2

ml2
Jν(ml2) = O(1)(mL)2ν

+O(1)(mL)4ν J−ν+1(ml1) + (ν − 1/2)J−ν(ml1)/ml1 − q̂J−ν(ml1)/m

Jν−1(ml1)− (ν − 1/2)Jν(ml1)/ml1 + q̂Jν(ml1)/m
.

(4.35)

When q = 0 the roots yield the masses of the light supersymmetric modes, which are of

the same form as (4.22). Solving perturbatively for δm as a function of q̂, we find that for

q̂ >> m

Jν−1(ml2) − ν − 1/2

ml2
Jν(ml2) = O(1)(mL)2ν +O(1)(mL)4ν , (4.36)

where the first term on the RHS is a supersymmetric shift of the mass ∼ (mL)2ν/l2 which

merely renormalizes β in (4.18), while the second term arises because of the SUSY breaking.

Hence the mass splitting induced by the SUSY breaking terms is δm ∼ (mL)4ν/l2 when

q̂/m > 1, again using the large argument asymptotics of Bessel functions. When q̂/m < 1,

we find

Jν−1(ml2)− ν − 1/2

ml2
Jν(ml2) = O(1)(mL)2ν +O(1)(mL)4ν +O(1)(mL)4ν q̂

m
(4.37)

and so the SUSY breaking terms induce mass splitting δm ∼ (mL)4ν q̂/(ml). (Note that

the second term on the RHS of ((4.37)) does not arise from SUSY breaking, unlike the

similar term in Eq. ((4.36)).) Summarizing, we find that

δmR = O(1) (mL)4ν 1

l2
when m < q̂

δmR = O(1) (mL)4ν q̂

l2m
when m > q̂

(4.38)

In this case the correct normalization of the wavefunctions is aR = O(1)(l2 +

(mL)4ν l1)−1/2. Again for l1 > l2(mL)−4ν the left side contributions would dominate,

indicating that the modes with such a high mass cease to be localized on the right. The

effective four-dimensional couplings of the right-localized modes are identical to that in

type A) SUSY breaking, as seen in Eq. ((4.24)).

The couplings of the heavy states with mL > 1 behave qualitatively the same as

when SUSY is broken in the whole left throat. The barrier is too low compared to their

bulk energy to lead to significant localization on one side or the other. The tunneling
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suppression factor ∼ (mL)2ν is replaced by a function which quickly converges to unity

when mL >> 1. Hence the couplings rapidly converge to

gLL 4D =
gLL√
L

√
l1

l1 + l2
gLR 4D =

gLR√
L

√
l2

l1 + l2

gRL 4D =
gRL√
L

√
l1

l1 + l2
gRR 4D =

gRR√
L

√
l2

l1 + l2
.

(4.39)

The masses are controlled by the size of the conformal box inhabited by the bulk modes,

l1 + l2:

m = O(1)
n− β
l1 + l2

, (4.40)

as are the mass splittings, which however also depend inversely on the mass of the state,

as dictated by the SUSY-breaking boundary condition

δm = O(1)
q̂

m(l1 + l2)
. (4.41)

This completes the determination of the spectra of bulk modes.

4.4. Transmission to brane worldvolume fields

Given the spectrum of the bulk modes and their couplings to the IR branes, we can

compute the induced mass splitting of scalar superpartners of 4D fermions. The most

interesting case is case 2) where the splitting is suppressed by tunneling effects. We will

compute the splitting for types A) and B) SUSY breaking. We will also discuss case 1) in

order to isolate tunneling effects in case 2).

Suppose there are brane-localized scalars and fermions φL,Rb and λL,Rb, and bulk

scalars and fermions φL,RB and λL,RB. Indices L,R refer to the left- and right-localized

states, both in the throat and on the IR brane. Assume the 4d effective Lagrangian con-

tains generic quartic couplings between brane and bulk KK scalars, and Yukawa couplings

between brane and bulk scalars and fermions, of the form

L = · · ·+ (gIJ 5D)2(φJ b)
2(φIB)2 + gIJ 5D φJ b λ

J
b λ

I
B + · · · (4.42)

Since [φB] = 3/2 is the canonical dimension of a 5d scalar field, one expects

gIJ 5D ∼
1√
M5

. (4.43)
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Renormalizing the fields to have canonical 4D kinetic terms, we find that the induced 4D

dimensionless couplings are gIJ 4D ∼ 1√
M5L

. Our results for both type A) and type B)

SUSY breaking can be summarized as follows, recalling that l1 > l2:

gLL 4D =
O(1)√
M5L

gRR 4D =
O(1)√
M5L

√
l2

l2 + f2(mL)l1

gIJ 4D =
O(1)√
M5L

f(mL)

√
lJ

lI + f2(mL)lJ
(I 6= J) .

(4.44)

Here f is the square root of the transmission coefficient through the barrier, which has the

asymptotic forms:

f '
{

(mL)2ν mL << 1
1 mL >> 1 .

(4.45)

The “off-diagonal” couplings are always much smaller than the “diagonal” ones because

of the tunneling.

The masses of the bulk particles are

m(B,F )L,R = αL,R(n)
n+ β(B,F, n)L,R
l1,2 + h(n)l2,1

(4.46)

where the coefficients α and β depend softly on M0, n. The difference in β between

bosons and fermions parameterizes SUSY breaking. The function h encodes the behavior

of masses and splittings in the limit when tunneling suppression vanishes. It vanishes near

zero and asymptotes to unity for large argument, to allow for the transition between, e.g.,

(4.18),(4.19),(4.22),(4.23) to (4.25). Its precise form is not important for our conclusions.

Note that for the left-localized modes, we can completely ignore the term with h since we

assume l1 > l2.

Assume that the fermions living on the IR brane are protected from mass shifts, e.g.

because they belong in chiral gauge representations. The scalars are not. A naive estimate

of the mass shift of the scalars on the IR brane would run as follows. The contribution

from one-loop diagrams involving bulk fields φIB, λ
I
B can be computed state-by-state, by

first performing the loop integrals over 4-momenta, and then subtracting fermionic from

bosonic contributions. This gives approximately

(δmJ
Ib)

2 ∼ (gIJ 4D)2
[
m2(B) −m2(F )

]
∼ (gIJ 4D)2mIδmI (4.47)

for each KK state in the loop, where mI and δmI are the bulk supersymmetric mass

and the boson-fermion bulk mass splitting induced by SUSY breaking, respectively. If we
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insert the appropriate bulk couplings and splittings and sum over the entire tower of bulk

KK modes, we get a divergent answer, (δmJ
Ib)

2 =
∑ΛUV

m∼1/l(g
I
J 4D)2mIδmI, suggesting a

cutoff ΛUV a priori distinct from the UV cutoff used to compute the state-by-state mass

splittings.

This divergence is artificial. In the 5D picture of the calculation the SUSY breaking

transmission is generated by Feynman diagrams with bulk particles in the loops and wall

particles in the external legs. The summation over the 4D KK states is the “integration”

over the momentum in the fifth direction in the higher-dimensional theory. In the coordi-

nate representation this calculation is perfectly well-defined unless the external particles

are at coincident points. This issue is handled in the standard way by renormalization.

In the momentum representation p5 is discretized due to the compactness of our

background in the z direction. By first doing the integrals over the 4D momenta, we

would then sum over divergent quantities, requiring independent regularization for both

the sum and the integrals. This is not the correct way to proceed. Instead, we use the fact

that field theory regulates itself away from coincident points in coordinate representation,

sum over p5 first, and then integrate over the 4-momenta and renormalize the final answer,

if need be. Since the loop propagators depend inversely on the square of KK mass, this

sum converges. Our method is very similar to the regularization techniques employed in

[35],[36],[32].

