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1. Introduction

Perturbative string theory provides us with a rigid set of rules for computing S-matrix

elements in particular limits of M Theory. The building blocks of these rules are the genus

expansion of Riemann surfaces, and a conformal field theory on each of these surfaces.

Although this is a very rich structure, which is only partially understood, one wonders

whether this is the most general set of rules, or just the tip of the iceberg. There are,

of course, many backgrounds for which we have no systematic perturbative description;

this is the case for generic backgrounds in M theory. There are also decoupling limits of

M theory which give string theories which are inherently strongly coupled, such as “little

string theories”. However, all previously studied backgrounds which are amenable to a

perturbative description can be described by the usual set of rules.

In this paper we will discuss new backgrounds of critical string theory, which have

a good perturbative description but which require an enlarged set of rules. To construct

these backgrounds we will use a specific kinematical setting, that of the anti-de Sitter

(AdS)/conformal field theory (CFT) correspondence, which has already taught us many

surprising facts about string theory. This will allow us to give a non-perturbative definition

(and, in particular, a strong argument for existence) of these backgrounds. The usual

set of rules involves a fixed local conformal theory on the worldsheet and a perturbative

expansion in powers of the string coupling. In the enlarged rules we will have an additional

parameter, which does not correspond to the string coupling or to a local vertex operator

on the worldsheet. One can think of the new parameter as the weight of new forms

of degenerate worldsheets, which roughly correspond to zero size worm-holes in the 2D

gravity of the worldsheet; this is analogous to the way in which the string coupling is the

weight of a handle on the worldsheet. Alternatively, we can try to sum the perturbation

theory in the new parameter, and then we remain with the usual genus expansion but with

a non-local worldsheet action, including interactions between disconnected components of

the worldsheet.

The kinematical context that we will be discussing is a deformation of string theory

on an AdS5 space, which is holographically dual to a four dimensional conformal field

theory [1,2,3,4]. Deformations of the conformal field theory by single-trace operators have

been extensively studied in the last few years, and we wish to generalize the discussion

to deformations of the conformal field theory by multiple-trace operators. From the field

theory point of view such a deformation is not significantly different (at finite N) from
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a single-trace deformation, but we will see that from the point of view of string theory

they seem quite different. Our main example will be based on type IIB string theory on

AdS5× T 1,1, which was discussed in [5,6,7,8]. The corresponding N = 1 CFT is relatively

well understood, and one can show that it contains an exactly marginal deformation which

is a superpotential term involving a product of two gauge-invariant chiral operators (whose

dimensions add up to 3). Phrased in the language of an asymptotically free UV theory

which flows to this CFT, the operator we deform by can be written as a product of two

traces. Double-trace perturbations can also be generated radiatively as in the examples of

[9,10], where there is again a family of possible coefficients determined in these cases by a

choice of renormalization-group trajectory in the field theory.

In string theory on AdS space this presents the following puzzle : on the one hand

one expects to be able to deform the string theory background to include the double-trace

deformation, but on the other hand, there is no obvious parameter in conventional string

theory corresponding to such a deformation. The usual parameters of string theory involve

turning on vertex operators on the worldsheet, which in AdS is the same as changing the

VEV of a field in spacetime; but this corresponds to the deformation of the field theory by

a single-trace operator (or a simple generator of the chiral ring). Note that, as frequently

done in discussions of string theory in RR backgrounds, we are assuming that the relevant

conformal field theories behave in a standard way, as described above, though they are not

well-understood.

Therefore, it is clear that these examples with double-trace operators (or, more gener-

ally, multiple-trace operators) appearing in the Lagrangian lead to a prediction for a novel

form of perturbative string theory on the gravity side. In this paper we will explain some

aspects of the new perturbative expansion, and some of its surprising features in the bulk

of the target space. We will see that the resulting string theories are non-local both on the

worldsheet and in space-time, so we dub them “non-local string theories” (NLSTs).

We should emphasize that the role of states involving multiple-trace operator excita-

tions around the ordinary unperturbed AdS/CFT background is well known: they describe

multiparticle states on the gravity side (see, e.g., [4]), and the anomalous dimensions of

the operators creating these states have been computed in some examples. Our goal here

is to articulate properties of the gravity side of the correspondence when we perturb the

Lagrangian by multiple-trace operators.

