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On the theoretical uncertainties in the muon anomalous magnetic moment
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I present a fairly detailed discussion of various contribu-
tions to the anomalous magnetic moment of the muon aµ. I
try to give an unbiased evaluation of the validity of the SM
prediction for this quantity and to point out some delicate
issues involved in its calculation. I conclude that the theory
uncertainties in the SM prediction for the muon anomalous
magnetic moment are underestimated and a great deal of work
will be required to reduce these uncertainties to the level re-
quired by experiment.

I. INTRODUCTION

Recently, the E821 experiment at Brookhaven National
Laboratory reported a new value of the anomalous mag-
netic moment of the muon, based on the µ+ data col-
lected through 1999. Their result. averaged with previ-
ous measurements, leads to a new world average [1],

aexp
µ = 116 592 020(150)× 10−11, (1)

that is claimed to be 2.6σ away from the Standard Model
prediction:

ath
µ = 116 591 597(67)× 10−11. (2)

There are numerous theoretical papers devoted to the
interpretation of this apparent discrepancy as the direct
signal of physics beyond the Standard Model (SM) (see
[2] for examples).

Because of the potential importance of this result and
because of the subtlety of certain of the SM contributions,
it is important to carefully review the corresponding cal-
culations. Such a review has been presented recently by
A. Czarnecki and W. Marciano [3]; however, in my opin-
ion, more attention should be paid to certain aspects of
the problem.

This article is organized in the following way. First, I
briefly describe all the contributions to the SM value for
aµ to remind the reader what went into the theory result
quoted by the g-2 collaboration. I then concentrate on
the hadronic contribution to photon vacuum polarization
and discuss its evaluation based on both τ and e+e−

data. After that I describe the hadronic light-by-light
scattering contribution.

∗e-mail: melnikov@slac.stanford.edu

There are three major questions I would like to address
in this article: 1) Is there a g-2 crisis? 2) What should be
done to make a solid case for the crisis? 3) What are the
odds that there will be a crisis after E821 reaches its pro-
jected accuracy of 40×10−11. My analysis indicates that
the theory uncertainties in aµ are larger than indicated
in Eq.(2) and that a great deal of sophisticated work will
be required to reduce them.

I hope the information presented here will be useful
both, for a person who is about to post a New Physics
paper on the muon anomalous magnetic moment at the
LANL archive, and for a person who wants to understand
the down-to-earth physics issues involved in the calcula-
tion of aµ.

Finally, I should apologize to the many experts on the
anomalous magnetic moment of the muon who have done
the hard work to achieve the accuracy of the SM predic-
tion that we now have. Although I have not done any
of the original theoretical work, a fresh look at these im-
portant calculations might be useful. I also hope that
there are some points in my discussion that might be of
interest even for the experts working in the field.

II. WHAT THEORETICAL INPUT IS IN THE
2.6 σ DISCREPANCY?

Let us first make clear to ourselves what went into the
theoretical number that is 2.6 σ away from the result of
the g-2 Collaboration. It is a common practice to write
the muon anomalous magnetic moment as the sum of the
QED, weak and hadronic contributions:

ath
µ = aQED

µ + aweak
µ + ahadr

µ , (3)

for which the following values have been used by the g-2
Collaboration:

aQED
µ = 116 584 705.7(2.9)× 10−11, (4)

aweak
µ = 152(4)× 10−11, (5)

ahad
µ = 6739(67)× 10−11. (6)

The first thing to notice here is the one per cent accuracy
of the hadronic contribution to aµ and I will discuss how
trustworthy it is in detail in the rest of the paper. Before
that, however, I would like to comment on the QED and
weak contributions.

The pure QED contribution (which only includes
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muon, electron and τ ) is known to five loops1. Note that
the value of the fine structure constant obtained from
the electron g-2 has been employed here but the result
reported in Eq.(4) does not change significantly if more
conservative values for the fine structure constant (for
example, as obtained from the quantum Hall effect) are
used to evaluate it.

At the current level of precision the five loop QED con-
tribution is not yet relevant; roughly, it gives 5× 10−11.
The four loop contribution, on the other hand is quite rel-
evant; its contribution to Eq.(4) is ∼ 400×10−11. I think
it is appropriate to ask how well the four loop contribu-
tion is known. The answer to this question is not quite
simple. The complete four loop calculation has been per-
formed by a single group and has never been checked by
an independent calculation. To see that there is a poten-
tial problem here, one can look at how the central value
of the four loop contribution evolved in time . In [5] it
was reported as 140(6)(α/π)4 and was later revised [6]
to 126.92(41)(α/π)4. The shift, ∼ 40 × 10−11, is a non-
negligible change on the level of precision 100 × 10−11.
On the other hand, about 90 per cent of the full O(α4)
result comes from a simple class of diagrams where the
electron vacuum polarization is inserted into one of three
photons in O(α3) electron light-by-light scattering dia-
grams. This particular contribution has been evaluated
several times with the result 116(α/π)4 (see e.g. [7]). Un-
fortunately, this fact alone does not tell us much. It is
clear that 1) mistakes, in general, can happen and 2) we
are talking here about one of the most heroic and so-
phisticated calculations ever performed in perturbative
quantum field theory. For the rest of this article we will
assume that aQED

µ , as given in Eq.(4), is correct but it is
important to keep in mind that even in the QED part of
aµ there is, potentially, some work to be done if we want
to gain complete confidence in the SM prediction for this
quantity.

The weak contribution to aµ is currently known up to
two loops [8,9]. The result is:

aweak
µ = (195− 43(4))× 10−11 = 152(4)× 10−11, (7)

where the one-loop and the two-loop contributions are
displayed separately. The two-loop correction seems to
be too large for a “normal” electroweak correction. The
reason for such a big second order effect is that large log-
arithms log(mW /mf ) where mf is the mass of a light
fermion (muon, electron or any of the quarks) appear in
the two loop diagrams for the first time [10]. These log-
arithms make up the bulk of the second order correction
and they can be summed up [11] using renormalization
group techniques. This has been done [11] and it did not
change the value quoted above significantly. So, the weak
corrections seem to be well established.

1More precisely, four loops are computed, the O(α5) contri-
bution is estimated.

(a) (b)

(c) (d)

FIG. 1. Examples of hadronic contributions to g-2. a)
Leading order hadronic vacuum polarization diagram; b) ex-
ample of the next-to-leading order hadronic vacuum polariza-
tion diagram; c) the diagram that is not considered as part of
the next-to-leading order hadronic vacuum polarization dia-
grams in the usual nomenclature; d) hadronic light-by-light.

