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Abstract

We propose to study factorization breaking effects in exclusive b decays where they are
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final-state mesons with a small decay constant or with spin greater than one. We
find a variety of decay modes which could help understand the dynamical origin of
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1 Introduction

An outstanding task in heavy-flavor physics is to understand the strong interaction effects in
exclusive weak decays of hadrons containing a b-quark. For many decay channels, such an
understanding is a precondition for gaining information on the quark mixing matrix or on
physics beyond the standard model. In addition, the dynamics of quarks, gluons, and hadrons
in the presence of a large mass mb is interesting in QCD by its own right.

Introduced in [1], the concept of factorization has been one of the most successful tools in
this respect, providing fair agreement between theory and data for many channels. In other
cases, factorization in its most naive version fails when compared with experiment, and there
have been several phenomenologically motivated improvements over its original form [2, 3].

There are several dynamical arguments why and where factorization should be valid. One
is based on the large Nc limit of QCD [4], whereas a different line of approach builds on
the color transparency phenomenon [5]. More recently, the framework of QCD factorization
has implemented the color transparency argument in the language of perturbation theory and
power counting in 1/mb [6, 7, 8].

In these approaches it is understood that there are corrections to naive factorization, which
are suppressed in a small parameter such as 1/Nc, or αs and ΛQCD/mb. A more quantitative
understanding of their size is crucial in order to assess for which channels and to which precision
the factorization concept can be applied. There are also scenarios where factorization in the
sense of [1] does not appear as a limit when a small parameter vanishes, and where conceptually
factorization breaking terms in the decay amplitude may be as large as the factorizing ones.
An example is the perturbative hard scattering (PQCD) approach [9]. In view of such contro-
versies, and given that present day theory can at best estimate the size of most nonfactorizing
contributions, quantitative tests of factorization in the data are of great importance.

We propose here to study decay channels where the factorizing contributions to the ampli-
tude are small or zero for symmetry reasons. In such a situation nonfactorizing contributions,
which would otherwise be suppressed, have a chance to be clearly visible. The measurement
of the corresponding decay rates can thus give rather direct information on their size, and the
comparison of different channels may give indications on the relevant dynamical mechanisms.

Our suggestion is to choose decay channels whose flavor structure is such that a selected
meson X must be emitted from the weak current mediating the b-quark decay. Taking then a
meson which has as very small decay constant, the factorizable contributions to the decay are
suppressed. A second possibility is to consider mesons X with spin J ≥ 2. A tensor meson
for instance cannot be produced from a decaying W boson, which has spin 1, unless there
are interactions involving the other hadrons in the decay process. We will find a variety of
decay channels where these ideas can be realized, which will allow us to address different issues
related to factorization and its breaking.

The organization of this paper is as follows. In Sect. 2 we review the basics of factorization
which will be essential for our arguments. We select the mesons for which factorizing contri-
butions in decays are suppressed in Sect. 3. In the following section we identify which flavor
structure a decay must have in order for this suppression to apply, and take a closer look at
specific issues in the different channels. Sect. 5 discusses how suppression can be circumvented
by different nonfactorizing mechanisms. Some of these can be treated within QCD factoriza-
tion and will be investigated in Sect. 6. We estimate branching ratios of suppressed decays
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into a heavy and a light meson in the subsequent section, before concluding in Sect. 8. Some
numerical estimates concerning meson distribution amplitudes, which we need in our paper,
are given in an Appendix.

2 Matrix elements for hadronic two-body decays

We start by briefly recalling the low-energy effective Hamiltonian and some basics of the factor-
ization approach. Hadronic two-body b-decays are described by the effective weak Hamiltonian

Heff =
GF√

2


 ∑

j,k=u,c

VjbV
∗
kd

(
C1O

jk
1 + C2O

jk
2

)
− VtbV

∗
td

∑
i

CiOi


+ {d→ s}+ h.c. , (1)

where V denotes the CKM matrix. The operators Ojk
1,2 result from tree level W exchange and

in the case i = k = u read

Ouu
1 = ūαγ

µ(1− γ5)bα d̄βγµ(1− γ5)uβ,

Ouu
2 = ūαγ

µ(1− γ5)bβ d̄βγµ(1− γ5)uα. (2)

Here α and β are color indices, and it is understood that all fields are taken at space-time ar-
gument zero. The remaining operators in Heff are so-called penguins. For a detailed discussion
of the operators Oi and the Wilson coefficients Ci we refer to [10].

In naive factorization, the matrix element 〈Y X| Heff |B〉 is written as a product of matrix
elements of quark currents between B and Y , and between the vacuum and X. Only the
color-singlet piece of each current is retained, while the color-octet piece is neglected. This
leads to replacing Heff by the effective transition operator T , whose tree level operators read

T (1,2) =
GF√

2
VubV

∗
ud

[
a1 ūγ

µ(1− γ5)b⊗ d̄γµ(1− γ5)u

+ a2 d̄γ
µ(1− γ5)b⊗ ūγµ(1− γ5)u

]
(3)

for i = k = u. Here the notation ⊗ indicates that the matrix elements are to be taken in
factorized form as described above. The new coefficients a1 = C1 + C2/3 and a2 = C2 + C1/3
have been obtained from projecting on color-singlet currents, and are commonly referred to
as color allowed and color suppressed, respectively. Numerically, a1 is close to 1 and a2 of
order 0.1 at a renormalization scale µ = mb. Notice that the Fierz transform performed in the
second term of Eq. (3) has left the (V − A) × (V − A) structure invariant, where V and A
respectively denote the vector and axial vector current. The situation is analogous for those
penguin operators which again involve (V − A) × (V − A) currents, for explicit formulae see
e.g. [8].

