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Abstract

We consider round an rectangular-aperture tapered collimators
with a small taper angle α. Depending on the angle, aperture,
and the frequency different parameter regimes are found with spe-
cific scalings of the impedance. The physical mechanism involved
in formation of the beam wake field is discussed. Analytical for-
mulas are derived for the limiting case of the diffraction regime for
round collimators. For rectangular geometry with a large width
to height ratio, two new regimes — diffraction and intermediate
– are found and the impedance is calculated for each regime. In
addition to consideration based on solution of Maxwell’s equa-
tions, a simple recipe is given for calculation of the impedance in
the diffraction regime for both round and rectangular geometries.
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1 Introduction

Collimators are often used in storage rings and accelerators to remove high-
amplitude particles from the transverse profile of the beam. Being close to
the beam orbit they may introduce large impedance that perturbs the beam
motion downstream of the collimator and results in additional emittance
growth and jitter amplification of the collimated beam. The wake effect of
the collimators is of concern for future colliders, such as the Next Linear
Collider [1], with extremely small transverse emittance of the beam.

To lower the collimator impedance one can try to taper the collimator
jaws to get a gradual transition from a large to a small aperture and back.
Two examples of such collimators – a round and a rectangular one – are
shown in Fig. 1.
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Figure 1: Geometry of a round (a) and a rectangular (b) tapered collimators.
For the rectangular collimator, h denotes its width in the horizontal plane.

The impedance of a smooth round tapered transition was calculated by
K. Yokoya in the limit of low frequencies [2]. For the transverse impedance,
Yokoya’s formula gives

Zt = −iZ0

2π

∫
dz

(
b′

b

)2

, (1)
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where b(z) is the radius of the collimator as a function of longitudinal coor-
dinate z, Z0 = 377 Ohm, and the prime denotes the derivative with respect
to z. It was shown later [3] that the condition of applicability of Yokoya’s
formula is

αkb ¿ A, (2)

where α is the angle of the collimator, b is the minimal radius, k = ω/c,
and A is a numerical factor of order of unity. For a bunch of length σz, the
characteristic value of k in the beam spectrum is equal to σ−1

z .
A generalization of Yokoya’s result for a rectangular collimator of large

aspect ratio, h À b, was given in Ref. [4]. The vertical transverse impedance
in this case is given by the following formula

Zt = −iZ0h

2

∫
dz

(b′)2

b3
, (3)

where b(z) is the half-gap of the collimator and h is its width. Eq. (3) shows
that the impedance of a flat collimator with a large value of h is higher than
the impedance of a round collimator with the same function b(z) – a result
that seems surprising if one considers the limit h →∞. It turns out however,
that the applicability condition of Eq. (3) is

αkh2

b
¿ 1. (4)

It is much tighter than Eq. (2) and means that Eq. (3) is not applicable for
very large values of h. Unfortunately, the condition (4) was not formulated
in the original publication [4], and in some cases resulted in the use of Eq.
(3) beyond its applicability limits.

In this paper we will give a classification of possible regimes for impedance
of both round and rectangular tapered collimators and will discuss the phys-
ical mechanisms involved into the formation of the beam wake field. We will
also calculate the impedance of such collimators for the angles that do not
satisfy the conditions (2) and (4). Note that we are only interested here in
the case of short bunches, σz ¿ b, and ultrarelativistic energies, γ →∞.

The comparison of theoretical results obtained in this paper with recent
measurements of the collimator wake at SLAC [5] can be found in a compan-
ion paper [6].
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2 Classification of possible regimes

First, consider a beam propagating in a straight round perfectly conducting
pipe of a constant radius. For impedance calculations, it is convenient to
assume a Fourier transform of the beam current Iω = I0e

ikz−iωt, where I0 is
the amplitude of the current. The current density jim of the image current
on the wall will have the same dependance jim ∼ eikz−iωt, which means that
the image current propagates with the speed of light. Since electromagnetic
waves in a straight pipe have a phase velocity greater than the speed of
light, the wall currents do not excite these modes, hence, the beam does
not radiate. This explains why impedance vanishes in a straight perfectly
conducting pipe.