Finally, hadronic contributions to the muon anoma-
lous magnetic moment are usually separated into
hadronic vacuum polarization (which is further separated
into the leading and the next-to-leading order pieces)
and hadronic light-by-light scattering contributions (see
Fig.1). In Ref. [1], the following results have been used
for these contributions:

ahadr
µ (lo v.p.) = 6924(62)× 10−11 [12], (8)

ahadr
µ (nlo v.p.) = −100(6)× 10−11 [13], (9)

ahadr
µ (lbl) = −85(25)× 10−11 [14, 16]. (10)

The theory prediction, Eq.(2), is obtained by taking
the sum of the QED, weak and hadronic contributions
and adding their errors in quadratures:

ath
µ = 116 591 597(67)× 10−11, (11)

which leads to
[
aexp
µ − ath

µ

]
× 1011 = 426± 150|exp ± 67|th ≡ 426± 165,

where at the last step the theoretical and experimental
errors are combined in the quadratures. This difference
is interpreted as the 2.6 σ deviation in [1].

Some comments about this result and its interpreta-
tion can be made immediately. First of all, the dominant
source of the theory error is the hadronic contribution,
in particular the vacuum polarization (later I will dis-
cuss the hadronic light-by-light scattering result in de-
tail). A glance at the numbers in Eq.(8) shows clearly
that one needs to control the calculation of hadronic vac-
uum polarization at the one per cent level. Hadronic
vacuum polarization is derived by using the dispersion
representation for the photon propagator which relates
the hadronic vacuum polarization correction to aµ and
the annihilation cross section e+e− → hadrons:

ahadr
µ (lo v.p.) =

1

4π3

∞∫

4m2
π

ds K(s)σ0(s)e+e−→had. (12)
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For large s the function K(s) behaves, to a good approx-
imation, as m2

µ/s and for this reason the contribution of
the low s region is dominant and any “first principles”
calculation becomes impossible. This forces one to rely
on experimental data to evaluate ahadr

µ (lo v.p.) and for
this reason it is quite important to know exactly where
the number in Eq.(8) comes from. In fact this number
is taken from the calculation [12] based, in addition to
e+e− → hadrons, on 1) using the data on τ decays sup-
plemented by the conserved vector current (CVC) hy-
pothesis and isospin symmetry; 2) sophisticated machin-
ery of the finite energy QCD sum rules designed specifi-
cally to minimize the errors; 3) application of perturba-
tive QCD down to energy scales of about 1.8 GeV (J/ψ
and Υ families are treated separately, using experimental
input). It is important to notice that the natural scale
for both CVC and isospin symmetry violations is the one
per cent; the smallness of the error of the result in Eq.(8)
is the consequence of both, the quality of the τ data and
the use of pQCD down to rather low energy energies.

My second comment is that the 2.6 σ deviation only
appears if all the errors are combined in quadratures. If
one combines all the theory errors linearly, one ends up
in a somewhat different situation:

[
aexp
µ − ath

µ

]
× 1011 = 426± 150|exp ± 100|th. (13)

I would like to stress that it is not at all clear how these
numbers should be combined to get the final error since
it is a bit too strong an assumption to assign a Gaus-
sian distribution to the theory error. It is true that it is
unclear how to interpret Eq.(13) in terms of standard de-
viations; on the other hand it is equally unclear that this
should be done since a glance at the content of the hep-ph
archive through recent months is probably a good illus-
tration of the fact that too many people take the word
“standard deviation” too literally.

III. HADRONIC VACUUM POLARIZATION AND
THE τ DATA

The use of the τ data for the evaluation of aµ(lo v.p) is
related to the fact that the integration over s in Eq.(12)
saturates at

√
s < 2 GeV: about 70 per cent of the to-

tal hadronic contribution comes from the two pion final
state at energies as low as

√
s < 1 GeV, and about 90

per cent from the energy region
√
s ≤ 2 GeV. The accu-

racy of the data available until rather recently from e+e−

machines was not quite adequate. It then looked natural
to combine them with the data on τ decays obtained by
the ALEPH collaboration to improve the calculation of
ahard
µ .
As I have already mentioned, the essential theoretical

input one brings in with the τ data is the CVC hypothe-
sis and the isospin symmetry. We know that, generically,
these are rather good symmetries. We also know that
these symmetries should be violated at the one per cent

level (by e.g. electromagnetism or (mπ/mρ)
2) and there-

fore the real question here is in how well these violations
can be controlled.

Both isospin and CVC are violated by the mass dif-
ference of the up and down quarks and also by the QED
corrections. Let us discuss the transition from the τ data
to e+e− → hadrons in some detail to expose potential
problems here.

Imagine that we have a perfect measurement of the
τ → ντπ

0π− branching ratio. Starting from there, one
identifies several effects that might affect the transition to
e+e− → hadrons. They are: 1) the short distance QED
corrections in τ decays; 2) the difference in the masses
of charged and neutral pions and mu − md 6= 0 effects;
3) the difference in the decay widths and the masses of
neutral and charged ρ mesons; 4) the long-distance QED
radiative corrections in τ decays.

Let us discuss these effects step by step. The short-
distance QED corrections are Wilson coefficients of the
four-fermion operators that describe τ decays; they are
generated by exchanges of photons with the virtualities
m2
τ � k2 � m2

W . Because of this, the short-distance
corrections are universal in a sense that, for a given four-
fermion operator, they do not depend on subtle details
of hadronic final state. Note, however, that due to the
difference in relevant four-fermion operators for leptonic
and hadronic τ decays, these short distance corrections
are absent in τ → ντ + leptons. The short-distance QED
Wilson coefficient is [17]:

Sew =

(
1 +

α

π
log

mW

µ

)
≈ 1.009, (14)

where µ is an arbitrary parameter; the numerical value
corresponds to µ = mτ . Since there is no similar renor-
malization factor in e+e− annihilation, the relation be-
tween τ decay width and the e+e− annihilation cross
section reads, schematically:

Γ(τ− → ντπ
0π−) ≈ S2

ewσ(e+e− → hadrons). (15)

The renormalization factor Sew is taken into account
when the τ data is used to predict e+e− → hadrons [12];
numerically, as can be seen from the numbers above, it
amounts to renormalizing the τ data by about −2 per
cent.