Double-trace perturbations of matrix models for non-critical strings were studied in

e.g. [11,12,13,14,15,16,17], where it was observed that the presence of such terms seems to
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lead to contact interactions on the string worldsheet. In the matrix model context it was

conjectured that these terms may be interpreted as changing the branch of the Liouville

dressing; the relation between this case and the critical string case we discuss here is not

clear. The question of what a multi-trace deformation would mean on the gravity side of

AdS/CFT dual pairs was raised previously in [18].

The organization of the paper is the following. We begin in section 2 by discussing

general properties of field theories with double-trace (and multiple-trace) deformations in

the ’t Hooft large N expansion. In section 3 we discuss the details of some specific examples

where multiple-trace perturbations arise on the field theory side of an AdS/CFT dual pair.

Using the field theory results, we proceed in section 4 to give a worldsheet description of

the new “genus-wormhole” expansion in a perturbative expansion around the undeformed

system, and discuss some of the features of the deformation from the point of view of the

gravitational dual theory, such as its non-locality. We also discuss briefly how one might

approach a more generic description of this type of background. In section 5 we discuss

an alternative approach to the problem, in which we view the deformation as changing

aspects of boundary conditions on AdS.

Although we will exhibit the non-local deformation only for certain AdS/CFT dual

pairs, it raises the interesting question of whether this sort of string perturbation theory

might exist in (and define) more general backgrounds. Such more general backgrounds

could lead to new low-energy effective actions. It is clear that the deformation does not

depend on the presence of RR background fields, since it exists also in AdS3 cases with

NS-NS backgrounds, which we hope to study in future work. However, it is not clear

what are the requirements on the asymptotic geometry for this type of deformation to

make sense. It should also be interesting to study the effects of the non-local behavior we

identify here on the calculation of UV-sensitive quantities on the gravity side such as the

vacuum energy, and on non-local operators such as Wilson lines on the field theory side.

Because of the novelty of this sort of system, our analysis here is rather preliminary, but

we hope that our observations will help to stimulate further development of these theories,

and, perhaps, the construction of a more general picture of what types of perturbative

string theories exist (and appear in some corners of the M theory moduli space).
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2. The large N limit of double-trace operators in field theory

SU(N) gauge theories in which all fields are in the adjoint representation (or in bifun-

damental representations) usually have a Lagrangian involving only terms which can be

written as a single trace, like the standard gauge kinetic term tr(F 2
µν). If one normalizes

the fields such that the Lagrangian is proportional to 1
g2
YM

, there exists a ’t Hooft large N

limit in which λ ≡ g2
YMN is kept constant. In this limit the perturbation theory becomes

a double expansion in 1/N2 and in λ (see, e.g. [19]). Diagrams which have genus g (in

the standard double line notation for the Feynman diagrams) contribute with a factor of

N2−2g times some power of λ. In particular, in a standard normalization for the single-

trace operators Oi in the theory, in which Oi is N times a trace of a product of the fields

(up to some function of λ), the correlation functions of Oi have an expansion of the form

〈O1O2 · · ·Oj〉 =
∞∑

g=0

N2−2gfg(λ). (2.1)

The first term in the sum, which corresponds to the planar diagrams, dominates in the

large N limit. In (2.1) we only wrote down the contribution from connected diagrams, of

course there are also disconnected diagrams whose generating function is the exponential

of the generating function for the connected diagrams.

(a)  (b)

i   j i   j

i

l

l k

k

j

 i   j

kk

l l

 

Figure 1: Examples of vertices (in double line notation) corresponding to
(a) single-trace and (b) double-trace operators, where the indices run over
1, · · · ,N .
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The building blocks of the diagrammatic expansion described above are the single-

trace vertices, which can be written in the plane as described in figure 1(a). On the other

hand, if we have a vertex corresponding to a double-trace operator (such as tr(F 2
µν)2),

or an insertion of such an operator, then this cannot be drawn in the plane, as in figure

1(b). Thus, naively it seems that the contribution of double-trace operators will always be

negligible in the large N limit, since they should only appear in non-planar diagrams.

Figure 2: A double-trace vertex connecting two components of a Feynman
diagram that was originally disconnected.

However, there is also the possibility that the double-trace operator can connect two

parts of the Feynman diagram which were originally disconnected, as in figure 2. If instead

of the double-trace operator we had two single-trace operators (one in each connected

component), whose coupling constant is taken to be proportional to N in the ’t Hooft

large N limit, then this diagram would scale as (N2)2 (a product of two standard planar

contributions). Therefore, when we have the double-trace vertex instead, such a diagram

will scale as N2 times the double-trace coupling constant.

