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Intrabeam scattering (IBS) is a relaxation process which brings a bunch

of charged particles in an accelerator closer to its thermal equilibrium

distribution[1, 2]. This leads to a time variation of collective quantities of

the bunch, most notably of the emittance. The typical relaxation times

can be calculated using the formalism of Bjorken and Mtingwa[2]. This

formalism treats the particles in the bunch as distinguishable classical

particles. In this paper, we extend the results of [2] to include effects

due to quantum statistics. For fermions, the relaxation times will increase

due to restricted accessibility of phasespace, while we find a decrease in

relaxation times for bosons. The correction factor, however, will be of the

order NParticles~
3/p30εxεyεz and will be negligible for today’s machines.

I. INTRODUCTION

In the usual parameter regime of accelerator physics, it is justified to treat a charged

particle bunch as a hot gas of classical particles.

In the context of new cooling mechanisms, such as the one proposed in [3], however, one

has to consider systems in which the single-particle action can become close to h. If we

consider these very cold states, quantum phase space granularity becomes an issue.

The zero-temperature ground state of an charged beam in a strong-focusing lattice can

be explicitly constructed[4, 5] as a Fermi condensate in a self-consistent mean-field. For

T = 0, it is clear that no scattering processes take place. For small, but finite temperatures,
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only the particles close to the Fermi surface can scatter off each other.

From this, it is clear the usual intrabeam scattering calculations cannot apply to the low-

temperature regime, as they assume that particles are distinguishable and can share phase

space cells, leading to a Maxwell distribution in equilibrium. From the explicit construction,

however, we know the equilibrium distribution has to be a Fermi distribution. Thus, the

usual kinetic equations for IBS need to be modified for a temperature range between Fermi

condensation (which suppresses scattering processes) and very low phasespace densities (in

which case the classical approximation of a hot gas is applicable).

In this paper, we will generalize the kinetic equation used by Bjorken and Mtingwa ([2],

we will frequently refer to their results and formalism) to the quantum case. Their equation

approximates the scattering processes by binary collisions. The quantum equivalent of this

is a collision integral in the Born approximation, namely, the Uehling-Uhlenbeck collision

integral[8][6, 7]:

J(p1) =

∫

d3p2d
3p′1d

3p′2δ(ε1 + ε2 − ε1′ − ε2′)

|V (p1,p2,p
′
1,p

′
2)|

2

[(1 + ξf(p1))(1 + ξf(p2))f(p
′
1)f(p

′
2)

− (1 + ξf(p′1))(1 + ξf(p′2))f(p1)f(p2)] ,

(1)

where f is the phasespace density, εp is the kinetic energy, V is the interaction matrix el-

ement, J(p) ∝ d
dt
f(p), and ξ sets the statistics: ξ = 0 for Boltzmann, ξ = 1 for Bose,

and ξ = −1 for Fermi statistics. The interaction is assumed to be isotropic and transla-

tionally invariant. Furthermore, V is assumed to be properly (anti-)symmetrized for bosons

(fermions), i. e., it contains both the direct and the exchange amplitude. We treat everything

in the beam’s frame of reference.

We are interested in the time development of moments of the outer momentum p1, so we

calculate the quantity J ik =
∫

d3p1J(p1)p
i
1p

k
1.

II. CLASSICAL CASE

Let us first consider the case ξ = 0; this is the case Bjorken and Mtingwa treated in [2].

In the quantum case, it is sufficient to consider distributions in the momentum variable p
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only, which can be thought of as reduced Wigner functions
∫

d3qfW (q,p). We assume them

to be Gaussian with correlation matrix C, and normalized such that
∫

d3pf(p) = N .

Note that, in the case ξ = 0, the equilibrium distribution associated with (1) is the

Maxwell-Boltzmann distribution fMB(p) ∝ exp(−βε(p)), leading to J(p1) = 0. Setting

ξ = ±1 will give zero growth for fF,B ∝ 1
exp(β(ε(p)−µ))±1

, i. e., the quantum-statistical Fermi

and Bose distributions, resp., as one should expect. For the case of a storage ring above

transition, such an equilibrium distribution does not exist, however, as the hamiltonian is

not bounded from below.

In (1), momentum conservation allows us to integrate out one momentum vector and to

introduce q,p±, where p1,2 = p+±p−±q/2 and p′1,2 = p+±p−∓q/2. With that, we have

δ(ε1 + ε2 − ε1′ − ε2′) =
m
2
δ(p− · q) and d3p1d

3p2d
3p′1d

3p′2δ
3
Scattering = 8d3p+d

3p−d
3q.

Thus,

J ik = 4m

∫

d3p+d
3p−d

3qδ(q · p−) |V (|q|)|2
[

f(p+ + p− + q/2)f(p+ − p− − q/2)−

− f(p+ + p− − q/2)f(p+ − p+ + q/2)

]

(p+ + p− + q/2)i(p+ + p− + q/2)k .

We replace q → −q in the second term and shift p− by q/2 in both:

J ik = 4m

∫

d3p+d
3p−d

3q |V (|q|)|2

f(p+ + p−)f(p+ − p−)δ(q · p− − q · q/2)
[

(p+ + p−)
i(p+ + p−)

k

− (p+ + p− − q)i(p+ + p− − q)k
]

.