The second effect is the difference in the masses of
charged and neutral pions. Since the pions are produced
in the P-wave, both in τ− → ντπ

0π− and in e+e− →
π+π−, the rates are proportional to the third power of the
velocity of the pions. In this case, the relation between
the τ decay rate and the e+e− cross section is:

Γ(τ− → ντπ
0π−) ≈

β3
π0π−

β3
π+π−

σ(e+e− → hadrons).

Since the mass difference of charged and neutral pions
is relatively large, this correction turns out to be in a
few per cent range in the threshold region. At around
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the mass of the ρ meson, where the bulk of the contribu-
tion to ahard

µ comes from, this correction becomes much
smaller (see [18]).

The third effect is the difference in the decay widths of
charged and neutral ρ mesons. Close to the ρ resonance
this effect can be estimated as:

Γ(τ− → ντπ
0π−) ≈ Γ2

ρ0

Γ2
ρ−

σ(e+e− → hadrons). (16)

One can check that in the vicinity of the resonance the
effect of the difference in the widths almost cancels the
phase space corrections due to the difference in the pion
masses discussed above. Let me spell out more precisely
how the widths difference is taken into account. Starting
from the τ data and taking into account all the relevant
corrections (e.g. the short distance QED correction Sew),
one ends up with the distribution in invariant mass of π0

and π−. This distribution is fitted using some parameter-
ization of the pion form factor to determine the mass and
the width of the charged ρ. To compute e+e− → π+π−,
one uses the same parameterization of the pion form fac-
tor but with the mass and the width of the neutral ρ
instead of similar parameters for the charged one.

The three effects discussed above are usually taken into
account in the existing analyses, however, the fourth ef-
fect, the long distance QED corrections, seems to be more
problematic. In computing long distance QED correc-
tions one usually assumes that the pions can be treated
as point-like particles. This assumption is not quite cor-
rect, since in the hard renormalization factors Sew only
photon virtualities down to the mass of the τ are in-
cluded. It is quite clear that photons with virtualities
from the mass of the τ down to, say, 1 GeV certainly
resolve the pion and see its quark structure. The contri-
bution of this momentum region is therefore treated not
quite correctly in the existing estimates. At any rate, the
most recent calculation [18] of the long distance QED
corrections, performed using scalar QED for point-like
pions, claimed that the long-distance QED corrections
in τ → ντπ0π add +0.4 per cent2 to the short distance
renormalization factor S2

ew.
The attitude to the techniques used to obtain this num-

ber (chiral power counting, point-like pions) can certainly
vary from person to person, however, it is important to
mention that a more complete study of the QED effects,
including attempts to introduce hadronic structure, has
been performed for the decay rate τ → ντπ [19]. Since
the two processes are similar, it is instructive to look at

2Another correction not considered in [18] but relevant for
their analysis is the QED correction to leptonic decay mode
τ → ντeν̄e which is used for the normalization of the data.
Effectively, this correction [17] adds another +0.4 per cent to
S2

ew.

the results in [19]. Specifically, consider the QED correc-
tions to the ratio:

Rτ/π =
Γ(τ → πντ )

Γ(π → µνµ)
. (17)

The corrections, computed in various approximations,
are [19]: a) short-distance QED3: −1 per cent; b) point-
like pion (the QED corrections to the ratio are finite for
point-like pions): +1 per cent; c) “best estimate” of [19]
that includes hadronic structure and short distance cor-
rections: 0.0 ÷ 0.25 per cent. The short-distance QED
and the point-like pions are the two extreme limits of the
problem that can be easily understood and I consider
their difference as the indication that the uncertainty in
long distance QED corrections to τ decays can be of order
1 per cent. Other authors (see e.g. [3]) consider ±0.5 per
cent as a more reasonable estimate of this uncertainty.
It is clear that only convincing complete calculation of
the QED radiative corrections to τ → ντπ

−π0 can tell
us which of the two numbers is closer to the truth but in
the absence of such a calculation I think it makes sense
to have a conservative attitude.

Finally, we come to an important point that is often
not well understood. Imagine that we have actually suc-
ceeded in computing the QED corrections to τ decays and
have carefully taken into account all the isospin violating
effects in transforming the τ data to e+e− → hadrons. Is
this the end of the story? The usual answer here is yes,
but the correct answer is no. This issue is related to the
discussion above on how corrections due to the widths dif-
ferences of charged and neutral ρ are implemented. Imag-
ine that the masses and widths of neutral and charged
ρ are obtained independently from the fits to e+e− and
τ data. The pion form factor is defined as the γ∗π+π−

interaction vertex with all the QED interactions between
the pions being switched off. Therefore, if one starts from
the τ data, determines the pion form factor and uses this
form factor with the masses and widths for the neutral
ρ as obtained from e+e− → π+π−, one obtains the bare
pion form factor γ∗ → π+π−. One should then compute
the final state QED interaction corrections and include
them into the dispersion integral. It is also important to
stress that these corrections are not included in what is
usually called the next-to-leading order hadronic vacuum
polarization corrections (see Fig.1c).

How large can these corrections be? To give a simple
estimate I consider the π+π− final state and assume that
the pions are point-like particles. In this case the QED
corrections are easy to compute. The corresponding cal-
culation can be found in [20]:

3The short-distance QED corrections both to τ → πντ and
π → µνµ are given by Sew. These corrections do not cancel
out exactly because the appropriate µ (cf. Eq.(14)) is thought
to be different in the two processes.
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σπ+π− =
α2π

s
β3|Fπ(s)|2

[
1 +

α

π
Ffs(β)

]
, (18)

where β =
√

1− 4m2
π/s and

Ffs(β) =
(1 + β2)

β

{
4Li2

(
1− β
1 + β

)
+ 2Li2

(
−1− β

1 + β

)

−3 log

(
2

1 + β

)
log

(
1 + β

1− β

)
− 2 log(β) log

(
1 + β

1− β

)}

−3 log

(
4

1− β2

)
− 4 log(β)

+
1

β3

(
5

(1 + β2)2

4
− 2

)
log

(
1 + β

1− β

)
+

3

2

(1 + β2)

β2
. (19)

The radiative correction, as described by this function,
is plotted in Fig.2. First note that the radiative correc-
tion is rather large; in particular, it is significantly larger
than the corresponding correction for the production of
two fermions. Asymptotically, for β → 1, the correction
is 3α/π and so one sees a compensation of the famous
1/π factor that is always present in simple estimates of
the QED radiative corrections. At threshold, the correc-
tion is again significant because of Coulomb singularity.
The bottom line is that the correction is relatively large
everywhere.