If we scale the double-trace coupling constant such that it grows with N in the large

N limit, then this type of diagram, which becomes disconnected when one removes the

double-trace operators, will dominate in the large N limit, since its contribution would

grow faster than N2. Such a large N limit would not correspond to a string theory, but

perhaps to some branched polymer theory, and we will not discuss it here. Instead, we

will take the double-trace coupling constant to be some constant h̃ in the large N limit4.

Then, it is easy to see that the leading large N limit will be given by the sum of diagrams

with k + 1 spheres which are connected only by k double-trace vertex operators, giving

4 If we take the coupling constant to decrease as a power of N , the diagrams involving the

double-trace operators are negligible in the large N limit, so we get the same large N string theory

in the zero string coupling limit.
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Figure 3: Various diagrams with standard vertices and double-trace vertices.
If h̃ denotes the double-trace coupling, then the diagram in the i’th row
(i = 0, 1, · · ·) and the j’th column (j = 0, 1, · · ·) will scale as h̃iN2−2j in the
large N limit we are considering.

a contribution which scales as h̃kN2 (see figure 3). The subleading contributions in N

will involve both non-planar diagrams and diagrams which are connected to themselves

by double-trace operators. The contribution of any diagram may be simply computed

by counting the number k of double-trace operators (corresponding to a h̃k contribution)

and then replacing the double-trace operator by a small throat joining smoothly the two

worldsheets which it connects. A diagram which after this replacement has genus g will

scale as N2−2g in the large N limit5.

The full expression for the correlation functions in a theory which has such a double-

5 It is easy to generalize this analysis also to vertices involving a product of n traces for higher

n; the coefficients of such vertices need to scale as N 2−n in the large N limit to have a good

(string-like) large N expansion in which these vertices affect the leading order terms in the genus

expansion.
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trace coupling will be of the form

〈O1O2 · · ·Oj〉 =

∞∑

g=0

N2−2g
∞∑

k=0

h̃kfg,k(λ). (2.2)

Note that since we are adding a local double-trace operator, the two worldsheets which are

being connected by the vertex actually touch at the position of the double-trace vertex in

the four dimensions along which the QFT lives6. Thus, it seems that the new interactions

(governed by the perturbation theory in h̃) should be realized as contact interactions

between worldsheets from the point of view of the string theory describing the large N

limit of the field theory, as in figure 2. As we will see below, in our AdS/CFT cases where

the dual string theory lives in more dimensions, this picture will be modified.

Since the leading diagrams in the large N limit are almost disconnected, it is easy

to compute them in terms of correlation functions in the original theory before we added

the double-trace operator. For example, suppose we add to a Lagrangian involving only

single-trace operators a term of the form

δL =

∫
d4x

h̃

N2
On1(x)On2(x), (2.3)

for some single-trace operators On1 and On2. Then, the large N limit of any correlation

function will be of the form

〈O1O2 · · · Oj〉 = 〈O1O2 · · ·Oj〉0+

h̃

N2

∑

partitions

∫
d4x〈Oi1Oi2 · · ·OikOn1(x)〉0〈On2(x)Oik+1Oik+2 · · ·Oij 〉0 +O(h̃2),

(2.4)

where {i1, i2, · · · , ik; ik+1, · · · , ij} is some partition of the numbers from 1 to j into two

groups, and 〈〉0 are the correlation functions in the theory before the deformation. Note

that all terms in (2.4) scale as N2 in the large N limit; there are also terms of higher order

in 1/N2 which we did not write down explicitly.

6 We will limit ourselves here to four dimensional field theories, though everything we say

applies to any dimension.
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3. Explicit realizations of double-trace perturbations

(a) Running h̃

Usually we do not discuss double-trace operators in Lagrangians since (at least in four

dimensions) they tend to be irrelevant, so we cannot just add them to the Lagrangian.

However, such terms can, and generally do, arise when we integrate out other fields. For

example, in the theories studied in [9,10], double-trace quartic scalar perturbations are

generated radiatively in QFTs arising at low energies on D-branes at codimension < 6

orbifold fixed planes. In this case the corresponding single-trace perturbations are absent

at largeN due to symmetries and inheritance ofN = 4 supersymmetric nonrenormalization

theorems. When double-trace operators arise from integrating out fields, they necessarily

arise with physical coefficients – including bare contributions plus possible counterterms –

scaling as described in the previous section (or smaller in the large N limit, depending on

the genus of the diagram at which they first appear). In these theories, there is a choice of

QFT determined by the specific renormalization condition chosen, which determines the

physical double-trace coupling at a particular subtraction point M . Different choices are

related by finite shifts in counterterms, which amount to finite shifts in h̃ at scale M .