Now, assume a round tapered collimator of length l ∼ b/α with a per-
fectly conducting wall. Because of the variation of the pipe radius, the image
current acquires an additional factor f(z), jim ∼ f(z)eikz−iωt, where f(z) is
a smooth function that varies on the scale of variation of the taper radius l.
Making now Fourier decomposition of jim with respect to z, we find a spec-
trum of width ∆k ∼ l−1. Because of this broadening, there will be harmonics
in the spectrum of jim with the phase velocity vph exceeding the speed of light.
It is easy to see that by order of magnitude |vph−c| ∼ c2∆k/ω ∼ c/lk. Com-
paring vph with the lowest phase velocity c(1 + j2

01/k
2b2)1/2 of TM modes in

a round pipe, we find that the radiation begins if

kb2

l
= kbα & j2

01. (5)

This condition, by order of magnitude, is opposite to Eq. (2) which explains
why the impedance in Eq. (1) is purely inductive — in the regime given by
Eq. (2) the beam does not radiate, and hence, does not lose energy.

We will call the regime of parameters where Eq. (5) is satisfied the
diffraction regime. The impedance in this regime is calculated in Sections 5
and 6.

The same consideration is also applicable for a rectangular collimator with
a large aspect ratio. An important difference, however, is that the lowest
phase velocity of TE0n eigenmodes in rectangular cross-section waveguide is
equal to c(1 + π2/k2h2)1/2. Hence, the radiation occurs when

kh2

l
=

kh2α

b
& π2. (6)
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When this equation is satisfied the regime of purely inductive impedance Eq.
(3) breaks down. This is in agreement with the fact that the applicability
condition Eq. (4) is opposite to Eq. (6). If the angle of the collimator is such
that Eq. (6) is satisfied, but kbα ¿ 1, only a limited number of TE0n will be
excited. We will call this regime intermediate to indicate that it is located in
the parameter space between the inductive regime and the diffraction one.

Finally, when kbα is greater than unity, the rectangular collimator is in the
diffraction regime, and one can expect the wake of the rectangular collimator
similar to the wake of the round collimator in the diffraction regime.

Calculation of the impedance for rectangular collimator is described in
Section 8.

3 The Method

We will use a method that was previously employed in other problems [7]
for calculation of the impedance in a perfectly conducting environment. In
this method, the radiation of the image currents induced by the beam in
the wall is calculated. In the absence of other losses, the radiated energy
is equal to the energy loss of the beam and can be related to the real part
of the impedance. The imaginary part of the impedance can then be found
using the Kramers-Kronig relation. In this section, the method is formulated
for the simplest case of the longitudinal impedance of a round taper. The
actual calculation of the longitudinal impedance in this case is carried out
in Section 5. With a slight modification, the method will also be applied for
the transverse impedance both in cylindrical and rectangular geometries in
Sections 6 and 8 .

The geometry of a round conical taper is shown in Fig. 2. We will use
two coordinate systems inside the taper – a cylindrical coordinate system ρ,
φ and z, and a spherical coordinate system r, θ, φ, with the center of the
spherical system located at the vertex of the cone. The taper connects two
round pipes of radii b1 and b2, b2 > b1. The taper angle α is assumed to be
small, α ¿ 1.

The Fourier component of frequency ω of the beam current is (we assume
the e−iωt time dependence in what follows)

Iω = I0e
ikz, (7)

where I0 is the amplitude of the current harmonic and k = ω/c. Denote
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Figure 2: A taper of the collimator with coordinate systems. The distance
from the axis is measured by the radius vector ρ in cylindrical geometry and
by the coordinate y for a rectangular collimator.

by Pω the averaged over time intensity of radiation of this current from the
collimator region. The real part of the impedance is given by the following
relation (see, e.g. [8])

Re Z(ω) =
2Pω

I2
0

. (8)

The radiation is due to the image currents induced in the perfectly con-
ducting walls in the region where they are not parallel to the z-axis. It is
convenient to represent the total electric field of the beam current (7) inside
the taper as a sum of the vacuum field, Evac, and the radiation field Erad,

E = Evac + Erad, (9)

where for an on-axis beam

Evac = ρ̂
2I0

ρc
eikz, (10)

with ρ̂ being a unit vector in the radial direction of the cylindrical coordinate
system.

The radiation field Erad satisfies Maxwell’s equation with the boundary
condition that requires the tangential component of the total electric field on
the wall to vanish

Erad
t |wall = −Evac

t |wall. (11)
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A powerful method of solution of Maxwell’s equations with the boundary
condition given by Eq. (9) is given by Vainshtein [9] (see also [10]). In
this method, a non-vanishing tangential component of the electric field on
the wall is replaced by the surface magnetic current imag located inside the
waveguide infinitesimally close to the wall. The magnitude and the direction
of the magnetic current is

imag =
c

4π
n×Erad

t |wall = − c

4π
n×Evac

t |wall, (12)

where n is the unit vector normal to the surface and directed toward the
metal. Note that the magnetic current exists only inside the taper and van-
ishes in the region where the wall is parallel to the z axis.