0

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rad. corr.

FIG. 2. QED corrections to the production of two pions,
in per cent, in dependence on s, GeV2.

If I use Eq.(18) in Eq.(12) and integrate it up to
√
s = 1

GeV, I obtain the net increase in the contribution of the
two pion final state to aµ by slightly less than 1 per cent.
This would add an additional ∼ 50 × 10−11 to hadronic
vacuum polarization contribution to aµ, if one evaluates
it using the τ data.

Let me stress that I do not consider the above esti-
mate to be an absolute prediction for the missing effect
since certainly there are questions here of how well scalar
QED for point-like pions actually describes the real world
where the pions are not point-like and which part of the
radiative correction is correctly accounted for by mod-
eled (rather than measured) widths difference of charged
and neutral ρ mesons. Rather, I think that this estimate
should be considered as a counter-example to a popular

statement that the QED corrections are always O(α/π)
and for this reason are insignificant.

At the very least, these considerations do imply that
the error on ahadr

µ in [12] is too optimistic. Consider

the following. The result of [12] is ahadr
µ (lo v.p) =

(6924± 56|exp ± 26|th) × 10−11. I guess everyone would
agree that the long distance QED effects in τ → ντπ

−π0

and in e+e− → π+π− can be 0.5 per cent each. We then
get a one percent theory uncertainty from the two pion
channel and this is ±50 × 10−11. Certainly, this uncer-
tainty is not completely taken into account in the theory
uncertainty 26 × 10−11 from [12]. So, at the very least,
the systematic uncertainty in the result of [12], used by
the g-2 collaboration in their evaluation of the SM result,
is smaller than it should be4.

The possibility to use the τ data gave us a useful cross
check on the accuracy of the e+e− data. However, it
should be clear from the above discussion that the use of
the τ data in the analysis of aµ requires essential theo-
retical input which, at the required level of precision, is
hard to justify or check. It may happen that a better
theory will convincingly demonstrate that it is possible
to control the transition from τ to e+e− data with the
accuracy well below 1 per cent. In the absence of that, I
believe that the use of the τ data for computing aµ may
turn out to be counter-productive. As will be seen from
the discussion to follow, if one uses the e+e− data, one at
least may try to minimize and experimentally control cer-
tain theoretical assumptions necessary to transform the
raw data into hadronic vacuum polarization contribution
to aµ. I, personally, do not see how this can be done if
one starts from the τ data.

IV. HADRONIC VACUUM POLARIZATION AND
THE E+E− DATA

Let me now elaborate on the use of the e+e− data
to compute the hadronic vacuum polarization contribu-
tion to aµ. The point I would like to make here is that
the e+e− data offers a relatively clean and, what is per-
haps more important, verifiable approach to evaluating
hadronic vacuum polarization with the required preci-
sion.

There are many papers where the ahadr
µ (lo v.p) is eval-

uated from e+e− data and I will not discuss all of them
(for the recent reviews and calculations see [22–24]).

For the purpose of the illustration I will use the result

4To be fair, I should perhaps say that in many other eval-
uations of hadronic vacuum polarization contribution to aµ
the QED corrections are also somewhat forgotten. It is only
because of the exceptional precision of the result in [12] that
I focus on that reference.
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of [21]5 as well as more recent updates by one of these
authors [22]. Their results are:

ahadr
µ (lo v.p) = 7025(150)× 10−11 [1995],

= 6974(105)× 10−11 [2000]. (20)

By comparing these numbers to the τ -based result
6924(62)× 10−11 [12] that has been used by the g-2 col-
laboration for the calculation of the SM prediction for
the muon anomalous magnetic moment, one sees that
the e+e− numbers are somewhat larger. However, it is
not simply τ vs. e+e− that determines the difference of
the two results.

To show this, let me note that there exists a dedi-
cated analysis of the CVC hypothesis for various ex-
clusive channels [25] based on comparison of the e+e−

and τ data. For example, if one uses the e+e− data
and CVC to predict the corresponding branching ratio
B(τ− → π0π−ντ ), one obtains [25]:

B(τ− → π0π−ντ )|CVC = 24.52± 0.33,

B(τ− → π0π−ντ )|τ data = 25.32± 0.15, (21)

which implies that the τ data actually predicts a larger
contribution of the ρ resonance, an opposite situation
to what one sees in the final numbers for ahadr

µ . The
explanation for that is that the calculation [12] is more
than just the τ data; it also involves e.g. the use of
perturbative QCD down to 1.8 GeV; the approach the
authors of [21] try to avoid. Since the old e+e− data
at around 2 GeV is significantly higher than the pQCD
results at that energies, this turns out to be an important
part of the difference in the central values of [12] and [21].

Let me now say a few words about the composition of
the errors in e+e− data. The errors are distributed as
[21]:

2mπ < E < 0.8 GeV : ∼ 100× 10−11,

0.8 GeV < E < 1.41 GeV : ∼ 50× 10−11,

1.41 GeV < E < 3.10 GeV : ∼ 50× 10−11.

Other errors seem to be negligible.
Another important benchmark [26] is how accurate dif-

ferent exclusive channels should be known if the final re-
sult for aµ is to be known with the precision 100× 10−11

(I assume that the errors from individual channels are
combined in quadrature). The e+e− → π+π− final state
should be known at the level of one per cent; ω → 3π,
φ, 4π and the contribution from above 2 GeV should be

5The renormalization group improved result quoted in [21]
as the principal result can not be used together with higher
order QED corrections to vacuum polarization contribution
computed in [13]. For this reason, I quote below the re-
sult in [21] that is obtained without renormalization group
improvement.

known roughly at the 10 per cent level. To decrease the
error to something like 30 × 10−11 all these uncertain-
ties should be scaled down by a factor of three, approxi-
mately.

Some of these errors, most notably the error from the
region below

√
s ∼ 1 GeV will go down significantly

due to new data from the VEPP-2M collider at Novosi-
birsk. Their final results are not made public yet, how-
ever the anticipated accuracy of 0.6 per cent is already
known. The other improvement will, potentially, come
from BEPC [27]. They are measuring the value of R(s)
at
√
s > 2 GeV. At energy regions below J/ψ, their

preliminary results are accurate to within 7 per cent and
they are about 15 per cent lower than the earlier results
of Mark I and Gamma2 experiments and a bit higher
than the pQCD results.