Important for us will be the strong penguins with (V − A) × (V + A) structure (the
electroweak ones with similar Dirac structure are numerically less important in the Standard
Model). They are

O5 = d̄αγ
µ(1− γ5)bα

∑
q

q̄βγµ(1 + γ5)qβ,

O6 = d̄αγ
µ(1− γ5)bβ

∑
q

q̄βγµ(1 + γ5)qα, (4)
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X a0 b1 π a2 a0 π2 ρ3 π a4 χc0 χc2

mX [MeV] 985 1230 1300 1318 1474 1670 1691 1801 2014 3415 3556
JPC 0++ 1+− 0−+ 2++ 0++ 2−+ 3−− 0−+ 4++ 0++ 2++

X K∗
0 K∗

2 K2 K∗
3 K2 K∗

4 D∗
2 DsJ

mX [MeV] 1412 1426 1773 1776 1816 2045 2459 2573
JP 0+ 2+ 2− 3− 2− 4+ 2+ (2+)

Table 1: Mesons for which one of the suppression mechanisms discussed in Sect. 3.1 is relevant.
Masses are taken from the Review of Particle Data [11]. We do not list those mesons that are
omitted in the meson summary table. The spin-parity assignment for the DsJ(2537) is not
certain yet.

with a sum over q = u, d, s, c, b, and in naive factorization lead to

T (5,6) = −GF√
2
VtbV

∗
td

[
a5

∑
q

d̄γµ(1− γ5)b⊗ q̄γµ(1 + γ5)q

+ a6

∑
q

(−2) q̄(1− γ5)b⊗ d̄(1 + γ5)q
]
. (5)

The structure (P − S)× (P + S) involving the scalar and pseudoscalar currents S and P has
emerged from the Fierz transform in the term with a6 = C6+C5/3, whose value is about −0.03
at µ = mb. The corresponding operator provides one possibility to circumvent the suppression
mechanisms we will discuss shortly, and we will often refer to it as scalar penguin.

3 Meson candidate selection

Let us now specify our mechanisms to suppress decay amplitudes in naive factorization and
see to which final states they apply.

3.1 Suppression mechanisms

There are several reasons why the coupling of a meson to the local currents of the effective
weak Hamiltonian can be suppressed. Clearly, a meson with spin J = 2 or larger has no matrix
element with either of the currents S, P , V , A, and in naive factorization cannot be produced
as a meson ejected by the effective weak current. From Table 1 we see that examples for such
mesons are the a2, π2, ρ3, and K∗

2 in the light quark sector. Heavy tensor mesons are the D∗
2

and DsJ , and there is a tensor charmonium state, χ2c.
Let us now turn to mesons with J = 0, 1 whose production from the weak current in naive

factorization is forbidden or suppressed because their coupling to V and A is zero or small.
We define the decay constants of the negatively charged mesons with isospin I = 1 as

〈S(q)| d̄(0) γµ u(0) |0〉 = −ifS q
µ, (6)

〈P (q)| d̄(0) γµγ5 u(0) |0〉 = −ifP q
µ, (7)
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〈V (q, ε)| d̄(0) γµ u(0) |0〉 = −ifVmV ε
µ, (8)

〈A(q, ε))| d̄(0) γµγ5 u(0) |0〉 = −ifAmAε
µ, (9)

for scalar, pseudoscalar, vector, and axial mesons, respectively. Here qµ denotes the meson
momentum and, if applicable, εµ its polarization vector. The choice of vector or axial quark
current on the right-hand sides of these definitions is dictated by the parity of the meson. For
the corresponding neutral mesons, the flavor structure of the current is (ūu− d̄d)/

√
2 instead

of d̄u, and for mesons with different quark content one has to take s̄d, s̄u, c̄c, etc.
Because of charge conjugation invariance, the decay constants for the neutral a0 and b1

mesons and for the χ0c must be zero. In the isospin limit, the decay constants of the charged
a0 and b1 must thus vanish, too, so that fa0 and fb1 defined in Eqs. (6), (9) are small, of order
md −mu. For the a0 mesons, this can explicitly be seen by taking the divergence of Eq. (6),
which by virtue of the equations of motion gives

m2
a0
fa0

= −i(md −mu) 〈a0| d̄(0)u(0) |0〉. (10)

For the charged K∗
0 the analogous relation reads

m2
K∗

0
fK∗

0
= −i(ms −mu) 〈K∗

0 | s̄(0)u(0) |0〉, (11)

which becomes zero in the flavor SU(3) limit and indicates that fK∗
0

should be suppressed.
It is instructive to compare Eqs. (10) and (11) with their analogs for the pseudoscalars,

m2
π fπ = −i(md +mu) 〈π| d̄(0)γ5u(0) |0〉, (12)

m2
K fK = −i(ms +mu) 〈K| s̄(0)γ5u(0) |0〉. (13)

Because the axial current is not conserved, these decay constants do not vanish in the isospin
or SU(3) limit. Moreover, they do not vanish in the chiral limit, mu = md = ms = 0, for
the light pion and kaon, since these mesons are Goldstone bosons and become massless in the
same limit. Numerically, fπ and fK are in fact not small and of the same order of magnitude
as for instance fρ and fK∗ . The decay constant for the heavy π(1300), however, does become
zero in the chiral limit, and its actual value is small due to chiral suppression.

We remark that the spin-zero mesons whose coupling to the V and A currents is small or
zero for one of the above reasons can still couple to the S or P currents appearing in penguin
operators of the effective Hamiltonian, as discussed in Sect. 2. This does however not hold for
the b1, which has no matrix elements with S or P .

3.2 Decay constants

The decay constants of the a0(980), a0(1450), K∗
0 , π(1300), and the b1 are poorly known at

present. Using finite energy sum rules, Maltman [12] obtained1

fa0(980) = 1.1 MeV, fa0(1450) = 0.7 MeV, fK∗
0

= 42 MeV, (14)

1Maltman defines the a0 decay constants with an extra factor (ms−mu)/(md−mu). To convert them into
our convention, we take the quark masses in Eq. (18) below.
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consistent with the ranges estimated by Narison [13]

fa0(980) = 0.7 to 2.5 MeV, fK∗
0

= 33 to 46 MeV. (15)

For the heavy pion, the theoretical estimates in [14] provide a range

fπ(1300) = 0.5 to 7.2 MeV. (16)

Comparing these values to

fπ = 131 MeV, fK = 160 MeV, (17)

we find that the suppression patterns discussed in the previous subsection are indeed seen
numerically, with the decay constants for the a0 mesons smaller than those for π(1300) because
of the relative signs between the quark masses in Eqs. (10) and (12). We also see that fK∗

0

is suppressed relative to fK , but not as strongly as fa0 compared with fπ, because SU(3)
symmetry breaking is rather strong for the quark masses. Here we have implicitly assumed
that the (pseudo)scalar matrix elements on the right-hand sides of Eqs. (10) to (13) are not
anomalously small or large. Indeed, taking from [15] 2

mu = 4.8 MeV, md = 8.7 MeV, ms = 164 MeV (18)

for the MS quark masses at µ = 1 GeV, we find with the values (16) and (17)