This case has the nice feature that there is a weakly-coupled limit of the theory

in which the double-trace interaction is evident perturbatively [9,10]. However, it has

the complications of broken supersymmetry and running couplings, and it is not clear

precisely what is the string theory dual of this case and how its parameters are related

to the field theory parameters. Therefore, we will largely focus on a strongly coupled but

supersymmetric system in which there is an exactly marginal double-trace perturbation.

(b) The exactly marginal case

We will focus here on the following simpler case, where one can show that there exists

an exactly marginal double-trace operator. An advantage of this case, beyond the fact

that the operator is exactly marginal, is that the single-trace operators involved are both

chiral, so there is no singularity when we bring them together and no subtlety in defining

the double-trace operator (which is just limx→y On1(x)On2 (y)). The example we will

discuss is a deformation of the one discussed by Klebanov and Witten in [5]. Let us start

from an SU(N) × SU(N) N = 1 supersymmetric gauge theory, with two bifundamental

chiral superfields Ai (i = 1, 2) and two anti-bifundamental chiral superfields Bj (j = 1, 2).

This theory is believed to flow in the IR to a strongly coupled fixed point; in fact, using the

NSVZ formula for the beta functions, one can show that for any value of the couplings the
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beta functions for the two gauge couplings g1 and g2 are the same, so one expects to have a

one-dimensional surface of fixed points, which are solutions to the equation β(g1, g2) = 0.

If we now deform the theory by adding a superpotential

W = Nhtr(A1B1A2B2 −A1B2A2B1) (3.1)

(which preserves the SU(2)×SU(2)×U(1)R global symmetry of the original superconformal

field theory), then one can show [5] by the methods of [20] that the beta function for h is

proportional to that of g1 and g2, so that there is still just one equation β(g1, g2, h) = 0

which needs to be satisfied for the theory to be conformally invariant. Thus, we expect

to have a two dimensional manifold of exactly marginal deformations for these conformal

theories, and this was verified also in the AdS dual of these theories in [5].

Now, we can ask what happens if we deform the theory described above by an addi-

tional superpotential of the form

δW = h̃(tr(A1B1)tr(A2B2)− tr(A1B2)tr(A2B1)), (3.2)

which also preserves the same global symmetries. It is easy to see that the anomalous

dimension of this operator is the same as that of the operator in (3.1), so the beta functions

of h and h̃ are proportional to each other (as well as to the beta functions of the gauge

couplings). Therefore, we expect to still have a solution to the equation β = 0 even when

we turn on the coupling h̃, so this is an exactly marginal coupling. In the scaling we

wrote here the large N limit behaves as described in the previous section. For small h̃ we

will thus have in the large N limit a double perturbation expansion in 1/N 2 and in h̃, as

described above7.

Note that if we write the Lagrangian corresponding to (3.2) in components, the lin-

ear term in h̃ is indeed a sum of various double-trace operators (including terms where

each trace is either bosonic of fermionic), but there is also the scalar potential (after we

integrate out the auxiliary fields) which includes a triple-trace operator, whose coefficient

is proportional to |h̃|2/N (where the 1/N comes from the Kähler metric in our normal-

ization). Such a term behaves in the large N limit similarly to the double-trace term we

described in detail above (as would a term with a product of k traces and a coefficient

7 We could also have a perturbation expansion in h, but in view of the AdS/CFT application

we have in mind we prefer not to take h to be small, but just to be constant in the large N limit.

The supergravity approximation in this case is only valid at large h.
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h̃k−1/Nk−2). We cannot write down this term explicitly because we do not know the form

of the Kähler metric in this strongly coupled theory, but equation (3.2) uniquely specifies

the deformation we are performing.

If we wish, we can alternatively describe this deformation by using an auxiliary singlet

field λij in the (2,2) representation of the global SU(2)× SU(2) symmetry group. Then,

we can write instead

δW = εikεjl(λij tr(AkBl) −
1

2h̃
λijλkl). (3.3)

Integrating out the auxiliary field λij reproduces the action (3.2). One can think of the

contact interaction between worldsheets described in the previous section as arising from

integrating out the infinitely massive auxiliary field λij .

For small h̃ the correlation functions of the theory will change by a small amount, given

by (2.4) (including contributions from all the double-trace operators in our Lagrangian,

and at higher orders also from the triple-trace operator). However, the moduli space of

the theory changes in a more drastic way, since some of it is lifted by the new term (3.2).