Now before doing any momentum sums or integrations, the mass splitting for scalars

on the IR brane is:

(δmJ
Ib)

2 =
2

(2π)4

∑

m

(gIJ 4D)2
(∫ d4p

p2 +m2(B)
−
∫

d4p

p2 +m2(F )

)
(4.48)

Here the factor of 2/(2π)4 comes from the symmetry factor for the Lagrangian (4.42) and

the usual normalization for loop integrals. The boson and fermion masses are m(B,F ) =

α(n+ βB,F )/l. The couplings and the parameters βB,F , l explicitly depend on the masses

as explained in (4.46).

The induced mass splittings will generally be differences of sums of the form

SI =
O(1)

8π4M5L

∑

n

F [
α(n+ βI)L

l
)]

∫
d4p

p2 + α2(n+ βI)2/l2
. (4.49)

Here F = g2M5L and its form can be readily read from (4.44), and l is the denominator

in (4.46). A crucial property of F is that it converges to a constant for large arguments.
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Indeed, on the real axis F < l1/l2 for any of the couplings (4.44). We can now use a

standard technique for the summation of infinite series. Consider the contour integral
∫

C

dz F (
αLz

l
)

cot[π(z − βI)]
p2 + α2z2/l2

(4.50)

where the contour consists of a large circle oriented counterclockwise and small clockwise

circles around all the poles of the integrand inside the large circle. Then take the limit

where the radius of the big circle goes to infinity, such that all the poles are enclosed by it.

Since F goes to a constant for large arguments, the integral along the large circle vanishes

because of the denominator in (4.50). Therefore the integrals along the small circles add

up to zero. They can be readily computed by the residue theorem. The dependence of

the parameters β on the mass is very soft, and we can ignore their effect on deforming the

poles of the cotangent away from the integers.

We also need to account for the poles in F , which are required because F is not con-

stant and is bounded for large values of the argument. By continuity, any such poles in F

are located outside the circle of radius 1/L. They could be imaginary, in which case they

would correspond to a state with a large negative (mass)2. However, it is very straight-

forward to understand such poles: the states heavy enough to cross the barrier classically

are not well-localized, and so the left and the right states mesh together strongly. If one

naively ignores the presence of the states from one side of the barrier, one is “reminded”

of them precisely by these poles. Hence, such imaginary poles would just correspond to

states localized on the other side of the barrier, which are added in in the other sum.

They should not be included in the tunneling calculation twice. If the poles have a large

real part, this means that the the approximate eigenvalue equations which we have used

to find the spectrum receive corrections, as can be seen from the form of the functions

(4.12) or (4.29). Both the transmission coefficient and the eigenvalue equation depend on

those parameters, and after the heavy masses are appropriately corrected, these poles are

accounted for in the improved summation over the states in the KK towers. Therefore we

conclude that any such poles of F are spurious and should be circumnavigated by Wick

rotation, which we have already performed. Hence they will not contribute to the momen-

tum integrals, and we can ignore them. With our approximations, the only poles we need

to keep are at the integers along the real axis, and at the complex points z = ±ilp/α.

Therefore:
∑

n

F (α(n + βI)L/l)

p2 + α2(n + βI)2/l2
= − lF (ipL)

2iαp
cot[π(

ilp

α
− βI(ipL))]

− lF (−ipL)

2iαp
cot[π(

ilp

α
+ βI(−ipL))] .

(4.51)
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Since F (x) is real on the real axis, the RHS is obviously real.

Now we isolate the terms in (4.51) which give the UV divergence in (4.49). Since

cot[π(
ilp

α
± βI)] = −i− i 2

e2πlp/α∓2iπβI − 1
(4.52)

we can write SI as

SI =
O(1)

8π4M5L

l

2α

∫
d4p

p

(
F (ipL) + F (−ipL)

)

+
O(1)

8π4M5L

l

2α

∫
d4p

p

( 2F (ipL)

e2πlp/α−2iπβI(ipL) − 1
+

2F (−ipL)

e2πlp/α+2iπβI(−ipL) − 1

) (4.53)

The first integral in (4.52) is divergent. However it is independent of the particle quantum

numbers, and so cancels out of (4.48). We will however keep this term in mind, because it

will give the dominant, UV-finite, contribution to the gaugino mass (see §4.5). The second

integral is finite, and does not cancel out of (4.48) because of bulk SUSY breaking. After

the angular integration, the remaining integral is

SfiniteI =
O(1)l

4π2αM5L

∫ ∞

0

dpp2
( F (ipL)

e2πlp/α−2iπβI(ipL) − 1
+

F (−ipL)

e2πlp/α+2iπβI(−ipL) − 1

)
(4.54)

and it is the leading contribution to (4.48). This integral is obviously finite due to the

exponential momentum cutoff in the denominator, and is well behaved in the IR due to

the measure factor. Because of the cutoff the integral is dominated by the contributions

p ∼ 1/l. We can evaluate it approximately by the saddle point method, once we have the

explicit form of F . Thus the states which determine the mass splittings of the wall chiral

multiplets are the light bulk states. The heavy states would make it more easily over the

barrier, but decoupling reduces their effect on the transmission. We can now compute the

wall chiral multiplet mass splittings case-by-case.

Direct SUSY Breaking

For direct SUSY breaking – case 1) – we have F = 1, βB,F = const and l = l1

(4.44),(4.46). Substituting (4.54) into (4.48), using βB − βF = q̄2L2 (4.19), we evaluate

the integrals by the saddle point method. We find, using sin(2π|βB |) ∼ O(1),

(δmL
Lb)

2 ∼ O(1)
q̄2L

M5

1

l21
. (4.55)

Due to decoupling, only the lightest modes contribute significantly to supersymmetry

breaking induced on the left IR brane, even though couplings are independent of the
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KK masses. Obviously the mass splittings induced on the brane are given by the simple

exponential scaling induced by the conformal factor on the brane. This is similar to [37].

Tunneling mediation with left bulk SUSY breaking

Let us turn to tunneling mediation – case 2) – starting with type A) SUSY breaking.

We compute the mass splittings on the right IR brane as induced by loops of the bulk

states. For left-localized states, F = x4ν l2/l1, βB − βF = q̄2L2 and l = l1 (4.19),(4.44).

Therefore

(δmR
Lb)

2 ∼ O(1)
q̄2L

M5

l2
l31

(L
l1

)4ν

. (4.56)

Compared to the direct SUSY breaking (4.55), there is additional dependence on the

ratio l2/l1. This is precisely the rescaling of dimensionful parameters in the AdS space.

The right IR brane resides closer to the UV brane, and the couplings on it are smaller

than those on the left IR brane precisely by this ratio. In addition, there is a significant

suppression factor
(
L
l1

)4ν

, over and above the splitting in direct transmission (4.55). This

is an exponential suppression of the scale of SUSY breaking due to tunneling.