−i 〈π| d̄γ5u |0〉 ≈ 0.19 GeV2,

−i 〈π(1300)| d̄γ5u |0〉 ≈ 0.06 to 0.90 GeV2,

−i 〈K| s̄γ5u |0〉 ≈ 0.23 GeV2, (19)

and with (14) and (15)

−i 〈a0(980)| d̄u |0〉 ≈ 0.17 to 0.62 GeV2,

−i 〈a0(1450)| d̄u |0〉 ≈ 0.39 GeV2,

−i 〈K∗
0 (1430)| s̄u |0〉 ≈ 0.42 to 0.58 GeV2. (20)

Despite a certain spread these values are remarkably close to each other, given that the cor-
responding squared meson masses vary by more than two orders of magnitude. We note that
Chernyak [16] has recently estimated fK∗

0
= (70±10) MeV. We consider this to be rather high

as it is far away from the range (15) obtained in other studies. Also, the corresponding value
for 〈K∗

0 (1430)| s̄u |0〉 would correspond to a quite strong SU(3) breaking for the scalar matrix
elements.

We wish to emphasize at this point that the decay constants for the a0(980), a0(1450), K∗
0 ,

π(1300), and the b1 can be measured very cleanly in τ decays. In fact, from the bound on
the branching ratio B(τ → π(1300)ντ) < 1 · 10−4 in [11] we infer fπ(1300) < 8.4 MeV, which
is not far from the upper end of the theory estimates (16). The decay constants in Eq. (14)
correspond to branching ratios of

B(τ → a0(980) ντ) ' 3.8 · 10−6,

B(τ → a0(1450) ντ) ' 3.7 · 10−7,

B(τ → K∗
0 (1430) ντ) ' 7.7 · 10−5. (21)

2We have taken the average values given in Table 6 and evolved them down using Eq. (20) in that reference.
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Figure 1: Values of EX/mX as a function of mX for the decays B → DX (lower curve) and
B → πX (upper curve).

These estimates are rather encouraging, given that at the B factories one expects to have
about 3 · 107 τ pairs with 30 fb−1 [17], and that the potential of τ -charm factories would be
even higher. A measurement of the decay constants for the above mesons would greatly reduce
the uncertainties in the predictions we will give in Sect. 7. It could also provide valuable
information on the nature in particular of the a0(980) and a0(1450), only one of which can be
a member of the conventional qq̄ meson nonett.

3.3 Kinematics

The color transparency argument [5] for factorization of decays B → Y X requires the meson X
emitted from the weak current to be fast. More quantitatively, its time dilation factor EX/mX

should be large, where EX = (m2
B −m2

Y +m2
X)/(2mB) is the energy of X in the B meson rest

frame. We show the values of EX/mX for Y = D and Y = π in Fig. 1. The corresponding
curves for B → D∗X and Bs → D(∗)

s X are very close to the one for B → DX, and the ones
for B → ρX, Bs → KX, and Bs → K∗(892)X are practically the same as for B → πX.
Only if X is a pion does one have a very large EX/mX , namely Eπ/mπ = 16.5 for B → Dπ
and Eπ/mπ = 19 for B → ππ. For mX above 1 GeV, relevant for the mesons in Table 1, this
ratio decreases rather gently from moderate values down to little above 1. Even so, the mass
range of our candidate mesons seems sufficiently large so that a study of the corresponding
decay channels could provide valuable clues to whether corrections to factorization significantly
depend on EX/mX , or more generally, on the mass mX . We remark in passing that even the
lowest value of EX/mX in Fig. 1 corresponds to a velocity βX = 0.5 and a recoil momentum
of pX = 1.5 GeV in the B rest frame, indicating that X is still relativistic.
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3.4 Resonance decays and the continuum

Clearly, the measurement of rare B decays involving higher mass resonances presents an experi-
mental challenge. An experimental analysis will be easier if the mesonX in question has a decay
channel with sizeable branching fraction that is not also accessible to mesons with nearby mass
whose production is not suppressed. To give some examples, the decays of a0(980), a2(1320),
and a0(1450) into πη appear rather clean in this respect, as do the modes b1(1235) → ωπ and
π2(1670) → f2(1270)π. On the other hand, the decays of a2(1320), π(1300), and π2(1670) into
ρπ are more problematic because of background from the rather broad a1(1260). The same
holds true for the decays of the K∗

0 (1430) and K∗
2 (1430) into Kπ because of background from

the K∗(1410). In such cases a partial wave analysis of the decay products will probably be
necessary in order to constrain the decays into the mesons with spin J = 0 or J = 2.

We emphasize at this point that mesons X with a rather large decay width do not present
as serious a problem in our context as in other studies. The physical arguments leading to
a suppression of their production within the factorization mechanism (as the arguments for
factorization itself) do in fact not depend on X being a narrow resonance. Our arguments in
Sect. 3.1 were at the level of current matrix elements and go through in complete analogy if,
for instance, the |π(1300)〉 state in Eq. (12) is replaced with |ρπ〉 in appropriate partial waves
that have definite quantum numbers JP = 0−. Moreover, the main idea here is to use the
branching ratios of suppressed decays as quantitative estimates for the size of corrections to
factorization, and to study their pattern by comparing different decay channels. An uncertainty
on the branching ratio of B → Y X due to the line shape of X is therefore less severe as in
channels which are allowed by factorization, and where factorization tests need branching ratios
to a much higher precision.

One could in fact also perform the studies we propose here not with particular meson
resonances but with continuum states, similarly to a recent test of factorization by Ligeti et
al. [18]. Our main reason to concentrate on resonances X here is that, by definition, their
production should be enhanced with respect to continuum states with the same quantum
numbers, which is important since we are looking for decays with small branching ratios from
the start.