Inside the waveguide, the radiation field excited by the magnetic currents
can be represented as a sum of eigenmodes

Erad =
∑

n

a+
n E+

n +
∑

n

a−n E−
n , (13)

where a±n is the amplitude and E±
n is the electric field of the n-th eigenmode,

and the sign indicates that the wave propagates in the positive (+) or negative
(−) direction of the z axis. A similar expansion in terms of the amplitudes
a±n is also valid for the magnetic field.

In the region occupied by the radiated current (inside the taper), the
amplitudes a±n are functions of the coordinate z. However, for calculation
of the radiated power we only need expressions for the field far from the
collimator area. In this region, the amplitudes a±n are given by the following
integrals [9]

a+
n = − 1

Nn

∫
imag ·H−

n dS, a−n = − 1

Nn

∫
imag ·H+

n dS, (14)

where H±
n is the magnetic field of the n-th eigenmode and the integration

covers the area occupied by the magnetic current. The norm Nn of the mode
n in Eq. (14) is defined as

Nn =
c

4π

∫
dS

(
E+

n ×H−
n −E−

n ×H+
n

)
, (15)

where the integral is taken over the cross section of the waveguide. Properly
defined eigenmodes are orthogonal with the norm given by Eq. (15).
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The energy radiated by the current Pω can be written as a sum over all
possible modes,

Pω =
∑

n

Pn(|a+
n |2 + |a−n |2), (16)

where Pn is the energy flow in the mode of unit amplitude.

4 Eigenmodes in Small-Angle Conical Taper

Eigenmodes in a conical taper can be divided into TE and TM modes [9],
similar to the classification of modes in a circular waveguide. In a spherical
coordinate system shown in Fig. 2, TE modes have Er = 0, and TE modes
are characterized by Hr = 0.

Consider first axisymmetric TM0n modes in a conical taper with angle α.
Approximate formulas for the electric and magnetic fields in the n-th mode
valid in the limit α ¿ 1 are given by

Er =
ν2

r2
J0(νθ)

√
xHν(x),

Eθ = −νk

r
J1(νθ)(

√
xHν(x))′,

Hφ = −iνk

r
J1(νθ)

√
xHν(x), (17)

where r, θ and φ are the spherical coordinates, x = kr, the prime denotes
differentiation with respect to x, ν = j0n/α with j0n being the n-th root of
the Bessel function J0, and J1 is the Bessel function of the first order. The
function Hν is the Hankel function of the order ν, and for waves propagating
in the positive or negative z-direction (see Fig. 1) Hν is the second order

H
(2)
ν or the first order H

(1)
ν , respectively.

The norm of the n-th mode can be found by direct integration of Eq. (15)
and is given by

Nn = ck2 j2
0n

π

[
(1− j−2

0n )J2
1 (j0n) +

1

4
J2

2 (j0n)

]
. (18)

In the limit of n À 1,

Nn ≈ 2ck2 n

π
. (19)
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The energy flow Pn (equal to the integrated over the cross section averaged
over the time Poynting vector) in the mode is Pn = 1

4
Nn.

For the transverse impedance we will need the dipole modes TM1n and
TE1n. The TM1n modes in the limit α ¿ 1 are given by

Er =
ν2

r2
J1(νθ)

√
xHν(x) sin φ,

Eθ =
νk

r
J ′1(νθ)(

√
xHν(x))′ sin φ,

Eφ =
k

rθ
J1(νθ)(

√
xHν(x))′ cos φ,

Hθ = − ik

rθ
J1(νθ)

√
xHν(x) cos φ,

Hφ =
iνk

r
J ′1(νθ)