Similarly, for the right-localized bulk states, F = l2/(l2 + x4ν l1), βB − βF = q̄2L2x4ν

and l = l2 (4.23),(4.44). The mass splitting is:

(δmR
Rb)

2 ∼ O(1)
q̄2L

M5

1

l2(l2 + (L/l2)4ν l1)

(L
l2

)4ν

. (4.57)

There are two extreme limits, depending on which term dominates the denominator. In

these limits, the mass splitting transmitted to the right IR brane by the right-localized

bulk multiplets is

(δmSM )2 ∼ O(1)
q̄2L

M5
×





1
l22

(
L
l2

)4ν

l1 < l2

(
l2
L

)4ν

1
l2l1

l1 > l2
(
l2
L

)4ν

.
(4.58)

The first case is again suppressed relative to (4.55) by the factor of (L/l)4ν . Comparing

eqs. (4.56) and (4.58) for the relevant values of parameters we find that the right-localized

states always give a dominant contribution to the transmission of SUSY breaking to the

SM fields on the right IR brane as long as l1 > l2.
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Tunneling mediation with left brane-localized SUSY breaking

Finally, we repeat these calculations for type B) SUSY breaking. For the contribution

of the left-localized states, F = x4ν l2/l1, βB − βF = qL2/(l1x) and l = l1 in (4.34),(4.44).

This gives

(δmR
Lb)

2 ∼ O(1)
q

M5

l2
l31

(L
l1

)4ν

. (4.59)

Again, the factor of
(
L
l1

)4ν

reflects tunneling, while the power l2/l1 represents the usual

coupling rescaling.

For the right-localized states, F = l2/(l2 + x4ν l1), βB − βF = x4νqL2/(l1x) and l = l2

in (4.38),(4.44), and therefore

(δmR
Rb)

2 ∼ O(1)
q

M5

1

l2(l2 + (L/l2)4ν l1)

(L
l2

)4ν

. (4.60)

As for the transmission of left bulk SUSY breaking, we again focus on two extreme cases,

l1 < l2( l2L )4ν and l1 > l2( l2L )4ν . In either case, we can see that the right-localized modes

give dominant contribution to the splittings of the right brane multiplets. The transmitted

mass splittings on the right IR brane from the SUSY breaking which occurs on the left IR

brane is

(δmSM )2 ∼ O(1)
q

M5
×





1
l22

(
L
l2

)4ν

l1 < ( l2L )4ν l2
1
l1l2

l1 > ( l2L )4ν l2
(4.61)

The main contribution to δmSM is induced by the modes living on the right side. Just

like (4.58), δmSM is dramatically suppressed compared to case 1). The calculations verify

the simple intuition that, to transmit the SUSY breaking from the left throat to the right

throat, the modes pay an exponential price to tunnel through the potential barrier at the

UV brane.

4.5. R-symmetry Breaking and Gaugino Masses

In the previous sections we have assumed that SUSY breaking is mediated by the bulk

scalars, while bulk fermions were protected from the breaking effects. However, in order to

generate gaugino masses, bulk fermions must also couple to SUSY-breaking physics. Only

through their exchange is it possible to break R-symmetry, which is necessary for gaugino

mass generation.

We will consider in detail a scenario where SUSY breaking is confined to the left

IR brane. One could, in principle, break SUSY in the entire left throat. However, the
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combination of the Dirac mass term (needed to avoid tachyons among the scalar super-

partners) and the Majorana mass term (necessary to break R-symmetry and generate

gaugino masses) for bulk fermions complicates the calculation considerably.

Our model consists of two chiral bulk fermions, ζ (undotted, two-component spinor –

c.f. [38] for notation) and χ (dotted spinor) minimally coupled to gravity and coupled to

each other by a bulk Dirac mass M , and left-brane-localized Majorana terms induced by

SUSY breaking. In this section we will work with the metric signature (+−−−−).

A simple action for the fermions is:

SF =

∫
d5x
√
g5

( i
2

Ψ̄ΓA
↔
∂AΨ +

1

8
ωbc.AΨ̄{ΓA, σbc}Ψ−MΨ̄Ψ

)

+

∫
d4x
√
g4

(
q1[ζT iσ2ζ − ζ†iσ2ζ∗]− q2[χT iσ2χ− χ†iσ2χ∗]

)
.

(4.62)

Here ΨT = (ζ, χ), and

A
↔
∂ B = A∂B − (∂A)B . (4.63)

Also, γA = (γµ,diag(−i, i)) are 5D Dirac matrices, ΓA = EB
AγB, and σab = i

2 [γa, γb].

g5D
AB = ηCDe

C
Ae

D
B defines both the funfbein eAB and its inverse EB

A, eABEC
B = δAB.

Hermitean conjugation is denoted by †, complex conjugation by ∗ and transposition by T .

Dirac conjugates are defined on the tangent space Ψ̄ = Ψ†γ0. Finally, will will use the

spinor representation of the Dirac matrices:

γµ =

(
0 σµ

σ̄µ 0

)
(4.64)

and σµ = diag(1, σk), σ̄µ = diag(1,−σk) and σk are the usual Pauli matrices.

Before proceeding we note that because the Majorana terms live on the left IR brane,

they don’t need to be the symplectic Majorana masses characteristic for bulk 5D fermions;

our background breaks invariance under the AdS isometry group. We will see below

that one of the mass parameters qi must vanish identically. Furthermore, because the

5D fermions dimension 2, the coefficients q1, q2 of the Majorana terms on the left IR

brane are dimensionless. This effects the dependence of the induced mass splitting on

the exponentials that emerge from the width of the barrier between the throats, leading

to different SUSY-breaking behavior than that discussed previously for bosons. The 4D

scale which emerges in the effective 4D description of these modes is induced by the

normalization of the modes and their overlap with the left IR brane, and can therefore be

small.
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We emphasize that while the IR branes are endowed with orbifold boundary condi-

tions, the UV brane is not. For fermions this affects physics in a crucial way. An immediate

consequence is that the bulk Dirac mass parameter M is continuous across the UV brane,

M(−z) = M(z). As a result the bulk parity operator acting on fermions is not the same

on all the branes. We will see below that parity inversion about the UV brane interchanges

the chiral spinors while it does not around IR orbifolds. If we take the realization of parity

on the UV brane as “natural”, then the choice of parity assignments on different IR branes

can lead to twisted bulk fermions, breaking left-right symmetry about the UV brane. Such

bulk fermions are not degenerate even in the supersymmetric limit, despite the apparent

symmetry of (2.1). We also note that these boundary conditions on the UV brane would

be compatible with additional UV brane-localized supersymmetric fermion mass terms,

analogous to the ∼ δ-function supersymmetric terms in (4.3) which we have ignored. We

will ignore such terms here too.

Note that the bosons of §4.3 and fermions treated here are not supersymmetric part-

ners of each other. The correct sfermions would have to satisfy different boundary condi-

tions from those we have chosen in §4.3. We will ignore a detailed treatment of the latter

here and merely point out the relations later on. Our analysis is precise for the case when

SUSY breaking on the left IR brane is completely confined to the fermion sector.

Now we wish to find the equations of motion for the fermions. Because the background

(2.1) is conformally flat, ωbc.AΨ̄{ΓA, σbc}Ψ = 0 identically. Substituting the ansatz (2.1)

into (4.62), after straightforward algebra we find

SF =

∫
d4xdz

{
a4
[
χ†iσµ∂µχ + ζ†iσ̄µ∂µζ + χ†(

1

2

↔
∂zζ + 2

a′

a
ζ)− ζ†(1

2

↔
∂zχ+ 2

a′

a
χ)
]

−Ma5(χ†ζ + ζ†χ) + δ(z + l1)a4
(
q1[ζT iσ2ζ − ζ†iσ2ζ∗]− q2[χT iσ2χ− χ†iσ2χ∗]

)}
.