Let us now return to the two pion channel and the
forthcoming Novosibirsk results. Since the 0.6 per cent
accuracy is outstanding, it is important perhaps to spell
out some delicate issues that might help to make it more
believable.

The major point to realize about the difference in the
use of e+e− data for the evaluation of aµ as compared to
τ data is that in principle when one uses the e+e− data
one needs much less theoretical input. Clearly, there are
certain things to be worked out, like QED corrections
related to initial state radiation and vacuum polarization,
but the part of the QED corrections that describes the
interaction of π+ and π− in the final state is already in
the data. Still there remains a potential problem that I
discuss below. It is important to distinguish at this point
the pion form factor as used for comparison with different
models and for the determination of the mass and the
width of the ρ meson where, by definition, the final state
QED radiative corrections are not included and the cross
section γ∗ → π+π− for the purpose of aµ calculation,
where the final state QED radiative corrections should
be kept intact. I believe that the two pion channel data
from CMD2 will be analyzed this way [30].

Although appreciating the difference between Fπ and
γ∗ → π+π− when the QED effects are considered is
important, it is equally important to realize potential
problems with the Novosibirsk analysis. First of all, the
Monte Carlo event generator for the two pion channel
that is used to analyze the data is based on point-like
pions [31]. This might be a potential limitation.

Another problem is that the experimental analysis
starts with imposing certain cuts to isolate two pion fi-
nal state. The major requirement here is that the two
pions are essentially back-to-back and therefore this cut
excludes the γπ+π− final state where the photon is radi-
ated off one of the pions or an electron or positron at a rel-
atively large angle. My estimates6 show that the cuts ap-

6I used the Monte Carlo event generator for e+e− → π+π−γ
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plied in the recent CMD2 measurement of e+e− → π+π−

[29] remove from 50 to 80 per cent of e+e− → π+π−γ.
The degree of rejection is energy dependent (for smaller√
s fewer events are rejected, since the transverse momen-

tum of photons is smaller) and it is also different for final
and initial state radiation. At any rate, there are events
that are rejected right up front by experimental cuts and
that, potentially, should be put back since no indepen-
dent measurement of π+π−γ for large angle photons at
the energy region around the ρ meson has been reported
so far. The only way this can be done without doing the
measurement of π+π−γ is to use the Monte Carlo. One
should realize, however, that in this way one puts back
the large angle photon emission by using point-like pions
and this is the most problematic region for the point-like
pion approximation to begin with.

To see the importance of higher order QED corrections
to the hadronic vacuum polarization contribution, one
can can either recall the discussion of Schwinger’s cor-
rection to the two pion channel in the previous Section
or look at a much cleaner next-to-leading order hadronic
vacuum polarization calculation [13] (see Fig.1b). Take
any diagram that contributes to the two-loop QED cor-
rection to g-2 and insert the hadronic vacuum polariza-
tion in to either of the two virtual photon lines. This
gives a correction ∆ahad

µ (nlo v.p.) = −100(6) × 10−11

[13]. One particular contribution to this number comes
from combined leptonic and hadronic vacuum polariza-
tion in the one-loop diagram. This one is interesting
since, in some sense, it is related to the vacuum polar-
ization insertions in e+e− → hadrons. This contribution
is about 100× 10−11 and one clearly sees how large the
corresponding corrections can be.

Let me now discuss the question of what should be
done in order to ensure a careful job on e+e− → π+π−.
The best thing, of course, is if one actually measures the
π+π−γ channel separately and checks that it actually
matches the π+π− channel as far as the acolliniarity an-
gle of the two pions is concerned. This might be quite a
tough measurement since at the very end one will have
to disentangle the large angle final state radiation from
the initial one.

However, if relatively energetic photons and pions are
detected, one can make a study of the charge asymmetry
of the produced pions [28]. In case when the hard photon
is tagged, this effect comes from the interference between
initial and final state radiation and is therefore linear in
the final state radiation amplitude. Thus, the charge
asymmetry of the produced pions in π+π−γ events with
all the particles emitted at relatively large angles, gives
a direct handle on the amplitude of the final state radi-
ation. I believe these kind of studies should be done to
cross check the model (and, certainly, the scalar QED for

[28]; I am grateful to G. Venanzoni for help with that.

the interaction of pions with photons is a model) used
in the Monte Carlo event generators. There are some
preliminary results from DAPHNE [32] and also old re-
sults from Novosibirsk on π+π−γ channel [33] that seem
to indicate that the point-like pion approximation works
amazingly well in the energy range around 1 GeV; how-
ever it is still not completely conclusive.

At any rate, summarizing the use of e+e− data for
aµ predictions, I can say that, currently, the e+e−-based
evaluations of ahadr

µ have a somewhat higher central value

and larger error bars than the value of ahadr
µ [12] used in

[1] which implies that if one evaluates the SM predic-
tion for aµ using the e+e− data, the g-2 “crisis” becomes
less acute. The precision of e+e−-based evaluations will
improve once the new data from the low energy e+e−

machines is incorporated. It is important to realize that
at this new level of precision new questions, primarily
related to the correct treatment of QED radiative cor-
rections, will start to appear. However, it seems to me
that a program of measurements and analysis can be set
up that makes it possible to control every step on the
way from the e+e− data to the muon anomalous mag-
netic moment. This is the principal difference with the τ
data.

V. THE LIGHT-BY-LIGHT SCATTERING
CONTRIBUTION

The light-by-light is probably the most tricky thing in
the muon g-2 calculation. The trouble is that, in contrast
to hadronic vacuum polarization, there is no simple way
to relate this contribution to anything observable. In
this situation, one has to resort to models to describe
low-energy hadron dynamics and then the question of
the reliability of a certain model becomes central.

Before going into the discussion of the delicate issues
related to hadronic light-by-light scattering, let me first
clarify a misconception that, as it seems to me, is quite
common in the current literature. The issue I want to
address is what is the relevant scale for the loop mo-
menta that determines the contribution of the light-by-
light scattering diagrams to aµ. It is usually said in the
literature that this is the mass of the muon; for hadronic
light-by-light, this statement is not correct.