The moduli space of the original theory is [5] a symmetric product of N copies of the

conifold z11z22 − z12z21 = 0. On the moduli space we can diagonalize all the matrices

A1, A2, B1 and B2 (in some arbitrary basis), and the gauge-invariant combinations (up

to permutations) are z
(I)
ij ≡ (Ai)II(Bj)II which can be identified with positions on the

conifold.

After we deform the theory, pairs of eigenvalues interact strongly at long distance. If

only the first eigenvalue of the matrices is non-zero, the potential still vanishes. However, if

two eigenvalues are non-zero, ∂W
∂A1

includes terms proportional to h̃(A2)II((B1)22(B2)11 −
(B1)11(B2)22), which lead to pairwise forces which grow with distance on the conifold.

One way to cancel all these forces is to impose the four complex conditions tr(AiBj) ≡ 0.

This suffices to cancel the corrected F-terms, giving a branch of the moduli space of real

dimension 6N−8 8. There is another branch of the moduli space, of dimension 6+2(N−1),

in which this constraint does not necessarily hold, but the k’th eigenvalue of all the matrices

is given by αk times the first eigenvalue for some complex number αk.

8 We thank D. Berenstein for pointing out this branch of the moduli space.
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4. Double-trace operators in the AdS/CFT correspondence

4.1. General properties

The theories discussed in the previous section, before including the double-trace de-

formation, have dual descriptions, using the AdS/CFT correspondence [1,2,3,4], as type

IIB string theory on AdS5 ×K for Einstein spaces K, where K = S5/Zn in the examples

of §3a, and K = T 1,1 in the example of §3b [5] (where T 1,1 = (SU(2) × SU(2)/U(1)) is

the base of the cone in the conifold geometry). Thus, we can ask what these deformations

correspond to in the dual theory. Recall that in general, every single-trace operator in the

field theory corresponds to a field propagating on AdS space, and to a vertex operator in

the corresponding worldsheet string theory. Deforming the field theory by a single-trace

operator is dual to turning on the corresponding vertex operator in the string theory, or

(equivalently) to looking at configurations in which the corresponding field on AdS has a

particular behavior near the boundary. For example, deforming the field theory of §3b by

the two exactly marginal single-trace operators corresponds in the string theory dual to

changing the (constant over all space) value of the string coupling and axion and of the

integral of the 2-form fields over the non-trivial 2-cycle in T 1,1.

On the other hand, double-trace operators do not correspond to fields on AdS or

to vertex operators in the string theory. In some sense they correspond to two-particle

configurations on AdS, since we can define the double-trace operator by its appearance

in the OPE of two single-trace operators. This suggests that perhaps deforming by such

an operator should be described by some two-particle condensate in the bulk (a “squeezed

state”) behaving in a particular way near the boundary, analogous to the description of

single-trace deformations. One can perhaps construct such a state as a coherent state in

an off-shell formulation of the low-energy supergravity, but it is not clear how to promote

this description to the full string theory, which does not contain any off-shell information

in the bulk. Thus, we will propose an alternative description for this deformation based

on (a generalization of) worldsheet string theory.

An important property of the double-trace deformation we are discussing is that,

unlike the single-trace deformations, the double-trace deformation leads to a theory which

is non-local in the ten dimensional bulk :

1. One way to see the non-locality is from the description above as a coherent state of

two particles, each of which is in some spherical harmonic on K; obviously this induces

long-term correlations between different positions on K.
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2. The non-locality on K also follows from the form of the corrections (2.4) to correlation

functions. Correlation functions of particular spherical harmonics will change in a different

way from those of other spherical harmonics; for example, only the two point functions of

the low-lying spherical harmonics corresponding to the operators explicitly appearing in

the double-trace term will change. This again suggests that the deformation has no local

description in ten dimensions.

3. Some of the original moduli space before we turned on the deformation corresponded to

configurations of D3-branes sitting at arbitrary radial positions and arbitrary positions in

K. After the deformation, as described above, we can still have a single D3-brane and no

force will act on it, but if we have two D3-branes at different positions on K there should

be a force between them that grows with the distance (along K), coming from the new

scalar potential after the deformation. Again, this is inconsistent with a local description

in ten dimensions. Formulas for similar long-range potentials can be found in [10] for case

(a).

Note that the scale of non-locality suggested by these observations is the radius R of K,

which is also the radius of curvature of the AdS space; we will mostly be working in the

limit where this is much larger than the string scale (at which the theory is obviously

non-local). This requires us to consider case (b) and take the coupling h discussed above

to be large.