(4.65)

Defining the effective 4D theory fermions by the change of variables Z = a2ζ, X = a2χ

removes the cross terms ∼ a′Ψ′ from the action, so that:

SF =

∫
d4xdz

{
X†iσµ∂µX + Z†iσ̄µ∂µZ +

1

2
X†
↔
∂zZ −

1

2
Z†
↔
∂
X

z −Ma(X†Z + Z†X)

+ δ(z + l1)
(
q1[ZT iσ2Z − Z†iσ2Z∗]− q2[XT iσ2X −X†iσ2X∗]

)}
.

(4.66)

The kinetic terms are now independent of the warp factor, which only enters through the

bulk Dirac mass term. This reflects the conformal symmetry of a massless fermion; the

symmetry is broken only by the mass terms.
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The fermion equations of motion are:

iσ̄µ∂µZ −X ′ = MaX − 2q2δ(z + l1)iσ2Z∗

iσµ∂µX +Z ′ = MaZ + 2q1δ(z + l1)iσ2X∗ .
(4.67)

These equations can be cast in 4-component form by introducing

Σ =

(
Z
X

)
D =

(
∂z iσµ∂µ

iσ̄µ∂µ −∂z

)
Q =

(
0 2q1iσ

2

−2q2iσ
2 0

)
, (4.68)

whereupon (4.67) become

DΣ = MaΣ + δ(z + l1)QΣ∗ . (4.69)

The second term on the RHS seems to complicate matters, but it is easy to reinterpret as

a shift in the boundary condition on Σ.

To find this shift, we must first address the z-parity of the fermion on the orbifold

branes. The bulk Dirac mass term must be odd on each orbifold zo, and the fermion must

satisfy

iγ5Σ(zo − ε) = ±Σ(zo + ε) (4.70)

The signs can be chosen independently on each orbifold and different choices represent

different superselection sectors. The four sectors can be classified by the (left, right) pairs

(++), (+−), (−+) and (−−). For definiteness in what follows we will consider (++) and

(+−) cases. We will see that the former corresponds to twisted fermions in the bulk. The

other two combinations are similar to these two with the interchange Z ↔ X. Hence if

the parity assignment on an orbifold brane is einπ,

Z(zo − ε) = einπZ(zo + ε) X(zo − ε) = −einπX(zo + ε) . (4.71)

Then by Gaussian pillbox integration of (4.69) around the left IR (+) brane we obtain

fermion boundary conditions there:

q1X(−l1) = 0 X(−l1) = q2iσ
2Z∗(−l1) . (4.72)

If both q1, q2 6= 0, then Z(−l1) = X(−l1) = 0, which has no nonzero solutions. We will

therefore choose q1 = 0. Near the right IR brane there are no SUSY-breaking terms in

the action, implying X(l2) = 0 for the (++) case, and Z(l2) = 0 in the (+−) case. On
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the UV brane we demand continuity of the wavefunction, since we do not impose orbifold

boundary conditions there. The equations of motion and boundary conditions become:

DΣ = MaΣ

X(−l1) = q2iσ
2Z∗(−l1)

Z(0+) = Z(0−) X(0+) = X(0−)

X(l2) = 0 (++) case Z(l2) = 0 (+−) case

(4.73)

The appearance of the complex conjugate of the fermion field in the boundary condition

of the left IR brane relates the positive and negative energy solutions there. We now turn

to determining the spectrum of its solutions.

First, the system (4.73) does not admit any 4D zero modes. Such modes would satisfy

γµ∂µΣ = 0. The bulk equation would then reduce to the system

Z ′ = MaZ X ′ = −MaX . (4.74)

Defining w = m(|z| + L) (4.4), ν = ML (note the difference between this and (4.8)), the

solutions are

Z =

{
Z0 L w

−ν z < 0
Z0 R wν z > 0

X =

{
X0 L w

ν z < 0
X0 R w−ν z > 0

(4.75)

where Z0 L,R,X0 L,R are constant chiral spinors. Note the manifestation of the action of

parity about the UV brane: under z ↔ −z, we must interchange Z ↔ X. This should be

contrasted with the orbifold boundary conditions (4.71). This also clearly shows why (++)

case corresponds to twisted fermions and (+−) to normal ones. If we impose boundary

conditions in the former case, we have different functions on different sides (∼ wν to the

left and ∼ w−ν to the right). In the latter case, the boundary conditions are imposed on

the same function (∼ wν).

Inserting (4.75) into (4.73), we find that the only solutions are Z0 L = Z0 R = X0 L =

X0 R = 0. This differs from the single-throat situation in [39]. There, both the UV and IR

branes were endowed with orbifold boundary conditions. Hence one of the chiral spinors

always satisfied the boundary conditions trivially, allowing for an arbitrary constant profile

in the bulk. This gave rise to a fermion zero mode in the effective 4D theory.

Now we consider massive 4D modes. The linear equation (4.73) can be diagonalized

by squaring the operator D, as D2 = ∂2
z − ∂2

4 is diagonal in spinor indices. Σ satisfies
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(D2 − M2a2)Σ = Ma′ iγ5Σ, which is diagonal in the spinor representation. Set Σ =

Σ(z) exp(−ip · x), so that ∂2
4Σ = −m2Σ; and set w = m(|z| +L) and ν = ML. We find:

d2Z

dw2
+ Z =

{
ν(ν+1)
w2 Z z < 0

ν(ν−1)
w2 Z z > 0

d2X

dw2
+X =

{
ν(ν−1)
w2 X z < 0

ν(ν+1)
w2 X z > 0

(4.76)

These are just Bessel equations. Before proceeding let us contrast this case to that when

UV brane is an orbifold [39]. In the latter case M , and therefore ν = ML, changes sign

across the UV brane, ensuring that the potential on the two sides of the UV brane does

not change. In our problem the Dirac mass is continuous across the UV brane; so the bulk

potential for the chiral spinors changes across the brane, as is manifest in (4.76). Therefore

the solutions on the right side are obtained from those on the left by z ↔ −z, Z ↔ X,

so we need only explicitly solve for z < 0. As a result the (++) boundary conditions

break the parity symmetry of (2.1), since they twist the fermion modes, while the (+−)

boundary conditions are parity-invariant.

We also note that the form of (4.76) shows that there have to be two sfermions with

bulk masses related to the bulk fermion masses by
√

4 +M2
BL

2 = MFL±1/2; only in this

case would the bulk equations for both bosons and fermions admit the same spectrum.

Furthermore, the boson boundary conditions must be chosen appropriately so that they

reproduce the mass spectrum of the fermions. In what follows we will therefore assume

that the spectrum of sfermions coincides with that of fermions in the SUSY limit, and that

SUSY is broken exclusively by the ∼ q2 term.

Now, the solutions for z < 0 are:

Z =
√
w
(
AJν+1/2(w) +BJ−ν−1/2(w)

)

X =
√
w
(
CJν−1/2(w) +DJ−ν+1/2(w)

)
.

(4.77)

The constant spinors A,B,C,D are not all independent due to the equation of motion in

(4.73) for Σ. In the rest frame of the massive modes, (4.73) becomes

(
−∂w 1

1 ∂w

)
Σ =

ν

w
Σ . (4.78)
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Upon substituting (4.77), we find C = A,D = −B. Using the map z ↔ −z, Z ↔ X, the

bulk fermion wavefunctions in four-component notation are

ΣL =
√
w

(
ALJν+1/2(w) +BLJ−ν−1/2(w)
ALJν−1/2(w)−BLJ−ν+1/2(w)

)
z < 0

ΣR =
√
w

(
ARJν−1/2(w) −BRJ−ν+1/2(w)
ARJν+1/2(w) +BRJ−ν−1/2(w)

)
z > 0

(4.79)

where AL,R, BL,R are constant, momentum-dependent 2-component spinors encoding 4D

fermion helicities (and are not c-numbers, in contrast to [39]). In an arbitrary frame, the

basis spinors are given by Lorentz boosts of these.