To see this, it is useful to analyze a simple QED ex-
ample by computing the light-by-light scattering contri-
bution of the fermion of the mass M to the anomalous
magnetic moment of the muon. Lets introduce the vari-
able x = M/mµ and consider the limitM � mµ which is
relevant for hadronic light-by-light (both the mass of the
pion and the constituent quark masses are larger than the
mass of the muon). The result of the QED calculation is
then [34]:

aµ|x�1 =
(α
π

)3 {0.615

x2
+

1

x4

(
−0.2 log2 x
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−0.33 logx− 0.15) + O(x−6)
}
. (22)

The question I would like to discuss is how the above re-
sult can be obtained using either the effective field theory
technique or, equivalently, asymptotic expansion of the
relevant Feynman diagrams in m/M .

Upon examination, one can easily identify three ex-
pansion regimes for a generic light-by-light scattering di-
agram. The first regime is the Taylor expansion of the
diagram in the ratio of mµ/M . In this regime, the mo-
menta of all three virtual photons are of the order of
the heavy fermion mass. In the language of effective field
theories, this is the contribution that directly induces the
anomalous magnetic moment operator in the effective La-
grangian:

L1 = c1
mµ

M2
ψ̄σµνψF

µν , (23)

where c1 is some constant.
The second expansion regime is related to Euler-

Heisenberg Lagrangian for photons. In this case, the
momenta of all three virtual photons are of the order
of the muon mass mµ and the corresponding part of the
effective Lagrangian is:

L2 =
α2

360 M 4

[
4 (F µνFµν)

2
+ 7

(
1

2
εµναβFµνFαβ

)2
]
.

(24)

This piece in the effective Lagrangian determines the
strength of the low-energy photon-photon scattering.

The third expansion regime is the following: one of
three virtual photons has the momentum of order mµ,
while two others have large ∼ M virtualities. Integrat-
ing out heavy degrees of freedom in this configuration
induces the following term in the effective Lagrangian

L3 =
1

M4
FµνFαβψ̄

[
mµΓµναβ1 + Γµναβρ2 Dρ

]
ψ. (25)

Here Dρ is the (QED) covariant derivative and Γ1,2 are
appropriate Lorentz tensors; their exact form is of no
concern to us here. The Lagrangian L3, in principle,
contributes to low energy muon-photon scattering.

An important point to notice is that only the first ex-
pansion regime (and therefore the effective operator L1

) gives an O(M−2) contribution to the anomalous mag-
netic moment, whereas the other two only start to con-
tribute at O(M−4). This trivial observation immediately
implies that, no matter how small the muon mass is,
there is no low energy information one can use to de-
termine the leading contribution to the muon anomalous
magnetic moment coming from large momentum scales.
The only thing one can do (and, very roughly, this is
what one usually does) is to still use the low energy ef-
fective Lagrangians L2 and L3 and compute the Feynman
diagrams using hard momentum cut-off λ. If one takes

this cut-off to be λ ∼ M , one generates the contributions
m2
µλ

2/M4 ∼ m2
µ/M

2 even from higher dimensional op-
erators; these contributions, however, have nothing to do
with the correct result.

We therefore see that the typical scale for the loop mo-
menta in hadronic light-by-light is set by the hadronic
scale and not by the muon mass. Since the lightest
hadron is the pion and since it contributes to the light-
by-light diagrams, one can hope that the leading con-
tribution is determined by momentum transfers of order
mπ and this is small as compared to the scale of chiral
symmetry breaking ∼ 1 GeV. If this is true, this seems
to exclude the possibility to use quarks and gluons as
the relevant degrees of freedom for this calculation and,
instead, one can argue that for the momentum trans-
fer being that small, chiral perturbation theory should
be quite reliable. For this reason, all the calculations
of hadronic light-by-light scattering are based on chiral
perturbation theory gauged with U (1) electromagnetism.
However, it turns out that the integrals do not converge
at momentum scales around mπ and for this reason chi-
ral perturbation theory alone can not produce a definite
prediction. One then resorts to phenomenological models
such as large Nc, extended Nambu-Jona-Lasinio, hidden
local symmetry etc.

Within this framework, three major contributions to
light-by-light scattering are distinguished by using large
Nc and chiral power counting. The first is the box of
charged pions, the second is the contribution of the neu-
tral pseudoscalar boson through a transition γ∗γ∗ →
P → γ∗γ where P = π0, η, η′. The third contribution
is due to constituent quark loops.

The simplest calculation to be done is to compute the
contribution of the quark loop in QED and a similar con-
tribution with elementary pions in scalar QED. In this
way one gets [14]:

ahadr
µ (lbl, pions) = −44.58(23)× 10−11, (26)

ahadr
µ (lbl, quarks) = 62(3)× 10−11, (27)

where the constituent masses for light quarks (mu =
md = 0.3 GeV and ms = 0.5 GeV) have been used. One
sees that the two contributions in no way match since
they differ by a sign.

To improve on that result one would like to take into
account a) the interactions between pions or quarks and
b) the modifications of the pion-photon coupling for the
off-shell photons. The self-interaction of pions is thought
to be described by higher-derivative terms in the chi-
ral Lagrangian. Generically, these terms generate correc-
tions of the form p2

typ/Λ
2
χ, where ptyp is the typical pion

momenta and Λχ ∼ 1 GeV is the scale of the chiral sym-
metry breaking in three flavor QCD. Taking ptyp ∼ mπ

for the estimate, one expects ∼ 1 per cent corrections but
I doubt that this estimate is actually correct (see below).
The trouble is that if one wants to go from the estimate
to the calculation one would not be able to produce an
unambiguous answer both within chiral perturbation the-
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ory and the models used currently for the calculation of
the hadronic light-by-light. For this reason the problem
of self interactions between pions and quarks is ignored
in the current literature.

Let us now consider the modification of the pion to
photon coupling for the off shell photons. The simplest
model is the vector-meson-dominance (VMD) model,
that essentially postulates that photons interact with pi-
ons through a transition to the ρ (or any vector) meson.
The propagator of the photon is then modified to be:

i

q2
→ im2

ρ

q2
(
m2
ρ − q2

) . (28)

How much do we expect the free pion result would change
once the VMD modification of the photon propagator is
introduced? If all the integrals converge at around mπ ,
as is usually assumed, one would expect the modification
to be of the order m2

π/m
2
ρ ∼ 0.04. In reality, the situa-

tion is quite different. First of all, there is a significant
modification – the result with VMD is smaller by a factor
6− 10. This implies that original integrals actually con-
verge at momentum scales much higher than the mass of
the pion (what about chiral perturbation theory in such
a situation?).