√
xHν(x) sin φ, (20)

where ν = j1n/α and j1n is n-th root of the Bessel function J1. As above,

Hν is the Hankel function of the order ν equal to H
(2)
ν for the forward waves

and H
(1)
ν for the backward waves. The norm of a TM1n mode is

Nn = ck2 j2
1n

8π
[J0(j1n)− J2(j1n)]2 , (21)

which for n À 1 reduces to Nn = ck2n/π. The energy flow in the mode is
Pn = 1

4
Nn.

The field of a TE1n mode can be formally obtained from Eqs. (20) by
the following transformation: ETM

r → HTE
r , ETM

θ → HTE
θ , ETM

φ → HTE
φ ,

HTM
θ → −ETE

θ , HTM
φ → −ETE

φ (and ETE
r = 0). The factor ν in Eq. (20)

for the TE1n modes becomes ν = j′1n/α, where j′1n is the n-th rood of the
derivative of the Bessel function J ′1. The norm for those modes is negative,

Nn = −ck2 1

2π
(j′21n − 1)J2

1 (j′1n), (22)

and the energy flow in the mode is Pn = −1
4
Nn. For large n, approximately,

Nn = −ck2n/π.
The eigenmodes given above are only valid in conical regions of the col-

limator. For our purposes, the eigenmodes have to be extended into the
regions of straight pipes adjacent to the taper and defined for −∞ < z < ∞.
In the general case of an arbitrary angle α finding the field of the modes out-
side of the taper would require a proper matching of the conical eigenmodes
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with the eigenmodes in cylindrical pipes. Reflection and mode conversion
in the transition regions would couple modes with different n propagating
both in negative and positive directions. Fortunately, in the limit α ¿ 1 the
reflection and conversion effects are small, and the problem is greatly sim-
plified. In this case, in the zero order approximation, one can assume that
a TMmn (TEmn) mode in the conical region propagates as a corresponding
TMmn (TEmn) mode of the same amplitude in the straight pipe. Using the
relation νθ = j0nθ/α ≈ j0nρ/b, it is easy to see that the radial structure of
modes (17) is about the same as the radial dependence in TM0n modes in a
straight cylindrical pipe. The same is true for the dipole modes given by Eq.
(20).

As we will see below, at high frequency, the modes are radiated by the
beam at small angle to the axis. They propagate through the collimator
region without being reflected from the narrow part of the taper. This means
that we only need the modes with the frequencies much higher than the cutoff
frequency.

5 Longitudinal impedance of a conical colli-

mator in diffraction regime

For calculation of the longitudinal wake we will assume that the beam current
given by Eq. (7) is located on the axis, and will calculate the radiation coming
out from the entrance taper of the collimator, shown in Fig. 2.

In the spherical coordinate system, the tangential electric field of the
vacuum field on the wall has only radial component, Evac

r = Evac
ρ sin α ≈

(2I0α/ρc)eikz, which, according to Eq. (12) can be represented by the az-
imuthal magnetic current

imag
φ =

I0

2πr
e−ikr cos α, (23)

where we have used the relation ρ ≈ αr and z ≈ −r cos α. This current will
only excite the TM0n modes, with the amplitudes given by Eqs. (14). Since

for large x, H
(1)
ν (x) ∝ x−1/2eix and H

(2)
ν (x) ∝ x−1/2e−ix, it is easy to see

that the radiation in the backward direction is small, because a−n is given by
an integral of a function with a rapidly oscillating phase ∝ eikr(1+cos α). The
dominant radiation goes in the forward direction, and we need to evaluate
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the amplitude a+
n only. Using Eqs. (14) and (17) we find

a+
n =

ij0nkI0

Nn

J1(j0n)

∫ x2

x1

dx√
x
H(1)

ν (x)e−ix cos α, (24)

where x1 = kr1, x2 = kr2, and r2 and r1 are the values of the radius r at
the entrance to and at the exit from the taper, see Fig. 2. The integral in
Eq. (24) is calculated in the Appendix using the stationary phase method.
As shown there, this method can be used in the diffraction regime, when Eq.
(5) is satisfied. The result is

∫ x2

x1

dx√
x
H(1)

ν (x)e−ix cos α ≈
{

2(αν)−1/2eiζ0 , for x1 < ν
α

< x2,
0, for ν

α
< x1 or ν

α
> x2,

(25)

where ζ0 is a phase that we will not need in what follows. According to Eq.
(25), the modes that are radiated from the taper have numbers n such that
j0n = ν/α > x1 À 1, hence n À 1. Using the asymptotic expression in the
limit of large n: Nn ≈ 2ck2n/π, ν/α = j0n ≈ πn, |J1(j0n)| ≈ (2/π2n)1/2, we
find

|a+
n | ≈

√
2π

ckn
I0, (26)

when n is in the range n1 < n < n2, where, from Eq. (25), n1 = x1/π and
n2 = x2/π. For the energy flow in the n-th mode we have

|a+
n |2Pn ≈ I2

0

cn
. (27)

