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Abstract

A self-consistent treatment of a three-dimensional ellipsoid with negligible emittance in

time-dependent external field is performed. Envelope equations describing the evolution of an

ellipsoid boundary are discussed. For a complete model it is required that the initial particle

momenta be a linear function of the coordinates. Numerical example and verification of the

problem by a 3-dimensional particle-in-cell simulations are given.
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Envelope equations for three-dimensional (3D) uniformly charged ellipsoid are widely

used in accelerator theory. Meanwhile, self-consistent analysis which could result in such

equations, is unknown. There is no distribution function in 6-dimensional phase space, which

leads in solution of self-consistent problem as uniformly charged 3D ellipsoid in real space

[1]. In this paper we demonstrate existence of  self-consistent solution for a 3D time-

dependent ellipsoid with zero phase space volume. Time - independent solutions for an

azimutally-symmetric ellipsoid (2-dimensional spheroid) were treated in Refs. [2], [3] and

time -dependent solution for the same ellipsoid was found in Ref. [4].

Consider evolution of an uniformly charged ellipsoid propagating in z-direction of

Cartesian system of coordinates (x, y, z) with average velocity of vs = βsc. Space charge

density of ellipsoid is given by
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where Q is a charge of ellipsoid and Rx, Ry, Rz are semi-axes of ellipsoid. Let us introduce

new canonical-conjugate variables (ζ, pz), where ζ = z - vst is a deviation from center of

ellipsoid and pz = p - ps is a deviation from longitudinal momentum of center particle. We

consider regime, when spread of particle energies is much smaller, than the average energy of

the beam, ∆γ/γ << 1, where γ = (1 - vs2/c2) - 1/2. Under that assumption, Hamiltonian of particle

motion in new variables is given by [5]

H = 
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2 + py
2
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  + 

pz
2

2 m γ3
 + q Uext + q Ub

γ2
 ,                                 (2)

where px, py are transverse momentum, Uext is a potential of external field:



3

Uext(x, y, ζ, t) = Gx(t) x
2
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2
  ,                            (3)

Gx(t), Gy(t), Gz(t) are time-dependent gradients of the external field and Ub is a space charge

potential of the beam.

Let us introduce system of coordinates (x', y',ζ ' ), which moves with the same velocity

as that of the center of ellipsoid. Coordinates of both frames are connected via Lorentz

transformation:

x' = x ,    y' = y ,    ζ '  = γζ .                                               (4)

In the moving system of coordinates vector potential of the beam is zero, Ab = 0, and beam

field is described by a scalar potential [6]:
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where Rx
'  = Rx, Ry

'  = Ry, Rz
'  = γRz are semi-axes and ρ'  is a space charge density of ellipsoid

in moving system:

ρ' = 3
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 .                                                  (6)

According to Lorentz transformation, scalar potential in laboratory system is Ub = γUb
' :
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From Hamiltonian, Eq. (2), Lorentz force of the beam is connected with space charge potential

by relationship:
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and components of Lorentz force are:
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Consider dynamics of an arbitrary element inside the ellipsoid with coordinates (x, x+

dx), (y, y + dy), (z, z + dz) which contains dN (x, y, z) particles. External focusing fields are

linear functions of coordinates:

Fx
(ext) = - Gx(t) x,              Fy

(ext) = - Gy(t) y,              Fz
(ext) = - Gz(t) ζ .             (12)

Assume that the ellipsoid remains uniformly populated, therefore equations of particle motion

under the external field and space charge forces of the ellipsoid are linear:

dx
dt

 = 
px

mγ
,             

dy
dt

 = 
py

mγ
,          

dζ
dt

 = 
pz

mγ3
,                                    (13)

dpx

dt
 = - qGx(t)x + q 

ρ(t) Mx(t)

γ2εo

 x,                                                    (14)
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dpy

dt
 = - qGy(t)y + q 

ρ(t) My(t)

γ2εo

 y,                                                    (15)

dpz

dt
 = - qGz(t)ζ + q 

ρ(t) Mz(t)
εo

 ζ  .                                                   (16)

The general solution of the set of linear differential equations of the first order is the linear

combination of the initial conditions:

x(t)

px(t)
  =  

 a11(t)    a12(t) 

  a11(t)    a12(t) 
   

xo

pxo
  ,                                              (17)

where aij (t), i,j =1, 2 are coefficients of the solution matrix. Similar solutions are valid for the

y, py and ζ, pz variables. Let us introduce an additional requirement that the initial particle

momenta are linear functions of the coordinates:

pxo = αx·xo  ,      pyo = αy·yo ,      pzo = αz·ζo .                                  (18)

In this case the solution, x(t), is a linear function of the initial particle position:

x(t) = a11(t) xo + a12(t) αxxo  = cx(t)·xo  ,                                    (19)

and similarly,
y(t) = cy(t)·yo,                                                       (20)

ζ(t) = cz(t)·ζo .                                                       (21)

At a fixed moment of time the volume of a selected element, dV(t) = dx(t) dy(t) dζ(t), is

connected with the initial volume, dVo = dxo dyo dζo, by the linear relationship

dx(t) dy(t) dζ(t) = cx(t) cy(t) cz(t) dxo dyo dζo,     or     dV(t) = c(t) dVo .                 (22)



6

The number of particles inside the selected element is conserved, dN = const, because no one

particle can penetrate the boundary of an element due to the linear transformation of particle

positions, Eqs.(13) - (16). Therefore, the particle density, ρ(t) = dN
dV(t)

, is connected with the

initial density, ρo = dN
dVo

, by linear equation

ρ(t) = ρo dVo
dV(t)

,       or,     ρ(x,y,ζ,t) = 
ρ(xo,yo,ζo,0)

c(t)   .                 (23)

Eq. (23) indicates that the initially uniformly populated ellipsoid, ρ(xo,yo,ζo,0) = const,

remains uniformly populated while propagating in linear field. The space charge density of the

ellipsoid, ρ(x,y,ζ,t), depends only on time according to Eq. (23) and is not a function of

coordinates x, y, ζ. Such an ellipsoid delivers linear space charge forces according to Eqs. (9) -

(11). Therefore, the original suggestion about particle motion in a linear field is proved to be

correct.