There is a good illustration of this fact in [14]. In the
complete calculation one may try to consider the masses
of the pion and the ρ meson as variable quantities and
ask about asymptotic behavior of the results once these
masses are changed. For example, by keeping the mass
of the ρ meson fixed but changing the mass of the pion,
one obtains the m−2

π scaling law; this indicates that the
integral over the pion box subdiagram is saturated at
small momenta. On the contrary, changing the mass of
the ρ meson gives the asymptotic behavior:

ahadr
µ (lbl mπ ,mρ) − aµ(lbl mπ ,∞) = 0.23

(
mµ

mρ

)(α
π

)3

.

This shows that this contribution is quite large7. The
final result for this contribution quoted in [14] is:

ahadr
µ (lbl, pions) =

(
−0.03557 + 0.23

mµ

mρ

)(α
π

)3

=

− 0.00355
(α
π

)3

= −4.5(8.1)× 10−11. (29)

a reduction by one order in magnitude as compared to
the point-like pion result Eq.(26).

7 This linear dependence might be an artifact of the
fitting procedure. Using the data in [14] I can fit
the pion box contribution to aµ(mπ, mρ) − aµ(mπ,∞) =
(α/π)3 0.8 m2

µ/m
2
ρ log2 mρ/mµ which is more consistent with

what one should expect from the Feynman integrals with two
largely different scales involved.

A very similar pattern is observed if the VMD mod-
ification is applied to photon couplings to constituent
quarks. The final result quoted for this contribution in
[14] is

ahadr
µ (lbl, quarks) = 9.7(11.1)× 10−11. (30)

The last contribution to be considered is the one from
the pseudoscalar meson pole (see Fig.3) and, in view of
the smallness of the pion and quark contributions (after
VMD ), it turns out to be the dominant one. The result
is [15]:

ahadr
µ (lbl, pole) = −82.7(6.4)× 10−11. (31)

Here, π0, η and η′ are contributions are taken into ac-
count. The π0 contribution is about 70 per cent, with the
rest being distributed equally between η and η′. Large
contributions from η and η′ look surprising and I com-
ment on it at the end of this Section. The result in
Eq.(31) is obtained by using some constraints on the
γ∗γ∗π0 interaction vertex from the measurement of the
pion transition form factor by the CLEO collaboration
[35].

The final result quoted in [15] is obtained by summing
up Eqs.(29,30,31) and adding to it small (1.7 × 10−11)
axial-vector meson contribution. The result reads:

aµ(lbl, total) = (−79± 15.4)× 10−11, (32)

if the errors of the individual contributions are added in
quadratures. If they are added linearly, the error on this
contribution is ±25× 10−11.

Another calculation of the hadronic light-by-light
contribution, based on Extented Nambu-Jona-Lasinio
model, has been presented in [16]. The result quoted
in [16] is8:

aµ(lbl, total) = (−92± 32)× 10−11 (33)

and is therefore close to the result in Eq.(32) (see Ref.
[36] for the comparison of [16] and [15]).

The final result for the light-by-light scattering con-
tribution used by the g-2 collaboration is the arithmetic
average of the two results; a similar procedure is applied
to calculate the uncertainty. Even if the two results are
to be trusted, a sensible thing to do is, perhaps, to take
the uncertainty to be so large as to cover the whole range
as allowed by individual results. We then have:

8The calculation of Ref. [16] is performed with the cut off
on the loop momentum and the sensitivity of the final result
to the cut off is studied. The authors observe that in order
to have a stable result for some of the contributions, the in-
tegration should be extended up to several GeV. The error of
the final result in [16] is obtained if the errors on individual
contributions are added linearly.
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(π0, η, η
′)

FIG. 3. The pseudoscalar contribution to g-2.

aµ(lbl, total) = −85(38)× 10−11, (34)

and it is important to stress that the only thing this
uncertainty is supposed to represent is the model depen-
dence.

In view of the large value of the pseudoscalar pole con-
tribution it is appropriate to discuss it in some detail.
Again, it is instructive to ask the question about mo-
mentum flows in the corresponding diagrams to see po-
tential troubles. The π0γγ vertex for the on-shell pion
and photons is given by:

L = − α

8πfπ
π0εµναβFµνFαβ. (35)

Considering this as a new vertex in the low-energy ef-
fective Lagrangian and inserting it into the diagram that
describes its contribution to the anomalous magnetic mo-
ment of the muon, we observe that the result is divergent
and this divergence is cut off by the pion transition form
factor. It is easy to work out the corresponding contri-
bution in the leading logarithmic approximation with the
result:

ahadr
µ (lbl, π0) ∼

(α
π

)3 m2
µ

(4πfπ)2

mρ∫

mπ

dk

k
log

mρ

k
, (36)

where k is the momentum that runs along the π0 line. In
doing this estimate I assumed that the integrals are cut
off from above by the hadronic scale comparable to the
mass of the ρ meson.

Eq.(36) gives us useful information about the struc-
ture of the divergences and, hence, about momentum
flow. First, the divergences are double logarithmic and
not just single logarithmic, as it is sometimes claimed in
the literature. Second, there are two divergences. One
is associated with large virtualities of the photons, when
the momentum that goes through the pion line is kept
fixed. The second one is associated with large virtuali-
ties of the pion.

Currently, both of these divergences are cut off by
adopting VMD prescription for the photon lines. This
approach is supported by the phenomenological success
of the VMD models in describing the γγ∗ → π0 transition
form factor. Also, using this kind of the regularization
one can compute the decay width π0 → e+e− and sim-
ilar and obtain a reasonable agreement with the data.
For this reason it probably makes complete sense to use
the VMD motivated regularization for the photon loop
subdivergence. It is less clear if the same regularization

makes any sense for the other divergence associated with
highly virtual π0. The point is that this kinematics is
not related to any observable form factor and it is not
clear what the highly virtual π0 means. Ideally, this con-
figuration should somehow match on to the quark box
QCD diagram, but no one knows how to implement that
in practice.

What also seems rather intriguing is the fact that the
contributions of η and η′ are quite large. Approximately,
they are one fourth of the π0 contribution in spite of huge
difference in masses. For the sake of the argument, con-
sider η meson. Its coupling to two photons is roughly the
same as the π0γγ coupling. Taking into account that the
ratio of the masses is mπ/mη ∼ 1/4, one concludes that
the suppression from the loop integral goes like 1/m when
the mass is increased. A similar conclusion is reached
when the η′ contribution is analyzed.