Because n is large, we can use integration over n to find the total radiated
energy at frequency ω

Pω =

∫ n2

n1

dn |a+
n |2Pn =

I2
0

c
ln

n2

n1

=
I2
0

c
ln

b2

b1

. (28)

The radiation for the whole collimator is equal to twice the radiation from
the taper, which gives for the real part of the longitudinal impedance of the
collimator in the diffraction regime

Re Zl = 2
Pω

1
2
I2
0

=
Z0

π
ln

b2

b1

, (29)

where Z0 = 4π/c = 377 Ohm.
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It is interesting to note that the radiated energy calculated above can be
easily found from a simple geometro-optical argument. The incident elec-
tromagnetic field of the beam current in the annulus b1 < ρ < b2 impinges
the lateral wall of the taper and is mirror reflected by the wall. This part of
the beam field, after reflection, detaches from the beam charge and becomes
converted into the radiation field. Hence the radiated power is equal to the
incident energy flow in the region b1 < ρ < b2. Using Eq. (10), we can find
the average Poynting vector of the vacuum field of the beam,

S =
c

8π
(Evac)2 =

I2
0

2πcρ2
, (30)

and calculate the energy flow in the annulus:

∫ b2

b1

2πρdρS =
I2
0

c
ln

b2

b1

, (31)

which is exactly equal to the result given by Eq. (28).

6 Transverse impedance of conical collimator

in diffraction regime

For calculation of the transverse wake, we consider a beam shifted from
the axis in vertical direction by an infinitesimally small distance ∆. The
transverse wake is due to the excitation of dipole modes in the waveguide.
These modes are excited by the dipole momentum of the beam, and instead
of considering an offset current, we can consider two currents of opposite
sign, I0e

ikz and −I0e
ikz, with the offsets ∆/2 and −∆/2, respectively. The

electric field of such a dipole current in the pipe of radius b2, outside of the
collimator, is

E0 =
2I0∆

c
eikz

[
2ρ(ŷρ)− ρ2ŷ

ρ4
+

ŷ

b2
2

]
, (32)

where ŷ is the unit vector in the direction of the offset. The first term in the
square brackets is the vacuum dipole field and the second term is the field
generated by the image charges in the pipe.

To calculate the radiation from the taper for a dipole current, we need
to modify the approach outlined in Section 3. Instead of using the vacuum
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field Evac in Eq. (9) we will use the field E0 that the beam has in the pipe
of radius b2, so that E = Erad + E0. The advantage of such choice is that
outside of the collimator, in the absence of radiation, the electric field E
would be equal to E0, and hence the difference E−E0 represents the ”true”
radiation coming out of the collimator.

Inside the taper the field E0 has both radial and azimuthal tangential
components on the wall

E0
r |wall =

2I0∆α

c
sin φ

(
1

b2
+

1

b2
0

)
eikz,

E0
φ|wall = −2I0∆

c
cos φ

(
1

b2
− 1

b2
0

)
eikz. (33)

As pointed out in Section 3, the solution of Maxwell’s equations with the
proper boundary condition can be obtained by introducing the magnetic
currents (12):

imag
φ = −I0∆α

2π
sin φ

(
1

b2
+

1

b2
0

)
eikz,

imag
r = −I0∆

2π
cos φ

(
1

b2
− 1

b2
0

)
eikz. (34)

Consider first TM modes that are excited by the azimuthal magnetic
currents imag

φ . Using Eq. (14) with magnetic field given by Eq. (20) we find

a+TM
n =

ik2ν∆I0

2Nn

J ′1(j1n)

∫ x2

x1

dx
√

x

(
1

x2
+

1

x2
2

)
H(1)

ν (x)e−ix cos α. (35)

In the diffraction regime, the integral is evaluated in the Appendix. Anal-
ogously to the calculation of Section 5, we replace summation over n by
integration and find for the total power radiated in TM modes

PTM
ω =

∆2I2
0

2cb4
2

∫ b2

b1

(b2 + b2
2)

2

b3
db, (36)

where b is the current pipe radius in the taper.
The TE modes are excited by both azimuthal and radial magnetic cur-

rents, however, the contribution due to the azimuthal current, which has
an additional small factor α (see Eq. (34), is small and can be neglected.