To determine the spectrum we substitute the solution (4.79) into the boundary con-

ditions specified in (4.73). We will use the shorthand notation jα,k = Jα(m(lk + L)),

Jα = Jα(mL) and Jα(−m(lk + L)) = exp(2πiα) jα,k. The analysis of the boundary con-

ditions on the right IR brane and on the UV brane is straightforward; analysis of the

boundary condition on the left IR brane is more subtle. As the latter involves iσ2Z∗(−l1),

in the momentum basis the mode which appears under complex conjugation is the negative

energy mode. Defining the phase θ = 2πν, we find:

ALjν−1/2,1 −BLj−ν+1/2,1 = −q2iσ
2A∗L ce

−iθjν+1/2,1 − q2iσ2B∗L ce
iθj−ν−1/2,1

AL c e
iθjν−1/2,1 +BL c e

−iθj−ν+1/2,1 = −q2iσ
2A∗Ljν+1/2,1 − q2iσ2B∗Lj−ν−1/2,1 .

(4.80)

The remaining two boundary conditions then give

BR = − jν+1/2,2

j−ν−1/2,2
AR (++) case BR =

jν−1/2,2

j−ν+1/2,2
AR (+−) case

AL

(
Jν+1/2

Jν−1/2

)
+BL

(
J−ν−1/2

−J−ν+1/2

)
= AR

(
Jν−1/2

Jν+1/2

)
+BR

(
−J−ν+1/2

J−ν−1/2

)
,

(4.81)

and two more equations where AcL,R, B
c
L,R replace AL,R, BL,R, and m → −m. Here the

superscript c denotes the negative energy mode components, or charge conjugates. Note

that if q2 were zero, the (+−) boundary conditions involve the same functions of ml

on both the left and right sides, while (++) do not, again showing that the latter are

twisted fermions. In either case there are eight boundary conditions for nine integration

parameters: eight constant spinors AL,R, BL,R, AL,R c, BL,R c and the 4D mass m. One

of the spinors is fixed by the overall normalization; for the remaining seven spinors the

mass must be selected to solve the eight boundary conditions, wherefore the spectrum is

discrete.
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We can solve this system of equations explicitly, expressing all the spinors in terms of

AL which we choose by overall normalization for convenience. The masses are determined

by the roots of the equation:

η1

(
jν−1/2,1 ∓ q2jν+1/2,1

)
= η2

(
j−ν+1/2,1 ± q2j−ν−1/2,1

)

η1 = J−ν+1/2Jν−1/2 + Jν+1/2J−ν−1/2 ± (J2
−ν+1/2 − J2

−ν−1/2)
jν±1/2,2

j−ν∓1/2,2

η2 = J2
ν−1/2 − J2

ν+1/2 ± (J−ν+1/2Jν−1/2 + Jν+1/2J−ν−1/2)
jν±1/2,2

j−ν∓1/2,2
.

(4.82)

In the first of these equations the ± sign changes for different chiralities, whereas in the

latter two equations it changes with the boundary condition choices, being + for the (++)

case and − for the (+−) case.

To extract the physical properties of the spectrum from this quagmire, we first replace

L by ζL everywhere in these equations and then take a double limit q2 = 0, ζ → 0, keeping

ml1,ml2 fixed. This corresponds to removing SUSY breaking terms from the IR brane and

(following the discussion at the beginning of Sec. 2) removing the UV brane, separating

the two throats by an infinite distance. In this limit, the spectrum splits into separate

towers of left- and right-localized modes. These modes modes will not be degenerate,

since (2.1) is not symmetric. Using the small argument expansion of Bessel functions

Jα(mδL) ∼ (mζL)α, we see that to leading order η1 ∼ (mζL)−2ν−1 is divergent, while

η2 ∼ O(1). Hence analyticity requires that the divergent part of the η1 term must vanish,

leading to the eigenvalue equations Jν−1/2(ml1)Jν±1/2(ml2) = 0, where we ignore terms

O(L/l1, L/l2) << 1. Therefore, the bulk fermion states split into two towers with masses

given by the roots of

Jν−1/2(ml1) = 0 left− localized states

Jν±1/2(ml2) = 0 right− localized states
(4.83)

Let us check these conditions. Consider the solution (4.79). The ∼ BL,R terms diverge

in the limit ζ → 0; normalizability of the solution requires BL,R = 0 in that limit. The

boundary condition on the UV brane is then satisfied. Moreover, when SUSY is unbroken,

q2 = 0 and the boundary conditions on either IR brane are X = 0. On the left this gives

precisely Jν−1/2(ml1) = 0 while on the right for the (+±) cases it gives Jν±1/2(ml2) = 0.

When supersymmetry breaking is turned on and ζ = 1, the masses of these states get

contributions from both supersymmetric UV effects and from SUSY-breaking effects. As
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we have explained above, we only wish to compute the SUSY-breaking induced mass shifts

to leading order in the (dimensionless) SUSY breaking parameter q2. For left-localized

states, Eq. (4.82) implies that, to leading order, the SUSY-breaking induced splittings are

determined by the roots of

jν−1/2,1 = ±q2jν+1/2,1 (4.84)

Therefore, using the large-argument form of the Bessel functions Jν−1/2(x) ∼
√

2
πx cos(x−

νπ/2), we find that (4.84) reduces to cos[m(l1 + L) − νπ/2] = ±O(1)q2. Thus the SUSY

masses of light states are

m ∼ [
(ν − 1)π

2
+ nπ]

1

l1
, (4.85)

and the SUSY-breaking mass splittings are

δmL = ±O(1)
q2
l1
, (4.86)

for both the (++) and (+−) cases. Therefore SUSY breaking lifts the degeneracy between

chiral fermions.

To compute the transmission of SUSY breaking to the right wall, we need to determine

the couplings. Naively, the fermion boundary conditions (4.73) might suggest that the

(++) case does not give an efficient SUSY breaking mechanism, because X = 0 on the right

wall and there is no manifest Majorana mass for Z in that case. However the z-derivative

terms in (4.66) give Majorana masses upon Kaluza-Klein reduction, with the same order

of magnitude as the manifest Z Majorana masses. Then from (4.80),(4.81) we can deduce

that for these states AR, BR, BL ∼ (mL)2νAL and so these modes are dominated by the

∼ AL component in (4.79) throughout most of the bulk geometry. Because l1 > l2, the

proper normalization of the wavefunction is achieved by setting AL ∼ 1/
√
l1 paralleling

the case of bosons from §4.3. Therefore AR ∼ (mL)2ν/
√
l1. Recalling the form of the

fermionic interaction Lagrangian (4.42) and the conformal scalings of the fields φ4D = aφb,

λ4D b = a3/2λb and λ4D B = a2λB = a2Σ, the effective 4D couplings are the same as that

for the bosons. If gIJ = O(1)/
√
M5, the left-localized fermion couplings to the fields on

the right IR brane are

gLL 4D =
O(1)√
M5L

gLR 4D =
O(1)√
M5L

√
l2
l1

(mL)2ν .

(4.87)
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For heavy fermions, the tunneling suppression weakens, and eventually disappears for

the states with mL > 1. The masses and the couplings of these states behave essentially

as those for bosons, in eqs. (4.25),(4.26).