We now use the fact the distribution f is Gaussian with vanishing centers. We can then

rearrange the arguments of the fs, giving

J ik = 4m

∫

d3p+d
3p−f(

√
2p+)f(

√
2p−)

∫

d3qδ(q · p− − q · q/2)V0
pi−q

k + pk−q
i − qiqk

|q|4
,

(2)

where we put in the Coulomb interaction V0 |q|−4. We disregard exchange terms in the

matrix element, as simple power-counting shows they will not contribute logarithmically.
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The innermost integral V ik can be done by going to spherical coordinates with p− ‖ ez.

Suppressing constant and keeping only logarithmically divergent terms, we get

Vik = −π
∣

∣p−
∣

∣

2
δik − 3pi−p

k
−

∣

∣p−
∣

∣

3 log , (3)

where log =
∫

d(cosϑp
−
,q)/cosϑp

−
,q (which has to be interpreted as an appropriately regu-

larized quantity) is the plasma logarithm.

After rescaling p± by
√
2, we get the ‘diffusion kernel’

J ik = −mNπV0√
2

∫

d3pf(p)
|p|2 δik − 3pipk

|p|3
log

in agreement with the result of Bjorken and Mtingwa [2].

III. QUANTUM CORRECTIONS

A. Pauli Blocking

Now we set ξ = ±1 in (1). This leads to a correction term

J ikQuantum = J ik + ξ∆J ik , (4)

where the ∆J ik integrals contain all f 3 terms; the f 4 terms vanish for all statistics. It is

easy to see that the correction is of the order NJ ik/Γ, where Γ is the phasespace volume;

the correction will lead to an increase (decrease) of the decay times for fermions (bosons).

We use the same variables as above, giving

∆J ik = 8m

∫

d3p+d
3p−d

3qδ(q · p−) |V (|q|)|2
[

∑

σ=±

f(p+ + σp− − σq/2)

]

f(p+ + p− + q/2)

f(p+ − p− − q/2)(pi+ + pi−)q
k .

The difficulty lies in the fact that the quadratic forms in the product distributions do not

allow for the elimination of q as in the previous case. Thus, we will keep three Gaussians in
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the integral. We proceed by shifting variables: p− := p− − q/4 and p+ := p+ + σq/4:

∆J ik = 8m
∑

σ=±

∫

d3p+d
3p−

f(
√
2[p+ + σp−])f(p+ − σp−)×

∫

d3qf(
√
2q)δ(q · p− − q · q/4)

|V (|q|)|2 (pi+ + pi− − (1− σ)qi/4)qk .

Expanding f in q in the innermost integral, we see that only the zeroth order contributes

to leading-log order, so we can replace f(
√

(1/2)q) by f(0), i. e., its normalization constant

N
Γ
, where Γ = (2π)3

√
detC is the phasespace volume of the bunch’s six-dimensional one-σ

ellipsoid.

We now can integrate out p+. We need the following integrals:

K0 =

∫

d3p+f(
√
2[p+ + σp−])f(p+ − σp−)

= 3−
3

2Nf(
√

10/3p−)

and

Ki
1 =

∫

d3p+f(
√
2[p+ + σp−])f(p+ − σp−)p

i
+

= −σ3− 5

2Nf(
√

10/3p−)p
i
− .

The reduced distribution function is independent of σ, so all terms ∝ σ drop out of the

sum.

The innermost integral is proportional to Vik, so

∆J ik

J ik
=

N

Γ

3−3/2
∫

d3p−f(
√

10/3p−)Vik

2−3/2
∫

d3p−f(
√
2p−)Vik

=
2N

5Γ

√

2

3

B. Exchange Term

Another term neglected in the classical approximation[2] is the exchange term in the

interaction matrix element. As it will not contribute to leading-log order, this is justified.

However, if Γ
N
≈ log, this term becomes important in our consideration. We can proceed as

in section II up to (2); the exchange term will give a contribution

V ik
Exchange = ξ

∫

d3qδ(q · p− − q · q/2)

V0
pi−q

k + pk−q
i − qiqk

2 |q|2
∣

∣p− − q/2
∣

∣

2
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which stems from the mixed terms in the transition probability

P = |〈p′1,p′2 V p1,p2〉+ ξ 〈p′1,p′2 V p2,p1〉|
2

.

Again, this integral is easily evaluated in spherical coordinates, giving

V ik
Exchange = ξ

const

2 log
V ik .

The non-logarithmic parts of the direct terms (i. e., the terms neglected in (3) are of the

same order, they read

V ik
Direct, nolog = −

const

log
V ik ,

where const =
∫

d(cosϑp
−
,q) cosϑp

−
,q is a finite integral whose boundaries are subject to

the same cutoff as the ones of the log integral.

C. Total Correction

We have found that all correction terms are proportional to the same tensor. Thus, the

formalism for locally evaluating the quantities Jik remains applicable; all integrands in the

ring-averaged quantities in [2] merely need to be augmented by a factor of (in usual units)

1 + ξ
4N~

3

5
√
6 detCLab

+ (ξ − 2)
const

2 log
,

where CLab is the correlation matrix of positions and momenta in the laboratory frame. The

second term is temperature-dependent, as one would expect, lowering the scattering rates

for fermions as their phasespace volume shrinks.
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