13



A calculation similar to the one described above gives for the power in TE
modes

PTE
ω =

∆2I2
0

2cb4
2

∫ b2

b1

(b2 − b2
2)

2

b3
db. (37)

The total radiated power in all modes is

Pω = PTE
ω + PTM

ω =
∆2I2

0

cb4
2

∫ b2

b1

b4 + b4
2

b3
db =

∆2I2
0 (1− b4

1/b
4
2)

2cb2
1

, (38)

which gives for the real part of the longitudinal dipole impedance

Re Zl =
2Pω

I2
0

=
∆2(1− b4

1/b
4
2)

cb2
1

. (39)

Using the Panofsky-Wentzel relation we can find the real part of the trans-
verse impedance of the collimator

Re Zt = 2
1

k∆

∂Re Zl

∂∆
=

4(1− b4
1/b

4
2)

ωb2
1

, (40)

where the factor of 2 takes into account the contribution of both tapers. Note
that in this formula we neglected the contribution from the pipe of radius
b1 connecting the two tapers. This is valid if the connecting part is short
enough.

Knowledge of the real part of the transverse impedance allows us to cal-
culate the kick factor κt for a Gaussian beam. The kick factor is defined so
that Nreκty0/γ gives the deflection angle for the bunch, with N being the
number of particles in the bunch, re – the classical electron radius, and y0

– the beam offset. Using a result of Ref. [3] we can express κt in terms of
Re Zt,

κt =

∫ ∞

0

dωF
(ωσz

c

)
Re Zt(ω), (41)

where

F (x) = − i

π
e−x2

erf(ix). (42)

Putting Eq. (40) in Eq. (41) and using the relation

∫ ∞

0

dx

x
F (x) =

1

2
(43)
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we find for the kick factor of a taper

κt =
2(1− b4

1/b
4
2)

b2
1

. (44)

Interestingly, that in the limit b2 À b1 this result reduces to the kick of
a diaphragm of radius b1 [11]. We see that in the diffraction regime the
wake generated by a tapered collimator is not suppressed compared to the
rectangular iris of the same radius.

Similar to the consideration at the end of Section 5, we can easily obtain
the radiated energy Eq. (38) using the notion of the electromagnetic field
“scraped off” by the collimator. Assuming that the incident electromagnetic
field of the beam current in the annulus b1 < ρ < b2 is converted into radiation
after reflection in the lateral wall of the entrance collimator, we find the
average Poynting vector

S =
c

8π
(E0)2, (45)

where E0 is given by Eq. (32),

S =
I2
0∆2

2πc

(
1

b4
+

1

b4
2

)
. (46)

The energy flow in the annulus is given by the integral

∫ b2

b1

2πρdρS =
I2
0∆2

2b2
1c

(
1− b4

1

b4
2

)
, (47)

and is exactly equal to the result given by Eq. (38).

7 Flat collimator, intermediate regime

The geometry of a flat collimator is shown in Fig. 2 where b1 and b2 are now
the half-gaps in the vertical direction. We will use two coordinate systems
below: x, y, z, and r, θ, x, with x directed along the wide side of the
collimator.

Analogous to the field (32) in the straight section of a round collimator,
which gives a zero-order approximation to the problem, we need an expression
for the electric field of a dipole current inside a rectangular straight pipe of
cross section 2b2 × 2h, with h À b2. A good approximation for the field is
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given by the limit h → ∞, that is the case of two parallel plates located at
distance 2b2. This field is given by the gradient of the potential function φ

E0
x = −∂φ

∂x
, E0

y = −∂φ

∂y
, (48)

where

φ(x, y) =
πI0∆

cb2

sin πy
b2

cosh πx
b2
− cos πy

b2

eikz. (49)

The magnetic field of the beam is H0 = ẑ ×E0, where ẑ is the unit vector
in the direction of the z axis.

Inside the taper the field given by Eqs. (48) and (49) does not satisfy
the boundary conditions. As in the previous Section, we represent the field
inside the taper as a sum E = Erad +E0, where Erad is the radiation electric
field.