Now we look at the right-localized states and compute their mass splitting and 4D

effective theory couplings. For these states, AL, BL, BR ∼ (mL)2νAR and so the correct

normalization requires AR ∼ 1/
√
l2 + (mL)4ν l1. The eigenvalue equation becomes

jν±1/2,2 = O(1)(mL)2ν+1 ∓ q2O(1)(mL)4ν , (4.88)

and to leading order the supersymmeric masses and the SUSY-breaking induced mass

splittings are

m ∼ [
(ν − 1)π

2
+ nπ]

1

l2
(4.89)

δm = ±O(1)
q2
l2

(mL)4ν . (4.90)

The effective 4D couplings of the right-localized fermions are

gRi 4D ∼ gRi(Ai/AR)/
√
al ∼ gRi(Ai/AR)/

√
L ,

so that

gRL 4D =
O(1)√
M5L

(mL)2ν

√
l1

l2 + (mL)4ν l1

gRR 4D =
O(1)√
M5L

√
l2

l2 + (mL)4ν l1
.

(4.91)

Now we are ready to compute the SUSY breaking transmission to the fields localized on

the right IR brane.

As a warmup, we consider the radiatively-induced scalar masses. We begin with

terms ∼m2
sφ
†
bφb, for any brane scalars φb that may have direct couplings to the split bulk

multiplets. To compute the masses, we again use the formulas (4.48) and (4.54) derived

in §4.4. Using (4.86), (4.87), (4.90) and (4.91), we see that for the left-localized modes,

F = x4ν l2/l1, βB − βF = q2 and l = l1. Therefore the scalar masses induced by the

left-localized modes are

m2
s ∼ O(1)

q2
M5L

l2
l31

(L
l1

)4ν

(4.92)

For the right-localized modes, F = l2/(l2 + x4ν l1), βB − βF = q2x
4ν and l = l2, and so

m2
s ∼ O(1)

q2
M5L

1

l2(l2 + (L/l2)4ν l1)

(L
l2

)4ν

. (4.93)
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Here again if l1 < l2
(
l2
L

)4ν

, the limit is

m2
s ∼ O(1)

q2
M5L

1

l22

(L
l2

)4ν

. (4.94)

When l1 > l2
(
l2
L

)4ν

the scalar masses are

m2
s ∼ O(1)

q2
M5L

1

l2l1
. (4.95)

Hence again the right-localized states give a dominant contribution to the scalar masses

as long as l1 > l2. Similar SUSY-breaking mass splittings are also induced for any other

right IR-brane chiral supermultiplet, in particular for an adjoint multiplet. Because these

terms contain bulk fermions with Majorana mass in the loop, they break R-symmetry.

We further consider SUSY breaking-induced masses of the form m2
Aφ

2
b, which violate

particle number conservation. Such terms arise for example in theories which contain

boundary interactions

Lint = g2
5Φ2

b(x)[Φ†B(x, z = l2)]2 + µΦ2
B(x, z = −l1) , (4.96)

where the first term denotes the interaction between the right brane scalars and the bulk

scalars while the second term stands for the SUSY-breaking left brane mass term for

the bulk scalars. Note that the quartic interaction term can arise from the effective 4D

superpotential

W = WSSM + gF3
b + gFb

∑

m

F2
B , (4.97)

where φb and φB are the superfields containing Φb and ΦB. To proceed, we need to reduce

(4.96) to 4d, and determine the terms it gives rise to in the effective 4d theory. With the

usual rules for dimensional rescaling for the KK modes, and the normalizations of bulk

wavefunctions which specify the overlap, we find that the effective 4d theory is

Leff = g2
4φ

2
b[φ
†]2B + δm2

Bφ
2
B , (4.98)

where the couplings and mass insertions for the left localized modes are g2
4D ∼

l2
M5Ll1

(mL)4ν and δm2
B ∼ 1/l21 for light modes and vanishingly small δM2

B for heavy

modes. For right-localized modes, g2
4D ∼ 1

M5L
while δm2

B ∼ q2
l1(l2+(mL)4νl1)

(mL)4ν for light

modes and again vanishingly small δm2
B for heavy modes. These vertices give rise to a

42



one-loop Feynman diagram with φb as external legs and φB loop, and one mass insertion

∼ m2
B, which generates the one-loop mass term ∼ m2

Aφ
2
b where

m2
A ∼ O(1)

∑

m

g2δm2
B

∫
d4p

(p2 +mB)2
. (4.99)

It is now clear that the right-localized modes dominate the contribution to (4.99). We can

now evaluate the contribution of the left-localized modes by our summation technique,

noticing that by defining F = g2δm2
BM5L and (p2 + mB)−2 = −p−2∂s(sp

2 + mB)−1|s=1

we get

m2
A ∼ −

O(1)

M5L
∂s

∫
d4p

p2

∑

m

F

sp2 +mB
|s=1 . (4.100)

After summing over the KK masses and performing the angular integrals, we obtain to

leading order

m2
A ∼

O(1)l2
M5L

∫
dp
(
F (i
√
spL) + F (−i

√
spL)

)
, (4.101)

where we have used eqs. (4.51) and (4.52), and ignored the exponentially suppressed

contributions. Using (4.34),(4.39),(4.40),(4.41) and (4.44), we can approximate F by

F = O(1)
q2

l1(l2 + (mL)4ν l1)

(
mL
)4ν(

1− θ(|m| − q2
l2

)
)
, (4.102)

and upon substituting into (4.101) we find

m2
A ∼ O(1)

q2
M5L

1

l1(l2 + (L/l2)4ν l1)

(L
l2

)4ν

. (4.103)

Hence this mass is parametrically similar to (4.93).

Now we turn to the gaugino masses induced by the transmission of SUSY breaking.

To lowest order, the gaugino masses must come from the loop diagram involving a bulk

multiplet with an R-symmetry breaking mass term. Because the gauge fields live only

on the brane and not in the bulk, gauge invariance requires the existence of an adjoint

which couples to the gaugino through terms like ∼ gTr(Φbλb)λB. In order not to spoil

gauge unification, the adjoint must be heavy, M ∼ 1/L. The adjoint must also acquire

number operator-breaking mass term, in order to give rise to the gaugino mass. This is

clear from diagram topology, since the “in”-vertex is generated by the term ∼ Tr(Φbλb)λB ,

and the Majorana mass insertion mMλ
†
Bλ
†
B on the λB line converts it into λ†B, and so the

“out”-vertex must be ∼ Tr(Φbλb)λB to contract this with. Hence the adjoint must pick
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up a mass term ∼ δm2
AΦbΦb so that the contraction does not vanish. Such a term arises

radiatively, as given in eq. (4.103).

Next we must reduce the Majorana mass term to the 4d effective theory. The left- and

right-localized fermions acquire hierarchically different Majorana masses in four dimensions

but they also have very different couplings to the fields on the right wall. Indeed, for

fermions λB 4D = a2λB , so the Majorana mass for left-localized fermions is a4q2[χT iσ2χ+

h.c.]=q2[XT iσ2X +h.c.] ∼ (q2/l1)[ψT4Diσ
2ψ4D +h.c.], i.e. it is q2/l1 in the 4D theory. For

the right-localized fermions, there is an additional suppression since AL ∼ (mL)2νAR is

the parameter which sets the scale of the wavefunction on the left wall. Therefore the right-

localized fermion has tunneling-suppressed 4D Majorana mass, q2f
2(mL)/(l2 +f2(mL)l1).

It is small for the light states, but approaches that of the left-localized bulk fermions for

the heavy modes.