4 Decay mode selection

We are looking for exclusive decays B → Y X, where the meson X must be emitted from the
weak decay vertex and cannot pick up the spectator quark. Only then will the factorizing
contribution to the decay be suppressed for mesons X with small or vanishing decay constant
or with spin J ≥ 2. This puts requirements on the flavor structure of the decay, which we
now discuss. One may avoid these requirements by studying decays where both final state
mesons are taken from Table 1, such as B̄0 → b+1 b

−
1 or B̄0 → π+

2 a
−
2 . For one of the mesons the

appropriate suppression mechanism will then always be at work.
For definiteness we consider in the following the case where the B meson contains a b and

not a b̄. One requirement now is that the flavors of the spectator antiquark and of the antiquark
emitted from the b decay must not be the same, otherwise X can pick up either of them. We
thus cannot use decays such as B− → D0a−0 , whose flavor structure reads ūb→ ū(cūd), where
the brackets indicate the quarks originating from the electroweak vertex.
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Figure 2: Tree level diagrams for (a) B̄0 → D+a−0 and (b) B0 → D+a−0 .

A second requirement is due to imperfect knowledge of the initial state. Whereas the decay
B̄0 → D+a−0 with flavor structure d̄b → d̄(cūd) satisfies our requirement, the same final state
can be reached in the decay of a B0, where the a−0 contains the spectator. The corresponding
diagrams are shown in Fig. 2. This CP conjugated background can in principle be removed
by flavor tagging, which puts of course stronger demands on the experiment. In the example
just given, the amplitude from B0 decay is suppressed by λ2 relative to the direct decay, where
λ ≈ 0.22 is the Wolfenstein parameter in the CKM matrix. We will give a more quantitative
estimate of this background in Sect. 7.1. In other cases however, e.g. for B̄s → D+

s K
∗−
0 versus

Bs → D+
s K

∗−
0 , both signal and background amplitudes are of order λ3. We will not consider

such modes in the following, and list in Tables 2 and 3 the flavor structure of decays satisfying
the following conditions:

1. It is ensured that the meson selected from Table 1 cannot pick up the spectator antiquark
in the B meson.

2. A CP conjugated background that violates condition 1 either does not exist or is CKM
suppressed. It turns out that the only case we retain that has such a background is the
one mentioned above, listed in the first row of Table 2.

Let us now consider the different decay categories separately.

4.1 Decays with one or two heavy mesons

Decays into heavy-light final states with open charm are the simplest from the point of view
of their electroweak structure, since only the W exchange operators O1 and O2 of the effec-
tive Hamiltonian contribute. For color allowed decays B → DX with X = π, ρ, a1, naive
factorization is in rather good agreement with data [2, 19].

For color allowed decays where the heavy meson is the emission particle, the color trans-
parency argument does not hold, but arguments based on the large Nc limit do. Relevant
meson candidates here are the D∗

2 and the DsJ . Comparing the size of nonfactorizing contribu-
tions for the two types of channels with the suppression mechanisms discussed here might thus
shed light on the question which type of mechanism is more relevant to ensure factorization.
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example decay factorizing contribution annihilation

quark level tree peng. topology tree peng.

B̄0 → D+a−0 d̄b→ d̄(cūd) λ2 a λ2

→ D+K∗−
0 → d̄(cūs) λ3

B̄s → D+
s a

−
0 s̄b→ s̄(cūd) λ2

B̄0 → π+D−
sJ d̄b→ d̄(uc̄s) λ3

B− → π0D∗−
2 ūb→ ū(uc̄d) λ4 a λ4

→ ηD∗−
2 → ū(uc̄d) λ4 a, c λ4

→ π0D−
sJ → ū(uc̄s) λ3

→ ηD−
sJ → ū(uc̄s) λ3 a, c λ3

B̄s → K+D∗−
2 s̄b→ s̄(uc̄d) λ4

B̄0 → D+D−
sJ d̄b→ d̄(cc̄s) λ2 λ2 a λ2

B− → D0D∗−
2 ūb→ ū(cc̄d) λ3 λ3 a λ3 λ3

→ D0D−
sJ → ū(cc̄s) λ2 λ2 a λ4 λ2

B̄s → D+
s D

∗−
2 s̄b→ s̄(cc̄d) λ3 λ3 a λ3

B̄0 → π+K∗−
2 d̄b→ d̄(uūs) λ4 λ2 a λ2

B− → π−K̄∗0
2 ūb→ ū(dd̄s) λ2 a λ4 λ2

→ K−K∗0
2 → ū(ss̄d) λ3 a λ3 λ3

B̄s → K+a−2 s̄b→ s̄(uūd) λ3 λ3 a λ3

Table 2: Color allowed decay modes B → Y X satisfying the criteria specified in the text. X
is the meson emitted from the weak decay vertex. Any meson can be replaced by another
with the same flavor structure and isospin, e.g, D by D∗, π by ρ, and the meson X by an
appropriate candidate from Table 1. The second column gives the quark composition of the
final state, with the quarks originating from the b decay enclosed in brackets. In the third
and forth columns we give the power of the Wolfenstein parameter λ in the decay amplitude
for tree level W exchange and penguin operators, respectively. Annihilation contributions are
listed with their topology as shown in Fig. 5 and the power of the Wolfenstein parameter for
tree level and penguin operators.
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example decay factorizing contribution annihilation

quark level tree peng. topology tree peng.

B̄0 → π0D∗0
2 d̄b→ d̄(dūc) λ2 a λ2

→ η D∗0
2 → d̄(dūc) λ2 a, c λ2

B− → K−D∗0
2 ūb→ ū(sūc) λ3

B̄s → K0D∗0
2 s̄b→ s̄(dūc) λ2

→ η D∗0
2 → s̄(sūc) λ3 a, c λ3

B̄0 → K̄0χc0 d̄b→ d̄(sc̄c) λ2 λ2 b λ2

→ π0χc0 → d̄(dc̄c) λ3 λ3 b λ3 λ3

→ η χc0 → d̄(dc̄c) λ3 λ3 b, c λ3 λ3

B− → K−χc0 ūb→ ū(sc̄c) λ2 λ2 b λ4 λ2

→ π−χc0 → ū(dc̄c) λ3 λ3 b λ3 λ3

B̄s → η χc0 s̄b→ s̄(sc̄c) λ2 λ2 b, c λ2 λ2

→ K0χc0 → s̄(dc̄c) λ3 λ3 b λ3

B̄s → K0 a0
2 s̄b→ s̄(dūu) λ3 λ3 a λ3

→ η a0
2 → s̄(sūu) λ4 λ2 a, c λ4 λ2

Table 3: As Table 2 but for decays where the tree level contribution is color suppressed. We
remark that the decay B̄s → K0 a0

2 has a color allowed penguin contribution.