The arguments above suggest that after the deformation the theory is non-local on K,

but it could still be local on the AdS space. The fact that the deformation is local in IR4

suggests that it might be local also in AdS, but this is also consistent with a non-locality

of the order of the AdS radius (since it is hard to describe smaller objects than this in the

field theory). In our description below we will see that the resulting theory seems to be

non-local also on AdS.

4.2. The deformation in string theory

How can we describe the deformed theory ? Usually the only deformations we are

allowed to do in string theory have a perturbative description involving turning on vertex

operators on the worldsheet. In conformal perturbation theory, one adds

δS = ε

∫
d2σ

√
ĝV (4.1)

to the worldsheet action, which preserves conformal invariance if V is an exactly marginal

physical vertex operator. Working in the original theory and adding contributions obtained

12



by bringing down powers of δS into correlation functions produces the corrected correla-

tion functions of the deformed theory, perturbatively in ε. For example, if we consider a

circle parameterized by target space coordinate X, adding
∫
d2σ
√
ĝεV ≡

∫
d2σ
√
ĝε∂X∂̄X

changes the radius squared of the circle by ε.

More generally, one can go beyond this conformal perturbation theory by re-solving

for the spectrum and interactions of the deformed theory using the new worldsheet action

S+ δS (or equivalently by performing the Polyakov path integral with the shifted action).

More generally still one can consider terms of the form
∫
d2σ
√
ĝGµν(X)∂Xµ ∂̄Xν for which

the condition for conformal invariance translates into the condition Rµν = 0 (at lowest

order in α′).

In the context of the AdS/CFT correspondence, these standard deformations on the

gravity side correspond only to deformations by single-trace operators on the boundary, so

the double-trace deformation we are interested in here cannot be described in this way. It

seems that it is not possible to describe this deformation from the point of view of a single

worldsheet, as suggested also by the field theory analysis above where the deformation

corresponds to a contact interaction between worldsheets. We do not know how to describe

the deformation at a fundamental level, but we can reproduce the perturbation expansion

in h̃ (2.4), analogous to the perturbation theory about a fixed background worldsheet CFT

deformed by (4.1). This is accomplished by adding an interaction term to the usual sum

over all worldsheets (connected and disconnected), as follows.

Suppose that our interaction in the gauge theory is of the form (2.3), with On1(x1) of

dimension ∆1 corresponding to a vertex operator of the form Vn1(θ(w))f∆1 ,x1(x(w), z(w)),

where Vn1 includes the appropriate spherical harmonic as a function of the compact space,

w is the complex coordinate on the worldsheet9, x and z are coordinates on AdS with the

metric ds2
AdS = R2

z2 (dz2 + dxµdxµ), and f∆1,x1 is the non-normalizable wave-function on

AdS for an operator of dimension ∆1 with delta-function support at a point x1 on the

boundary. There is a similar vertex operator corresponding to On2(x2). We are being

schematic here since in any case we do not have a good description of string theory in

this RR background. Then, it seems that we need to add an interaction between two

9 When we write x(w) we refer to a general function/operator depending on w and w̄.
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worldsheets of the form

δS̃ = h̃

∫
d4x

∫
d2w1Vn1(θ1(w1))f∆1,x(x1(w1), z1(w1))·

·
∫
d2w2Vn2(θ2(w2))f∆2,x(x2(w2), z2(w2)) ≡

≡ h̃

∫
d2w1

∫
d2w2Vn1(θ1(w1))Vn2 (θ2(w2))K(x1(w1), z1(w1);x2(w2), z2(w2)),

(4.2)

where

K(x1, z1;x2, z2) =

∫
d4xG∆1 (x;x1, z1)G∆2(x;x2, z2), (4.3)

and G∆ is the boundary-to-bulk propagator on AdS5, given in Euclidean space by

G∆(x;x1, z1) = π−2 Γ(∆)

Γ(∆− 2)

z1
∆

(z2
1 + (x − x1)2)∆

. (4.4)

As in our field theory discussion,w1 and w2 can either be on the same connected component

of the worldsheet or on different connected components. For two points on the boundary,

z1 = z2 = 0, K is just a delta function (as expected from the field theory analysis of §2,

which suggested a contact interaction in 4d), but in the bulk it is non-zero also when x1 6=
x2. Our vertex operators appearing in (4.2) contain an implicit factor of the string coupling

gs, as is standard for vertex operators describing ordinary string excitations (though usually

one does not include this factor in the standard deformations (4.1) describing condensation

of strings). This yields the correct gs-dependence to match the field theory expansion

(2.2)(2.3)(2.4) (with the normalization of field theory operators as discussed in the previous

sections). In momentum space we can write K as

K(x1, z1;x2, z2) =

∫
d4keik·(x1−x2)z2

1z
2
2K∆1−2(|k|z1)K∆2−2(|k|z2) (4.5)

in Euclidean space; the Lorentzian case is defined as usual by analytic continuation of this

expression, which involves the same modified Bessel functions Kν (z) for k2 > 0 and Hankel

functions Hν(z) for k2 < 0 [21].