In the intermediate regime, as was explained in Section 2, the radiated
field will be a combination of TE0n eigenmodes. For a large-aspect ratio
small-angle taper, h À b and α ¿ 1, and in the limit of high frequencies
kr À 1, the field in these modes is

Eθ = ±kkr√
r
e±ikrr cos

πnx

h
,

Hr = ∓inπkr

h
√

r
e±ikrr sin

πnx

h
,

Hx =
k2

r√
r
e±ikrr cos

πnx

h
, (50)

where kr =
√

k2 − (πn/h)2, x is the coordinate measured along the wide side
(h) of the taper, and n is an odd number. The upper (lower) sign corresponds
to the modes propagating in the negative (positive) direction of the z axis.
In these modes the magnetic field is an antisymmetric function of x; we
discarded the modes with the symmetric dependance of Hr because they are
not excited due to the symmetry of the problem. The norm for TE0n modes
is

Nn =
αchkk3

r

2π
, (51)

and the energy flow Pn = 1
4
Nn.

We will see from what follows that the typical value of n is such that n ∼√
kh2/r À 1. This means that, first, the excited modes propagate through
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the collimator without being reflected from the narrow aperture. Second,
the wavenumber kr for the modes is close to k, and can be approximately
calculated as kr ≈ k − π2n2/2kh2.

The magnetic current at the walls of the taper has two components, imag
x =

(c/4π)E0
r |wall and imag

r = −(c/4π)E0
x|wall. The signs in these equations are

valid for the upper side of the taper, y = b(z), — for the lower side imag

changes sign because of the opposite direction of the unit vector n in Eq.
(12). Note that E0

x is much larger than E0
r which is of the order of αE0

x,
hence imag

x ∼ αimag
r . Calculations show that in the scalar product imagH

the dominant contribution comes from the imag
r Hr term. This gives for the

amplitude a+
n of the waves propagating in the direction of the beam

a+
n = − 2

Nn

∫ ∞

−∞
dx

∫ r2

r1

drimag
r Hr, (52)

where imag
r is calculated for the upper plate of the collimator, y = b(z), and

the factor of 2 takes into account an equal contribution from the lower plate.
The magnetic field Hr in Eq. (52) is given by Eq. (50) with the upper sign,
corresponding to the modes propagating in the negative direction.

The radial component of the magnetic current as a function of coordinates
r, x is

imag
r =

c

4π
E0

x|y=b(z) =
πI0∆

4b2
2

sin πb(r)
b2

sinh πx
b2(

cos πb(r)
b2
− cosh πx

b2

)2 e−ikr cos α. (53)

One can see that for a typical value of n ∼ √
kh2/r the wavelength of

the excited modes in the x direction is of the order of 2
√

r/k À b. Since
the function imag

r is localized in the x direction within ∆x ∼ 1/b, we can
Taylor expand sin(πnx/h) and keep only the linear term of the expansion,
sin(nπx/h) ≈ nπx/h. Then integration over x can be performed analytically
using the following relation∫ ∞

−∞
dξ

ξ sinh ξ

(cos ζ − cosh ξ)2 = 2
π − ζ

sin ζ
. (54)

Using also approximations cosα ≈ 1 and kr ≈ k − n2π2/2kh2 one arrives at
the following result

a+
n =

2in2π3∆I0

cb2h3k3α

∫ r2

r1

dr
b2 − b(r)√

r
e−in2π2r/2h2k. (55)
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The dominant contribution to this integral comes from the region 0 < n .
nmax where nmax is determined from the condition that the phase factor in
Eq. (55) becomes of the order of one, nmax ∼

√
kh2/r. We used this estimate

above as a characteristic value of n for the radiated modes.
The total energy radiated from the taper is given by a sum over all modes

Pω =
∑
odd n

Pn|a+
n |2 ≈

1

2

∫ ∞

0

dnPn|a+
n |2. (56)

After explicit integration over n, the result can be represented in the following
form

Pω =
cπ1/2k1/2I2

0∆2

2αc
I, (57)

where

I =

∫ r2

r1

(
1− b(s1)/b2√

s1

)′(
1− b(s2)/b2√

s2

)′
ds1ds2√|s1 − s2|

, (58)

and the prime stands for the derivative with respect to the argument s1 or
s2, respectively. In the limit r2 À r1 (which also means b2 À b1) this integral
can be simplified

I ≈ 1

4r
3/2
1

∫ ∞

1

ds1ds2

(s1s2)3/2
√|s1 − s2|

=
2

3r
3/2
1

. (59)

In this limit, Pω is

Pω =
cπ1/2k1/2I2

0∆2α1/2

3b
3/2
1 c

. (60)

Repeating calculation of the previous section (see Eqs. (39) and (40)), we
can now find the real part of the transverse impedance of the full collimator