One may also use decays into two charmed mesons to address the same question. We remark
in this context that in recent study, Luo and Rosner found factorization to work reasonably
well for B̄0 → D(∗)+D(∗)−

s within present errors [19].
Notice that for color suppressed channels such as B̄0 → π0D∗0

2 naive factorization is neither
backed up by color transparency nor by 1/Nc arguments. The decays into a D∗0

2 in Table 3
will thus show whether the factorization concept still applies here.

Let us finally consider B decays into charmonium. Naive factorization has notorious prob-
lems with these channels [2], compounded by the fact that the coefficient a2 is extremely
dependent on the factorization scale µ. A comparison of the decays involving a χc0 or χc2

and the corresponding ones with J/ψ or χc1 may thus shed light on the relative importance of
factorizable and nonfactorizable contributions.

4.2 Penguins and decays into two light mesons

Decays into two light mesons present some specifics due to the presence of penguin operators.
First, we have no meson candidates with isospin I = 0, which are a superposition of quark
states uū, dd̄, ss̄. Penguin transitions lead to all three of them, and one will always violate our
condition that the spectator and the emitted antiquark must have different flavors. Second, as
remarked at the end of Sect. 3.1, suppression mechanisms based on the smallness of the decay
constant fX are not effective if scalar penguins occur in the factorization ansatz. Only spin
suppression, and the isospin suppression for the b1, are still at work then.
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It is nevertheless instructive to look at the relative importance of the S and P oper-
ators in decays involving scalars or pseudoscalars. In the decays B̄0 → a+

0 a
−
0 or B̄0 →

π+(1300)π−(1300) the scalar penguins come with huge enhancement factors in the amplitudes

ra0 =
2m2

a0

mb (md −mu)
, rπ =

2m2
π

mb (md +mu)
. (22)

Numerically, rπ(1300) = 85, ra0(980) = 170, and ra0(1450) = 380, to be compared with rπ = 1 for
the light pion, where we have evolved the light quark masses (18) up to µ = mb = 4.4 GeV.
The strong scalar penguin can hence compete with the current-current operators, even though
its coefficient a6 introduced in Sect. 2 is only of order of several 10−2.

Using Eqs. (10), (12), (22), we can express the products fXr
X in terms of the (pseudo)scalar

matrix elements (19) and (20), and observe that

fa0r
a0 ≈ fπ(1300)r

π(1300) ≈ fπr
π, (23)

i.e., they are all roughly of the same size. Since B̄0 → π+π− is driven by the color allowed
tree level coefficient a1, naive factorization predicts the decay rate for B̄0 → a+

0 a
−
0 to be small

compared with the one for B̄0 → π+π−. Namely, the ratio of their amplitudes is controlled by
the small parameters fa0/fπ and

a6

a1

fa0r
a0

fπ
=
a6

a1
rπ 〈a0| d̄u |0〉
〈π| d̄γ5 u |0〉

, (24)

corresponding to the tree level and scalar penguin contribution to B̄0 → a+
0 a

−
0 , respectively.

Analogous estimates can be given for B̄0 → π+(1300) π−(1300), and also for B̄s decays into
K+a−0 and K+π−(1300) compared to K+π−.

The situation is different for decays where the emitted meson is a kaon. The decay mode
B̄0 → π+K− is penguin dominated since its tree level contribution is CKM suppressed. With
the analog of (23) for strange mesons one thus obtains similar decay rates for B̄0 → π+K−

and B̄0 → π+K∗−
0 , where the latter receives most of its contribution from the scalar pen-

guin, as was pointed out in [16]. We emphasize that, in contrast, naive factorization predicts
B(B̄0 → π+K∗−

2 ) = 0.

4.3 Bottom baryon decays

Bottom baryons provide a complementary field to study exclusive hadronic decays, making
more degrees of freedom such as polarization accessible to experimental investigation. The
most notable differences between qq̄ and qqq bound states in the context of factorization studies
are the quark content and the role of annihilation topologies. Since the initial baryon can never
be completely annihilated by the operators in Eq. (1), we call the corresponding topologies
shown in Fig. 3 pseudo-annihilation. For an overview of heavy baryon decays, we refer to [20].

Let us adapt our ideas to study factorization and its breaking with spin or decay constant
suppression to the case of exclusive heavy baryon decays. Of course there is no background
here from decays of the CP conjugated parent into the same final state, such as discussed in
Sect. 4. In order to ensure the formation of the final state meson from the electroweak current,

12



example decays factorizing contribution pseudo-annihilation

quark level tree peng. tree peng.

Λb → nD∗0
2 udb→ ud(cūd) λ2 λ2

→ ΛcK
∗−
0 , ΛD∗0

2 → ud(cūs) λ3 λ3

→ pD−
sJ → ud(uc̄s) λ3

→ ΛcD
−
sJ , Λχc0 → ud(cc̄s) λ2 λ2 λ4 λ2

→ nχc0 → ud(cc̄d) λ3 λ3 λ3 λ3

Ωb → Ωca
−
0 , Ξ−D∗0

2 ssb→ ss(cūd) λ2

→ ΩD∗0
2 → ss(cūs) λ3

→ ΩD∗0
2 → ss(uc̄s) λ3

→ Ξ0D∗−
2 , Ξ−D∗0

2 → ss(uc̄d) λ4

→ Ωχc0 → ss(cc̄s) λ2 λ2 λ2

→ ΩcD
∗−
2 , Ξ−χc0 → ss(cc̄d) λ3 λ3 λ3

→ Ω a0
2 → ss(uūs) λ4 λ2

→ Ξ−a0
2 → ss(uūd) λ3 λ3 λ3

Table 4: Flavor structure of the decay modes of the Λb and the Ωb for which the emitted meson
must originate from the weak current. The mesons can be replaced by others from Table 1
with the same flavor structure. The second column gives the quark composition of the final
state, with the three quarks originating from the electroweak vertex enclosed in brackets. The
third and forth columns give the power of the Wolfenstein parameter λ in the decay amplitude
for W exchange and penguin operators, respectively, and the corresponding information for
pseudo-annihilation contributions is given in the last two columns.

we must however require that the spectator quarks in the baryon be different from the quarks
produced in the weak decay. In addition, we can only consider bottom baryons that have weak
decays and do not dominantly decay strongly or electromagnetically. A possible decay channel
is for instance Λb → ΛcD

−
sJ . Also, Mannel et al. [21] have mentioned that the Ωb might only

have electroweak decays. In Table 4 we list the decays of these two baryons for which it is
assured that the meson cannot pick up a spectator, so that corrections to factorization can be
studied with our method.