Define

q̃ = (q2/l1, q2f
2(mL)/(l2 + f2(mL)l1))

for the left- and right-localized fermions, respectively. The gaugino mass transmitted to

the right IR brane is, approximately,

mg ∼ O(1)
∑

m

q̃δm2
A g2

∫
d4p

(p2 +M2)2(p2 +m2)
. (4.104)

Here δm2
A is the radiative mass correction of the adjoint, given in eq. (4.93), and M ∼ L−1

is the mass of the adjoint. We sum the series using (4.51). Here F = M5Lq̃g
2δm2

A. After

doing the angular integrals, the gaugino mass is approximately

mg ∼
O(1)l

αM5L

∫ ∞

0

dp p2

(p2 +M2)2

(1

2
[F (ipL) + F (−ipL)]

+
F (ipL)

e2πlp/α−2iπβ(ipL) − 1
+

F (−ipL)

e2πlp/α+2iπβ(−ipL) − 1

)
.

(4.105)

The integral is finite, because it is cut off in the UV where F → const. and the integrand is

∼ 1/p2. We can ignore the terms with exponential suppressions in the UV because the main

contribution to them comes from the momenta p ∼ α/2πl, while the main contribution to

the unsuppressed integrals comes from p ∼ M , such that their ratio is ∼ 1/(Ml)3 << 1.

Thus using the saddle point method to estimate the integral, we obtain

mg ∼
O(1)l

αMM5L

(
F (iML) + F (−iML)

)
. (4.106)
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Now, for either the left- or the right-localized modes, the states with high loop momentum

∼ M dominate (4.106). Since f2(ML) ∼ 1, the relevant bulk fermion Majorana mass is

always q̃ = q2/(l1 + l2) ∼ O(1)q2/l1. Also, in this limit the couplings approach rapidly

those of eq. (4.26). In particular, the left-localized modes couple to the right IR brane

with g2 ∼ (M5L)−1l2/l1, while the right-localized modes couple more strongly, with g2 ∼
(M5L)−1. This shows clearly that this integral does not give any tunneling suppression

factors to the gaugino mass, which comes entirely from the tunneling suppression factors

in δm2
A. So tunneling suppression terms are one-loop effects.

Therefore, for the left-localized modes, F = q2δm
2
Al2/l

2
1 and l = l1 (4.85),(4.87), so

using (4.103) for δm2
A,

mg ∼ O(1)
( q2
M5L

)2 1

Ml1

1

l2 + (L/l2)4ν l1

(L
l2

)4ν

. (4.107)

For the right-localized modes, F = q2δm
2
A/l1 and l = l2 (4.89),(4.87), and so their con-

tribution to the gaugino mass is essentially the same as (4.107). Both contributions are

dominated by the states with loop momenta of the order of the adjoint mass, p ∼M . As

before, we have two regimes, depending on (L/l2)4ν l1/l2.

The formula for the gaugino mass generated by loops of the bulk fields is:

mg ∼ O(1)
( q2
M5L

)2 1

Ml1
×





1
l2

(
L
l2

)4ν

l1 < l2
(
l2
L

)4ν

1
l1

l1 > l2
(
l2
L

)4ν (4.108)

The tunneling suppression is manifest in the form of (L/l)4ν dependence, and begins to

disappear in the limit where the localization of bulk states is weak.

For comparison with other mediation mechanisms, we also consider the corrections to

the gaugino mass from gravity and Weyl anomaly mediation. The gravity mediation would

give gaugino mass of order of teh gravition mass m3/2 [25]. The anomaly-mediated super-

symmetry breaking leads to a universal form of the gaugino mass [30], mA
q =

βg(g2)
g2 m3/2,

where g is the gauge coupling, βg the gauge coupling β-function. The gravitino mass is gen-

erated by the exchange of split bulk multiplets in the loop. By tree-level Ward identities,

the mass formula is, approximately,

m3/2 ∼ O(1)
∑

m

q̃δm2
B

M2
4

∫
d4p

p2

(p2 +m2)3
, (4.109)
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where δm2
B is the bulk boson R-symmetry breaking mass. We can again sum over the bulk

mode masses using the technique in §4.3. Since the R-symmetry breaking terms q̃δm2
B

depend on the tunneling suppression, the left-localized mode contributions will dominate.

The left-localized fermion Majorana mass is q̃ ∼ q2/l1, while the bulk boson R-breaking

mass squared is δm2
B = F/l21, where F is O(1) for light states and and decreases with

mass as F ∼ q2/(l1m) for heavy states. For simplicity we again approximate it by the step

function F = 1 − θ(|m| − q2/l1). Using this, noting that p4/(p2 + m2)3 = (1/2)∂2
s (sp2 +

m2)−1 and recalling (4.53), where we can now ignore the subleading terms with exponential

momentum suppressions, we find

m3/2 ∼ O(1)
q2

M2
4 l

2
1

∂2
s s
−1/2

∫ ∞

0

dp
(

1− θ(|p| − q2/l1)
)

(4.110)

Therefore the gravitino mass is, using l = l1 for the left-localized modes,

m3/2 ∼ O(1)
q2

M2
4 l

3
1

. (4.111)

This mode is lighter than other gravitino KK modes, whose masses are ∼ l−1
1 , l−1

2 , because

it is protected by SUSY. So tunneling mediation will be a dominant mechanism for trans-

mitting SUSY-breaking mass splittings to the visible sector as long as mg > m3/2. We

address the conditions when this is satisfied below.

5. Phenomenology of Tunneling Mediation

The SSM cutoff is set by the conformal distance of the SSM to the UV brane,

l−1
2 ∼ 1015 GeV . This choice ensures that there is no fundamental obstacle to im-

plement the supersymmetric unification of gauge couplings. Squark masses are generated

by radiative corrections including gaugino loops. They start out close to zero in the UV,

and rise via the RG flow in the IR. As a result, msq ∼ TeV at the electroweak energy and

is comparable to the gaugino mass, as in no-scale models [40].

Tunnelling suppression produces large mass hierarchies without much effort. For ex-

ample, take M5 ∼ 1016GeV , L ∼ 5/M5, l2 ∼ 5L, M ∼ 1/L and q2 ≤ O(1). The

tunnelling suppression coefficient ν and the SUSY breaking scale l−1
1 must be chosen so

that mg ∼ TeV . For ν = 1, i.e. with little tunnelling suppression, the required SUSY

breaking scale is low, l−1
1 ∼ 1010GeV . This scale implies a micron-range gravitino mass
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m3/2 ∼ eV . If ν = 3, the SUSY breaking scale should be l−1
1 ∼ 3× 1013GeV , closer to the

unification scale. The induced gravitino mass is m3/2 ∼ 270GeV .

Does tunneling mediation solve the flavor problem? Just as in gravity mediation, the

answer is, in general, negative. The reason is that although the squark masses vanish

at precisely the GUT scale, they are non-zero an order of magnitude below MGUT ; the

squark masses are “hard” –they do not vanish sufficiently rapidly in the UV. So they can

be distorted by the nearby flavor physics, taking place at MGUT or MPl, which is also

responsible for the large intergenerational differences of quark and lepton masses. These

distortions can cause a misalignment of squark and quark masses leading to unacceptable

flavor violation. The only way to avoid this is for the UV theory to be special, e.g. the

squark masses could line up with the quark masses and therefore not create new flavor

violating angles.

There are also model-independent gravity [28,25] and anomaly [30] mediated contri-

butions to the sparticle masses that are bounded by m3/2. They are subdominant to the

tunneling mediated contributions as long as

l1 > l2
( l2
L

)2ν+1/2 1

M4l2
. (5.1)

It is not difficult to satisfy this constraint because of the 4d Planck mass M4 in the

denominator on the RHS.