The added interaction (4.2) manifestly reproduces the leading term in (2.4), at least

in the supergravity approximation. Since the interaction (4.2) that we added is a sum of

products of vertex operators (of dimension (1, 1)) on each worldsheet, it is clear that it

preserves conformal invariance. However, since this interaction involves two worldsheets,

it does not seem to be equivalent to any standard string interaction which is local on the

worldsheet.
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Similarly, we can generalize (4.2) to an interaction between three strings that would

correspond to a triple-trace operator, which we need to do if we want to add a double-trace

operator in a way which preserves supersymmetry (as described in the previous section).

Note that (as argued, for instance, in [22]) when we compute sphere correlation functions

on AdS, the volume of SL(2, C) is absorbed by the integral over the radial position on

AdS, so two-point functions do not necessarily vanish on the sphere.

There is one simplification evident from the diagrammatics of our deformation that is

worth pointing out. Although this deformation is not a modulus of local supergravity, and

has various novel nonlocal features as discussed in §4.1, it follows from our perturbative

formulation in this section that graviton scattering alone is unaffected by the deformation

at order O(N2) (tree-level on the gravity side). At this order, all diagrams with only

gravitons on external legs involve at least one genus zero component of the worldsheet

with insertions of a single field φn1 or φn2 (dual to the factors On1,2 in the double-trace

perturbation), combined with some number of gravitons. At tree level, matter fields do

not couple linearly to gravitons, and these diagrams all vanish. In the case of the orbifold

models of case (a), in fact the self-interactions of all untwisted modes are unaffected by

the deformation at O(N2). This follows from the inheritance of untwisted amplitudes in

orbifold field and string theories at this order.

4.3. Comments on possible generalizations

Next, we can ask if, as in the case of ordinary single vertex operator deformations

whose condensation leads to a change in the space-time background appearing in the

worldsheet Lagrangian, we can find also in this case an exact description going beyond our

generalization of worldsheet conformal perturbation theory. Perturbatively, we describe

our deformation by a Polyakov path integral of the form

∑

disconnected

∫
[DY ]e−S0−δS̃ , (4.6)

where S0 is the worldsheet action before the deformation, and where we use Y ≡ (θ, x, z)

to denote the full set of space-time coordinates. We would like to know if we can describe

the deformation more generally using a Polyakov path integral of the form

∑

disconnected

∫
[DY ]e−S , (4.7)
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where

S =

Nw∑

I=1

∫
d2σ(I)

√
ĝ(σ)L0 +

Nw∑

I=1

∫
d2σ

(I)
1

√
ĝ(σ1)

Nw∑

J=1

∫
d2σ

(J)
2

√
ĝ(σ2)K̂[Y (σ1), Y (σ2)]

+ trilocal and higher contributions

(4.8)

for some function K̂, where we wrote the worldsheet coordinate σ as a direct sum of

contributions from different connected components of the worldsheet: σ =
∑
I,⊕ σ

(I) =

σ(1)⊕ σ(2)⊕ . . .⊕ σ(Nw), and Nw is the number of disconnected components of the world-

sheet in a given term of (4.7)10. We have included in (4.8) the possibility of trilocal and

higher multilocal terms on the worldsheet, which may be required to cancel violations of

Weyl invariance that arise as operators from different bilocal terms in (4.8) collide on a

given component of the worldsheet11. If this description is to work, we need to know what

the conditions on the couplings in S are in order to have conformal invariance. These

should follow from requiring cancellation of the anomaly under Weyl rescalings of the

worldsheet metric (ĝαβ → e2ηĝαβ). In other words, if we calculate the Weyl anomaly for

the metric using the action (4.8), what conditions do we get on K̂[Y (σ1), Y (σ2)] and on

the higher nonlocal terms in (4.8)? In the linearized approximation one solution for K̂ is

(4.2)-(4.5), which appears to reproduce the double-trace deformation in conformal pertur-

bation theory. More generally, we might expect to find a much wider class of solutions,

analogous to the solutions of the Ricci-flatness condition in the case of the Lagrangian

Gµν(X)∂Xµ ∂̄Xν on a single worldsheet. Most of these solutions will not involve products

of propagators for single quanta of the bulk fields as we had above, but will instead involve

much more general field configurations K̂(Y1, Y2) solving the conformal invariance condi-

tions. Note that in this formalism we still have the usual genus expansion (including also

disconnected worldsheets), but with a non-local worldsheet action which relates (possibly

disconnected) components of the worldsheet, and changes the power of gs associated with

certain diagrams.