5 Escaping suppression by factorization breaking

The idea of this paper is to study the size and pattern of corrections to factorization in an
environment where they are not “hidden” behind a larger factorizing piece. Without giving
an exhaustive discussion of nonfactorizing contributions, we now consider two of them and see
why the various suppression mechanisms discussed in Sect. 3.1 do not apply.
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X XX X XX XX X X

Figure 3: The different topologies for pseudo-annihilation contributions to b baryon decays.

X

YB B Y

X

(b)(a)

Figure 4: Examples of diagrams with gluon exchange breaking naive factorization: (a) vertex
correction, (b) spectator interaction.

5.1 Nonfactorizing gluon exchange

Naive factorization is broken by strong interactions of the quarks originating from the b decay.
In the language of quarks and gluons they correspond to diagrams like the ones in Fig. 4. What
is important in our context is that such contributions no longer involve the matrix elements of
the meson X with the local currents V , A, S, P . As a consequence the suppression mechanisms
based on the smallness of the decay constant fX are not effective. Also, one or several gluons
absorbed by the quark-antiquark pair that will form X can transfer both helicity and orbital
angular momentum, so that the spin of X is no longer restricted to be 0 or 1.

Note that these arguments are independent on whether the internal lines in the diagrams
of Fig. 4 have large virtualities or not. In the first case the corresponding contributions can be
calculated in perturbation theory. In Sect. 6 we will analyze them in the QCD factorization
approach and explicitly see that our suppression mechanisms are no longer operative.

If the internal lines in these diagrams are not hard, perturbation theory is not reliable, and
other descriptions of the corresponding reactions might be more adequate. If one treats them
for instance as hadronic rescattering, there is again no reason why final state mesons X with
small decay constants or higher spin should be suppressed.

5.2 Annihilation contributions

Annihilation diagrams are another important contribution violating naive factorization. In
Tables 2 and 3 we have indicated the channels where they can occur, either from tree level W
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B

Y

(a)

X

B

Y

X

B

Y

X

(b) (c)

Figure 5: The different topologies for annihilation contributions to decays B → Y X, where X
is one of our candidate mesons given in Table 1.

exchange or from penguin operators. An indication of the importance of annihilation could
be obtained from data by comparing decays with and without such contributions that are
otherwise similar, for instance B̄0 → D+a−0 and B̄s → D+

s a
−
0 , or B− → π0D−

sJ and B− → ηD−
sJ .

Depending on the flavor structure of the decay there are three annihilation topologies. The
one shown in Fig. 5a is for example relevant for B̄0 → D+a−0 and for B− → π−K̄∗0

2 . In
this case only one of the quarks forming our candidate meson X originates from the effective
weak vertex, so that our suppression mechanisms are not relevant. Notice that this holds true
irrespective of whether the interactions between the qq̄-pair and the quarks attached to the
decay vertex are under perturbative control or not, a point that is controversial in the literature
[8, 9].

The two remaining topologies correspond to Zweig forbidden contributions. Neglecting
electromagnetic interactions, they require that the meson formed from the qq̄-pair has isospin
I = 0. In Fig. 5b, relevant for our decays into charmonium, neither of the quarks from
the annihilation vertex enters in X, so that our suppression mechanisms again do not apply.
Finally, there is the case of Fig. 5c, where X is formed from the quarks of the decay vertex.
Our suppression mechanisms only apply here if the q̄q-pair interacts solely with the quarks in
the B meson, but not with the ones forming the meson X.

The topologies for pseudo-annihilation contributions in b baryon decays have already been
shown in Fig. 3. All of them circumvent suppression.

6 The case of QCD factorization

In the QCD factorization approach developed by Beneke et al. [6, 7, 8], those corrections to
naive factorization that are dominated by hard gluon exchange are calculated in perturbation
theory, all other contributions are found to be power suppressed in 1/mb. The physical mech-
anism underlying these results is color transparency of the meson ejected by the effective weak
current. QCD factorization can therefore not be applied to decays where a D meson with
its highly asymmetric quark-antiquark configurations is emitted from the current, and we will
thus not consider the corresponding channels in this section.

As QCD factorization relies on color transparency, it also requires the emitted meson to be
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fast in the B rest frame. Certain types of power corrections will therefore increase with the
mass mX of the emitted meson. One can reduce the bias due to such effects by comparing our
suppressed decays with unsuppressed channels involving mesons of similar mass. Examples are
the ρ(770), a1(1260), or ρ(1450) for isospin-one mesons, and the K∗ and K1 resonances for the
strange sector.

6.1 Distribution amplitudes

The most important effect of radiative corrections in our context is that the currents like
〈X| d̄(0)γµ(1− γ5)u(0) |0〉 occurring in naive factorization become nonlocal. The leading con-
figurations in 1/mb involve light-like separations z and are parameterized by meson distribution
amplitudes. In light-cone gauge, they read for a dū meson

〈X(q, J3 = 0)| d̄(z) γµ(γ5)u(−z) |0〉
∣∣∣
z2=0

= −iqµ
∫ 1

0
du ei(2u−1) q·z ϕ(u) + . . . (25)

to twist-two accuracy, where the . . . stand for terms of twist three and higher, which contribute
to hard processes only at the power correction level. The Dirac matrices γµ and γµγ5 are
to be taken for mesons with natural and unnatural parity, P = (−1)J and P = (−1)J+1,
respectively. The variable u gives the momentum fraction carried by the quark in the meson
X, a natural frame of reference in our case being the B rest frame. Notice that the twist-two
distribution amplitudes involving the vector and axial currents select the polarization state with
zero angular momentum J3 along ~q in that frame. We remark that our subsequent discussion
remains valid if instead of a meson X one considers a continuum final state with appropriate
quantum numbers as discussed in Sect. 3.4. In this case ϕ is to be replaced with a generalized
distribution amplitude [22], defined as in Eq. (25) with the appropriate replacement of state
vectors |X〉.