Another point I would like to mention is that it is un-
clear if the quark loop contribution should be damped by
introducing VMD modification of the photon propagator.
Imagine that we want to set up a calculation in the effec-
tive field theory framework. To do that, we are supposed
to introduce a factorization scale. Above this scale, we
do the calculation with quarks and gluons and below this
scale with hadrons. If one looks at the calculation from
this perspective, then the calculation of the quark con-
tribution to light-by-light scattering should be cut off in
the infra-red; for technical reasons this is achieved by in-
troducing the quark masses ∼ 300 MeV. On the other
hand, the calculation with hadrons is regularized using
VMD modification for the photon propagators which cuts
off the integrals from above. In spite of the fact that the
cut off is implemented differently in two parts of the cal-
culation, in my opinion, the set up described above is in-
ternally consistent. On the other hand, it shows that the
introduction of the VMD modified photon propagators
into the quark contribution to light-by-light scattering is
not quite logical. The quark contribution is supposed to
describe physics at energy scales 2mQ ≤ k. When, in ad-
dition to quark masses, the VMD is introduced into loop
integrals, the integration is cut off at k ≤ mρ ∼ 2mQ

and this is clearly outside the momentum range that the
quark contributions is supposed to cover. For this reason,
it seems to me that the quark contribution Eq.(27) with-
out VMD suppression might be a more appropriate de-
scription for the contribution of the high energy region. If
so, the result for hadronic light-by-light scattering might
receive additional positive contribution.

Let me finally comment on the argument used to justify
the application of the Extended Nambu-Jona- Lasinio
model to the calculation of the hadronic light-by-light
contribution to g-2. A possible check is to apply the same
model to the calculation of hadronic vacuum polarization
contribution to g-2 and see how well the result based on
experimental data can be reproduced. This has been
done in Ref. [37] where the claim is that within the class
of models like the ones used in [14,16], the hadronic vac-
uum polarization contribution can be predicted to within
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15 per cent. This fact, by itself, is nice but I am not sure
how restrictive it is. Let me take three constituent quarks
with masses 200 MeV and use the lowest order cross sec-
tion for e+e− → qq̄ to compute the “hadronic” vacuum
polarization to aµ. Including only u, d and s quarks and
integrating up to 2 GeV, I get the hadronic vacuum po-
larization contribution to aµ to be ∼ 5000 × 10−11, a
perfectly reasonable number. Using the same “model”
for computing hadronic light-by-light, I would have ob-
tained the result close to 100 × 10−11. This number is
in the “correct” range but the sign is opposite. I think
this shows my point – in light-by-light we are sensitive to
much more detailed structure of the hadronic interactions
than we can check using hadronic vacuum polarization
and this fact seem to matter after all.

To summarize my discussion of hadronic light-by-light,
I would like to stress that the major question here is the
model dependence of the result and in this respect, in my
opinion, the agreement between the two independent cal-
culations [14,16] does not tell us much since the models
used in these calculations are similar. As I have discussed
above in detail, the momentum scales that control the
hadronic light-by-light scattering contribution are nei-
ther the mass of the muon nor the mass of the pion, as is
often assumed. For this reason, any low energy hadronic
model that is used for such a calculation, should be accu-
rate up to ∼ 1 GeV and, as far as I understand, there are
not too many such models on the market. It would cer-
tainly be very helpful if this problem would come under
scrutiny of the low-energy hadron physics community.

VI. CONCLUSIONS AND FUTURE PROSPECTS

What can be expected for the muon anomalous mag-
netic moment in the future? The g-2 collaboration will
improve the accuracy of their result to 40× 10−11. How-
ever, even with this accuracy the interpretation of this
result will depend on our ability to estimate the hadronic
contribution to g-2.

The analysis of e+e− → hadrons from Novosibirsk is
in its final phase. This implies that soon the new e+e−

based estimate of the hadronic vacuum polarization will
be available. Hopefully, it will include a proper treatment
of QED radiative corrections. With this new result, there
will, probably, be no need to use the τ data, since the
e+e− data will become sufficiently accurate.

The value of R(s) will probably be re-measured by us-
ing radiative return by KLOE, CLEO and BaBar collab-
orations at existing facilities. It is hard to imagine that
the radiative return based measurements will achieve a
one per cent accuracy; 3− 5 per cent accuracy is, proba-
bly, within reach. This might be sufficient for the energy
region above 1 GeV but it is not sufficient for the 2π
channel. Therefore, to a large extent, the e+e− based in-
terpretation of the muon anomaly, will hang on the new
Novosibirsk data.

On the theory side, the four loop QED radiative cor-
rections were not checked by an independent calculation.
Certainly, these kinds of calculations are much less re-
warding than model building and so it seems that the
chances to have any progress here are slim.

Finally, the real bottleneck seems to be the hadronic
light-by-light scattering contribution, because all the ex-
isting arguments that make one believe in the validity
of theoretical estimates are, from my viewpoint, rather
inconclusive. There is talk about getting some help from
lattice field theory but it is difficult to believe in that.
It would be of great help if the people who do low en-
ergy hadron physics phenomenology would come up with
a radically different model (as compared to what is used
now) to do the calculation of hadronic light-by-light. If
this happens, there will be at least some indication on
how large the real model dependence is.

From what I have said, it should be quite clear that so
far there is really no g-2 crisis. For the purpose of illus-
tration, consider the following estimate. Let us take the
recent e+e− based re-evaluation of the hadronic vacuum
polarization [22], which central value is about 50×10−11

higher than the result in [12]. Let me also use 38×10−11

as an uncertainty in the light-by-light. Finally, let me
add all the theory errors linearly. I obtain:

[
aexp
µ − ath

µ

]
× 1011 = 377± 150|exp ± 156|th. (37)

Clearly, if one presents it in such a way there is no sig-
nificant discrepancy. Again, to avoid misunderstanding,
let me stress that I do not consider Eq.(37) as my “best”
estimate of the current difference between the theory and
experiment; rather, Eq.(37) shows that the theory uncer-
tainty on the SM value of aµ, if evaluated conservatively,
is significant and a great deal of work will be required to
reduce it to the level required by experiment.

Acknowledgments: This work was supported in
part by DOE under grant number DE-AC03-76SF00515.
Originally these notes have been prepared for the seminar
at SLAC Theory Group on the muon anomalous mag-
netic moment. I acknowledge the effort by Sidney Drell
and Burton Richter to convince me to make these notes
public. I am very grateful to Stanley Brodsky, Andrzej
Czarnecki, Lance Dixon, Sidney Drell, Simon Eidelman,
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