10 Similar non-local terms in the worldsheet action were studied on connected worldsheets in

[23] in analyzing the problem of D-brane recoil.
11 Alternatively, we can think of such terms as arising in a worldsheet renormalization group

flow starting from a theory with only bilocal couplings.
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On D-brane probes, there will be new interactions obtained from worldsheets of the

sort discussed above but with boundaries on the D-brane probes. In the worldvolume

theory, these will in general appear as new interactions. It would be interesting to obtain

the rules for what sorts of couplings can consistently be introduced on D-brane probes;

perhaps this can be used to constrain the general possibilities for such interactions on the

string theory side.

5. An alternative description of the deformation

An equivalent way to describe the deformed theory is by using our description (3.3)

of the deformation in the field theory. If we had only the first term in (3.3), then the

auxiliary field λij appearing there would be identified in string theory with the boundary

value for a non-normalizable mode of the field corresponding to the operator tr(AB). Thus,

we can describe the deformed theory by integrating over all possible boundary conditions

for this field, with a weight given by e
− 1

2h̃

∫
λ2
ij (the precise description is actually a bit

more complicated because (3.3) is a superpotential and not a Lagrangian, but this raises

no new issues). From the bulk point of view, this description may be less useful than the

description above, since it involves integrating over boundary conditions and completely

obscures the physics in the bulk. However, if we do a perturbation expansion of this

description, we recover the description above, where K essentially arises as the inverse

propagator for λij in the bulk.

If we discuss a theory on an AdS space with a cutoff (which is a UV cutoff in the

field theory), then all the couplings, including λij , become dynamical fields. We can then

introduce interactions like the second term of (3.3) on the cutoff, which will lead to the

theories we described above as we take the cutoff to infinity (the kinetic term of λij goes

to zero in this limit).

One way to view the new interactions is, therefore, in terms of adding an auxiliary

field λij on the boundary, such that the new interactions all involve this field. Thus, it

might seem that we are really not changing the bulk physics at all. However, from the

discussion of the previous sections it is clear that (for instance) from the point of view of the

low-energy theory the couplings in the bulk change, just like for single-trace deformations.

In particular, the double-trace perturbation we are discussing in the conifold case is an

exactly marginal perturbation on the field theory side, which therefore affects physics on

all scales, and in the cases of §3a the dynamically generated double-trace contribution
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grows in the infrared of the field theory. Therefore, on the gravity side these deformations

should have effects in the bulk of the AdS space rather than being concentrated at the

boundary. Also, one might think that two worldsheets will only interact if a particle can

actually be physically transmitted from one to the other through the boundary, but this is

clearly not true; there is an infinite potential barrier preventing most normalizable particle

excitations in the interior of the space from propagating to the boundary. The bulk-

boundary propagator involves instead nonnormalizable excitations whose wavefunctions

near the boundary are infinitely rescaled relative to those of normalizable excitations, as

discussed for example in [24,25] in the context of the undeformed theory. Furthermore,

from the form of (4.3) it seems clear that the new interactions relate also nearby points in

the bulk, which cannot be causally connected through the boundary12.

It would be interesting to understand if the choice of boundary conditions and path

integral weights that we are making can be related to a choice made in taking the near-

horizon limit of the full D-brane systems leading to the AdS/CFT dual pairs we are

studying. In taking the near-horizon limit, the non-normalizable modes which live in the

asymptotically flat region away from the brane freeze out, serving as sources (couplings)

in the field theory and background parameters in the gravity theory. In the standard limit

[1], the massive fields among them are simply set to zero. But perhaps the near-horizon

limit is more subtle in general; it is tempting to speculate that the λij appearing in the

above prescription are some of these physical asymptotic closed string states, and that

there is perhaps some other way of taking the near-horizon limit in which these states,

while still not corresponding to dynamical fields, affect the theory differently from what

one would get by simply setting them to zero, because of the residual couplings (3.3).
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