The hierarchies we produce do not originate from the AdS scaling as in [8]. In our

case the cutoff on the SSM brane is MGUT . Furthermore, our effect would persist with

slight modifications given any warp factor which raises a barrier between different throats.

6. Tunneling, 4D Effective Field Theory, and Compactified AdS/CFT

In this section we will discuss the four-dimensional description of our results, in the

case that the throats are the near-horizon geometries of D3-branes. In this background,

normalizable closed string excitations have a dual description as the massless gauge theory

excitations on the D3-brane worldvolume [13]. More precisely, if one does not scale α′

strictly to zero, there are scattering states in the asymptotically flat region which are

purely ingoing at the AdS horizon; and modes which are localized in the AdS throat,

outgoing at the past horizon, and ingoing at the future horizon [41,42]. In the strict near

horizon limit with α′ → 0, the latter become normalizable modes in AdS, which are dual

to states of the D-brane CFT created by modes of local gauge-invariant operators OI(x)
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[18,43,44]. The former become non-normalizable modes which are dual to couplings λI

multiplying these operators [17,18] in the dual CFT description:

∫
d4xλIOI(x) .

We will refer to these modes as “asymptotic closed strings” in reference to the localization

of their wavefunctions in the asymptotically flat region of the full D3-brane geometry.

We will focus on the five-dimensional graviton hµν . When h is polarized along the

boundary, the normalizable and non-normalizable modes of h are, respectively, dual to the

modes of and couplings multiplying the gauge theory stress tensor Tµν .

When the AdS throat opens into some compact manifold, the low-energy states sup-

ported in this manifold become modes of four-dimensional (super)gravity plus additional

fields arising from the compactification. These modes can be modeled as excitations on

the UV (“Planck”) brane, which couple to modes supported in the bulk of AdS [11]. We

might expect to maintain the interpretation of these latter modes as excitations of a dual

CFT with a cutoff, now coupled to four-dimensional (super)gravity [45]. In the setup of

§2, the low-energy action would then include arbitrary products of gauge theory operators

δS =

∫
d4xλijO(1)

i O
(2)
j + . . . , (6.1)

where the superscripts (1, 2) label the left and right AdS regions of Fig. 2.

The tunneling calculation in §2 tests this proposal. An operator O of dimension ∆

will appear in the action with powers of the UV cutoff ΛUV :
∫
d4xΛ4−∆

UV λO∆ (6.2)

where λ is dimensionless. If O∆ takes the form (6.1), it will mediate transitions between

modes of these operators with a probability:

P ∼ λ
(

m

ΛUV

)2∆−8

(6.3)

and a transition rate:

Γ ∼ mλ

(
m

ΛUV

)2∆−8

(6.4)

where m is the mass of the initial state. The results of §2 for the tunneling of graviton

modes give:

P ∼m4L4 ∼ e−4R1/L (6.5)
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and

Γ ∼ 1

L
e−5R1/L. (6.6)

A glueball near the left IR brane has mass:

m ∼ 1

L
e−R1/L . (6.7)

We conclude that the transition between glueballs is mediated by a dimension-6 operator

and that the natural UV cutoff is ΛUV = 1/L = MUV .4 We note first that this is not the

four- (or five- or ten-) dimensional Planck scale as would appear in the minimal coupling of

gravity to a CFT. Instead, the dimensionful parameters are set by scales in the background

geometry.5

A further surprise is that the operator mediating the transition in §2 is not constructed

from the CFTs alone. The 2×(CFT) operator mediating a transition between the gravitons

hµν in the two AdS regions would be the dimension eight operator:

: T (1)
µν T

(2)
µν :

However, the outgoing wave in the second throat has a wavefunction proportional to

ψ ∼ J2 + i N2 . (6.8)

In the AdS/CFT dictionary this is a Fourier mode of the “bulk-boundary propagator”

[17,41] and corresponds to a change in the coupling, i.e. an asymptotic closed string mode,

δhµνTµν .

In field theory language, the calculation of §2.1 is computing the overlap

〈ψ1|T (1)
µν H(2) µν |ψ2〉 (6.9)

4 There is some freedom in this identification of the cutoff. In the denominator of (2.1) we can

replace L with ζL. The tunnelling formula is the same, but with ΛUV = 1/ζL. ζ will be fixed by

the details of the microscopic model.
5 In a perturbative string limit, Ms < M(pl)4,5,10 . If the throats were close enough, the strings

stretched between the D-branes could play an appreciable role in the dynamics below the Planck

scale. In the case at hand these “W bosons” are much heavier than Ms.
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|ψ1〉 is the state on the left side of the wall, and |ψ2〉 is the state with outgoing wavefunction

J + iN on the right. If this overlap is to be non-vanishing, H (2) must be built from

asymptotic closed-string degrees of freedom.

There are many candidates for H. Obvious terms constructed from bulk gravitons

are: R
(5)
µν (z = 0, x) and g

(5)
µνR(5)(z = 0, x), where these fields are now included in the 4d

effective action. In addition, the “UV wall” defines a covariant normal vector nµ, whose

covariant derivatives can be combined into an infinite number of dimension-two covariant

two-index tensors. Two sets of terms are (n · ∇)αKµν(x) and ∇µ∇ν(n ·∇)αK, where Kµν

is the extrinsic curvature of the UV wall.

Another sign that we must couple the CFT and asymptotic closed string operators is

that in the standard RS picture, the mass eigenstates for h take the form:

ψ ∼ J2 + b (mL)2 N2 , (6.10)

where b is of order 1. When L→ 0, J2 and N2 become normalizable and non-normalizable,

respectively. This implies that the stress tensor is modified:

T̃µν = TCFT
µν + b

(
L2∂2

) 1

L2
Iµν (6.11)

where I is a linear combination of dimension-two tensors constructed from the 10d graviton

polarized along the D3-brane. The additional derivatives reflect the coefficient of N in

(6.10). Such a mixing will generically occur for all other operator modes as well. So the

Hamiltonian mixes the CFT and asymptotic closed-string degrees of freedom; the effective

theory includes operators from both sectors.

The small, derivative-suppressed coefficient in (6.10),(6.11) also suppresses the

dimension-four operator one might expect from the purely asymptotic closed-string con-

tribution to : T̃ (1)T̃ (2) :. This derivative suppression also means that at sufficiently low

energies the modes localized in one AdS throat are well described by the original CFT

stress tensor. However, at best this decoupling works when studying a single throat.

When coupling the two, we must include modes from both throats, and asymptotic closed

string modes, even at low energy. We must take care with the scale-radius correspondence

when the AdS throat is coupled to additional degrees of freedom. Low energy modes are

supported in the compactification manifold or down the right throat as well as far down

the left throat. Furthermore, if one chooses boundary conditions such that wavefunctions
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have larger mixings between J and N , even the dynamics far down one AdS throat will

cease to be well described by CFT dynamics.

The perturbations forced on us are distinct from another effect we might expect. A

conformal field theory coupled to gravity will generically have all relevant (and irrelevant)

CFT operators appearing in the Lagrangian, with coefficients given by suitable powers

of the UV scale M4. This is not the effect we are discussing here. As in all discussions

of Randall-Sundrum scenarios, we have assumed the absence of any such relevant opera-

tors (tachyons satisfying the Breitenlohner-Freedman bound [46,17]); these would yield an

instability of the gravity solution after introducing the UV brane.
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