Due to the absence of momentum spread in the beam, particles at the surface of an

ellipsoid remain there during the evolution of the ellipsoid, and envelope equations can be

written as equations for maximum extended particles with coordinates x = Rx, y = Ry, ζ = Rz:

d2Rx

dt2
 + 
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4π

 
q

mγ3
 
Q
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 = 0  ,                             (24)
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 = 0 ,                            (25)
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4π
 

q
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Q
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Rx Ry

 = 0 .                              (26)

Performed analysis allows us  to consider practical examples of bunched beam dynamics.

One of the problem is expansion of a bunched beam in a drift space under self space charge

forces. Drift of ellipsoidal bunch in a free space is described by Eqs. (24) - (26) with Gx = Gy



7

= Gz = 0. In Figs. 1, 2 numerical results of the drift of an proton ellipsoidal bunch with charge

Q = 60 nK, initial semi-axes Rx = 1.5 cm, Ry = 2.5 cm, Rz = 4.5 cm and energy γ = 2 are

presented. Numerical calculations were performed using the three-dimensional particle-in-cell

code BEAMPATH [7] utilizing 2·104 particles on the grid 1/2 Nx x Ny x Nz = 64 x 128 x 512.

The difference in analytical and numerical values of the ellipsoid sizes are within 2% of each

other.

Another practical example is dynamics of bunched beam in rf accelerating field. In most

of accelerators, transverse focusing is provided by combination of alternative-gradient

quadrupole lenses, therefore, transverse gradients are functions of z:

Gx = Gx(z),                           Gy = Gy(z) .                                 (27)

Taking into account that z = ζ + vst, transverse gradients, Eqs. (27), appear to be functions of

both ζ ant t. Therefore, analysis of Section 3 is not valid in this case, because gradients have to

be the functions of time only, see Eqs. (13) - (16). In smooth approximation to particle

dynamics, alternative-gradient focusing is substituted by an effective continuous focusing and

potential of external field is given by [5]:

Uext = E
kz

 [ Io (kzr
γ

) sin (ϕs - kz ζ)  -  sinϕs  + kz ζ cosϕs] + Gt r
2

2
,               (28)

where E is an amplitude of accelerating field, ϕs is a synchronous phase, kz = 2π/(βsλ) is a

wave number, Gt is a constant gradient of focusing field, and r = x2 + y2 is a particle radius.

The potential of the external field, Uext, is a nonlinear function of the coordinates z, r. In the

vicinity of a synchronous particle, kzζ << 1, kzr <<1, the following expansions are valid:

sin(ϕs - kzζ) ≈ sinϕs - (kzζ)cosϕs - 12
(kzζ)

2
sinϕs ,                               (29)

Io(kzr
γ

) ≈ 1 + 1
4

 (kzr
γ

)
2
  .                                                     (30)
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Under these restrictions, the potential, Eq. (28), becomes:

Uext = Gz 
ζ2

2
 + Gt r

2

2
 [ 1 - Gz

2 γ2Gt

 
sin(ϕs-kzζ)

sinϕs
] ≈ Gz 

ζ2

2
 + Gt(1 - Gz

2 γ2Gt

)( 
x2 + y2

2
 ) ,      (31)

where Gz  is a longitudinal gradient of external field

Gz = 2π 
E sin ϕs

βλ
  ,                                            (32)

and transverse gradients of external field are:

Gx = Gy = Gt(1 - Gz

2 γ2Gt

) .                                             (33)

The envelope equations (24) - (26) describe in this case the evolution of an ellipsoidal bunch,

which sizes are much smaller than separatrix size, in an external field with constant gradients,

Eqs. (32), (33). Special solutions Rx
''  = Ry

''  = Rz
'' = 0 give the conditions for a stationary (time-

independent) bunch, which is in equilibrium with the external field:

Gx = 3
4π γ2

 
Q
εo

 Mx
Rx Ry Rz

,     Gy = 3
4π γ2

 
Q
εo

 
My

Rx Ry Rz
,     Gz = 3

4π
 
Q
εo

 Mz
Rx Ry Rz

 .      (34)

In Fig. 3 the results of proton bunched beam dynamics with Q = 16 nK, γ = 2 in a

channel with Gt = 22.48 kV/cm2, Gz= 13.56 kV/cm2 and λ = 10 cm are presented. The values

of Rx = Ry = 0.5 cm, Rz = 1 cm correspond to a stationary bunch. The initial conditions for an

ellipsoidal bunch were selected to be Rx = 0.4 cm, Ry = 0.6 cm, Rz = 0.8 cm. Results of

simulation indicate good agreement between analytical and numerical models. Deviation from

the stationary solution results in oscillations around equilibrium, while the ellipsoid remains

uniformly populated.
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Fig. 1. Envelopes of a uniformly populated ellipsoid in a drift space: solid lines -

particle-in-cell simulation, dotted lines - analytical solution of Eqs. (24) - (26).
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Fig. 2. Uniformly populated ellipsoid in drift space: (a) t = 0, (b) t = 1.15·10-7 sec.
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Fig. 3. Envelopes of an ellipsoid in an accelerating-focusing channel, τ = tc/λ; solid

lines - particle-in-cell simulation, dotted lines - analytical solution.