One easily sees that the lowest moment of ϕ in u gives back the local currents, so that for
mesons with spin 0 or 1 one recovers the decay constant,

∫ 1

0
duϕ(u) = fX . (26)

The nonlocal currents in Eq. (25) have however matrix elements for mesons of any spin J .
Taylor expanding the bilocal operators around z = 0 gives in fact operators with arbitrarily
high numbers of partial derivatives between d̄(0) and u(0), and thus with arbitrarily high spin.
In other words the lowest moment

∫
duϕ(u) of the distribution amplitude, projecting out the

local V or A current, vanishes for mesons with J ≥ 2, but not the function ϕ(u) itself. Hence
the production of mesons with spin 2 and higher is no longer forbidden at the level of αs

corrections to naive factorization. We thus find an explicit realization of our arguments in
Sect. 5.1: gluon exchange such as in Fig. 4 indeed makes the production of higher-spin mesons
possible.

Let us now see what becomes of the other suppression mechanisms we discussed in Sect. 3.1.
Charge conjugation invariance implies that the distribution amplitudes ϕX0 for the neutral
a0 and b1 mesons are odd under the exchange of quark and antiquark momenta, ϕX0(u) =
−ϕX0(1−u), so that their first moment (26) is zero. In the exact isospin limit, the distribution
amplitudes for the charged and neutral mesons in an isotriplet are the same, so that with
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Eq. (26) the decay constants of the charged a0 and b1 have to vanish, as already seen in
Sect. 3.1. In the real world, the part of the distribution amplitude that is even under u→ 1−u
is therefore small for the charged a0 and b1, i.e., ϕX−(u) + ϕX−(1− u) ∼ md −mu. This does
however not restrict the odd part of ϕX−(u), which can be comparable in size to the distribution
amplitudes of, say, the π or the ρ. Considering the distribution amplitude of the K∗

0 and using
SU(3) symmetry we see that its even part is suppressed by ms −mu, but not its odd part.

Along the same lines of reasoning, we find that up to isospin breaking effects the distribution
amplitudes for the charged heavy pions are even under u → 1 − u. The lowest moment∫
duϕπ(1300)(u) is small of order mu +md according to Eqs. (12) and (26), but there is no such

restriction on higher even moments such as
∫
du (2u− 1)2 ϕπ(1300)(u). We thus see that neither

spin nor any of our other suppression mechanisms applies at the level of αs corrections.
It is useful to expand the distribution amplitude in Gegenbauer polynomials C3/2

n , which
are the eigenfunctions of the leading-order evolution equation [23] for quark distribution am-
plitudes. In order to achieve a uniform notation for mesons with different spins we write

ϕ(u;µ) = fϕ 6u(1− u)
[
B0 +

∞∑
n=1

Bn(µ)C3/2
n (2u− 1)

]
, (27)

where we have explicitly displayed the dependence on the factorization scale µ. For mesons X
with spin 0 or 1, we have B0 = 1 and fϕ is just the decay constant fX , whereas for mesons
with J ≥ 2 we have B0 = 0. We will in the following only use products fϕBn so that we need
not specify the separate normalizations of fϕ and Bn in that case. From our above discussion
it follows that for our candidate mesons one or more of the lowest coefficients in the expansion
(27) are either zero or small of order md−mu, md +mu, or ms−mu. In the Appendix we will
estimate the orders of magnitude of the leading coefficients to be

|fϕB1|a0,b1,a2,K∗
0 ,K∗

2
≈ 75 MeV,

|fϕB2|π(1300),π2,ρ3
≈ 50 MeV, (28)

evaluated at the renormalization scale µ = mb = 4.4 GeV.

6.2 Decays into a D and a light meson X

For these channels the only diagrams one needs to consider at leading order in 1/mb are vertex
corrections such as in Fig. 4a. The result of the O(αs) calculation for the matrix element of
the effective weak Hamiltonian can be written as the sum of

〈D+X−|Heff |B̄0〉corr = −i GF√
2
VcbV

∗
ud a

corr
1 fϕ qµ〈D+|c̄γµb|B̄0〉,

〈D∗+X−|Heff |B̄0〉corr = i
GF√

2
VcbV

∗
ud a

corr
1 fϕ qµ〈D∗+|c̄γµγ5b|B̄0〉, (29)

and the contribution of naive factorization, taken with a coefficient afact
1 which equals the

coefficient a1 of Sect. 2 evaluated at next-to leading order, up to a small term removing the
renormalization scheme dependence. For details we refer to Eqs. (95) and (96) of [7]. The
coefficients acorr

1 are given by

fϕacorr
1 =

αs(µ)

4π
C2(µ)

CF

Nc

∫ 1

0
duF (u,±z)ϕ(u;µ), (30)
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a
(0)
1 a

(1)
1 a

(2)
1 a

(3)
1 a

(4)
1

B̄0 → D+X− 12.3 + 12.7i −8.1 + 17.8i 1.7− 0.8i −2.3 + 4.9i 0.3− 0.5i

B̄0 → D∗+X− 11.7 + 8.4i −9.5 + 16.0i 0.3− 1.2i −3.2 + 5.0i −0.2− 0.2i

Table 5: The first few coefficients a
(n)
1 of the expansion (31) in units of 10−3. They are

evaluated at renormalization scale µ = mb = 4.4 GeV with input parameters Λ
(5)

MS
= 220 MeV

and mc/mb = 0.3. With the same parameters one has afact
1 = 1.039.

where the function F (u, z) with z = mc/mb can be found in [7]. Its second argument is +z
for decays into D and −z for decays into D∗, with z = mc/mb, so that acorr

1 depends on both
mesons in the final state. Its dependence on the distribution amplitude of X can be expressed
as

acorr
1 (µ) = a

(0)
1 (µ)B0 +

∞∑
n=1

a
(n)
1 (µ)Bn(µ). (31)

The first few coefficients a
(n)
1 are listed in Table 5. We see that they are small compared with

1, and that they tend to decrease with n. They depend substantially on the renormalization
scale µ. One finds

a
(n)
1 (mb/2)

a
(n)
1 (mb)

≈ a
(n)
1 (mb)

a
(n)
1 (2mb)

≈ 2, (32)

a falloff mostly due to the Wilson coefficient C2. The Gegenbauer coefficients Bn also decrease
with the factorization scale, although by less than a factor 1.2 for B1 and B2 when µ is varied
between mb/2 and mb or between mb and 2mb. The effects of this dependence on µ are quite
mild for decays where most of the result is due to the Born level term fϕafact

1 , but not for our
decays where this contribution is absent or suppressed by a small value of fϕ. A more stable
prediction would require the inclusion of O(α2

s) corrections. Since they involve again the color
allowed Wilson coefficient C1 they may actually not be small compared with the O(αs) terms.