Re Zt = 2× 4π1/2α1/2

3k1/2b
3/2
1 c

, (61)

where an additional factor 2 takes into account the two tapers. Using Eq.
(41) one can now find the transverse kick for a Gaussian bunch:

κt = 2.7
α1/2

σ
1/2
z b

3/2
1

. (62)

Note that this result is valid in the case when both tapers are adjacent
to each other.
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8 Flat collimator, diffraction regime

To calculate the impedance in the diffraction regime, we will use a simple
energy flow argument developed at the end of Sections 5 and 6. To simplify
calculations, we assume that b2 À b1, which reduces Eq. (48) to

E0
x =

4I0∆

c

xy

(x2 + y2)2
eikz, E0

y =
4I0∆

c

y2 − x2

(x2 + y2)2
eikz. (63)

During the passage through the collimator, the beam field is now “scraped
off” in the area b1 < |y| < b2 and since b2 is assumed large, we can take the
limit b2 →∞. The power lost by the beam for a single taper is

Pω = 2

∫ ∞

b1

dy

∫ ∞

−∞

c

8π
[(E0

x)
2 + (E0

y)
2]dx. (64)

The integration yields

Pω =
∆2I2

0

4cb2
1

, (65)

which is exactly half of the result Eq. (38) for the round collimator in the
limit b2 À b1.

We conclude, that the impedance (kick factor) of the flat collimator in
the diffraction regime is equal to half of the impedance (kick factor) for the
round collimator with the same minimal gap b1.

9 Conclusion

In this paper we extended the analysis of previous studies to cover all possible
regimes of the high-frequency impedance of tapered collimators.

For round collimators, Yokoya’s formula, given by Eq. (1) is valid in
the limit of small angles α. Increasing the angle brings the impedance into
diffraction regime, with the real part of Zt given by Eq. (40). In this regime,
the impedance is close to that of an iris with the same aperture, and hence
tapering does not suppress the wake. The kick factor in this regime is given
by Eq. (44); it does not depend on the bunch length.

For rectangular collimators with a large width to height ratio, the induc-
tive regime given by Eq. (3) is only valid if the applicability condition Eq.
(4) is satisfied. Larger angles correspond to the intermediate regime, where
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the beam radiation becomes important. The real part of the impedance and
the kick factor in this regime are given by Eq. (61) and Eq. (62), respec-
tively. The kick factor in the intermediate regime scales with the bunch
length as σ

−1/2
z . Further increase of the angle brings the system into the

diffraction regime with the impedance equal to half of the impedance of the
round collimator in the diffraction regime.
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11 Appendix

Consider the integral

I =

∫ x2

x1

dxf(x)H(1)
ν (x)e−ix cos α, (66)

where f(x) is a smooth function of its argument. We will use the asymptotic
representation of the Hankel function valid for x À ν

H(1)
ν (x) ≈

(
2

πx

)1/2

eiψ(x), (67)

where the phase ψ(x) satisfies the equation

dψ

dx
=

(
1− ν2

x2

)1/2

≈ 1− ν2

2x2
. (68)

For small α, cos α ≈ 1− α2/2, and

I ≈
(

2

π

)1/2 ∫ x2

x1

dx√
x
f(x)eiζ(x), (69)

where ζ(x) = ψ(x)− x(1− α2/2).
In the stationary phase method, the dominant contribution to the integral

comes from the point where ζ ′(x) = 0. Using Eq. (68) we find the location
of the stationary point

x = x0 ≡ ν

α
. (70)
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Note that x0/ν ∼ α−1 À 1, which justifies the asymptotic representation of
Hν in Eq. (67). If x0 lies within the integration interval, x1 < x0 < x2, a
standard calculation of the stationary-point integral gives

I ≈ 2

α
f

(ν

α

)
eiζ(ν/α)+iπ/4. (71)

If x0 is located outside of the interval [x1, x2], the value of the integral will be
much smaller than that given by Eq. (71), and we can approximate I ≈ 0.

We can now find the condition when the stationary point method ap-
proach is valid. The size of the interval δx where the dominant contribution
to the integral comes from, δx ∼ |ζ ′′(x0)|−1/2 ∼ (ν/α3)1/2, must be much
smaller than the value of x0. Since δx/x ∼ (αν)−1/2 ∼ (α2x0)

−1/2, the con-
dition δx/x ¿ 1 is fulfilled if

α2x ∼ αbk À 1, (72)

which is the condition of the diffraction regime Eq. (5).
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