Whereas afact
1 is real valued, we observe from Eq. (31) and Table 5 that acorr

1 is complex. The
strong phases of unsuppressed channels like B̄0 → D+π− are thus small in QCD factorization.
On the contrary, they can be sizeable in our suppressed decays, where αs contributions are
essential.

6.3 Decays into charmonium

The radiative corrections to factorization for decays into charmonium states have not been
calculated yet. The following observation [7] is however relevant in our context. The naive
factorization formula for these decays involves the color suppressed coefficient a2 and color
suppressed penguins, but at the level of loop corrections the color allowed coefficient C1 will
come in. Hence theO(αs) terms will probably be sizeable compared with the naive factorization
result. This expectation is supported by an analysis of inclusive B decays into charmonium
[24]. Whereas naive factorization forbids the decays of Table 3 into a χc0 or a χc2 instead, one
may then expect that within QCD factorization their branching ratios are not much smaller
or even of similar size than for the corresponding decays into J/Ψ or χc1.
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6.4 Decays into two light mesons

For these channels, not only vertex corrections need to be considered, but also so-called penguin
contractions (cf. Fig. 7 of [7]) and hard interactions with the spectator quark from the B as
shown in Fig. 4b. The latter involve the twist-two distribution amplitudes ϕY and ϕX of both
final state mesons. Mesons with J ≥ 1 have a second twist-two distribution amplitude [25] in-
volving the nonlocal tensor current d̄(z) σµνu(−z), which describes states with helicity J3 = ±1
and can also contribute now.

Beyond the level of leading twist contributions, several power corrections have been consid-
ered in the literature [8, 26]. A particular type of correction that is numerically not suppressed
occurs for final-state mesons with spin J = 0 and involves their twist-three distribution ampli-
tudes defined from the nonlocal (pseudo)scalar and tensor currents [27]. Their contribution to
the amplitude relative to the twist-two radiative corrections is controlled by the ratio r defined
as in (22), which is formally of order 1/mb but numerically not small. With the quark mass
values we use, one has rπ = rK = 1, and the corresponding twist-three radiative corrections
have size similar to the leading-twist ones. This is also the case for the a0, π(1300), and K∗

0

mesons we are considering here. Indeed, the twist-two distribution amplitudes are comparable
in size for a0, π(1300), K∗

0 , and π, K, as follows from comparing our estimates (28) with fπ

or fK . The same holds for the respective twist-three distribution amplitudes, which are con-
trolled by the local (pseudo)scalar matrix elements in Eqs. (19) and (20). We recall that the
twist-three pieces just discussed can only be estimated in QCD factorization because they lead
to logarithmic divergences at the endpoints of the distribution amplitudes.

Logarithmic endpoint divergences also appear in annihilation contributions, which in the
power counting scheme of QCD factorization are again 1/mb corrections, even for those terms
involving only twist-two distribution amplitudes. In a recent study of decays B → ππ and
B → πK Beneke et al. [8] estimated annihilation contributions to be moderate corrections
to the leading terms computed in the QCD factorization framework, giving a benchmark
number of 25% in the branching ratio, although with large uncertainties. Notice that the
small parameter controlling the relative weight of annihilation and leading contributions in
their calculation is

fBfY

(m2
B −m2

Y )FB→Y
0 (m2

X)
, (33)

which depends only mildly on the mass of the emitted meson through the B → Y transition
form factor. We take this as an indication that the importance of annihilation contributions
is not primarily driven by the size of mX .

We expect then that in decays such as B̄0 → a+
0 a

−
0 the hard nonfactorizable terms calculable

in QCD factorization, and possibly also the power corrections estimated there should be small
compared to the amplitude for B̄0 → π+π−, which is dominated by the contribution of the
large coefficient a1.

For penguin dominated decays like B → πK, the overall size of corrections found in Ref. [8]
is not so small compared with the result of the naive factorization formula. With the “designer”
modes B̄0 → π+K∗−

2 and B− → π−K̄∗0
2 we can isolate such nonfactorizable terms. Among

these, annihilation contributions from scalar penguin operators are of special interest. In QCD
factorization they are a power correction, but not in the PQCD approach, where Keum et
al. [9] found that they contribute at order one and with a large phase to the B → πK decay
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amplitudes. Comparing the branching ratios of the above decays into K∗
2 with those into a K

or K∗ can show whether scalar penguin annihilation contributions are indeed large.

7 Branching ratio estimates for decays B → DX

We present now our numerical estimates of the branching ratios for decays B̄0 → D+X−,
where X is one of a0, a2, b1, π(1300), π2, ρ3, or K∗

0(1430), K∗
2 . As discussed in Sect. 6.2, these

channels receive hard gluon corrections to naive factorization, which can be calculated in the
QCD factorization approach.

We recall that for the a2, π2, ρ3, and K∗
2 , the tree term proportional to afact

1 is absent. The
contribution from the αs correction acorr

1 given in (29) involves a contraction of qµ with the
matrix element parameterized as

〈D(p′)|c̄γµb|B̄(p)〉 = F1(q
2)

{
(p+ p′)µ − m2

B −m2
D

q2
qµ

}
+ F0(q

2)
m2

B −m2
D

q2
qµ, (34)

where q = p− p′. One easily sees that the αs contributions always pick up the form factor F0,
independent of the spin of X. Thus, the decay rate for our candidates X, as well as for any
other spin zero meson like the π, can be written as

Γ(B̄0 → D+X−) =
G2

F

16π

(m2
B −m2

D)2

m2
B

pX

∣∣∣VcbV
∗
ud

∣∣∣2 ∣∣∣ fϕ(afact
1 + acorr

1 )F0(m
2
X)
∣∣∣2, (35)

where pX denotes the magnitude of the three-momentum of X in the B rest frame.
We normalize the rate of the decays into X to the unsuppressed one into a light pion. This

has the advantage that the CKM factors cancel (except for the strange mesons) and that we
can use the measured branching ratio for B̄0 → D+π− decays, where naive factorization works
well [2, 7]. For the ratio of decay rates we have the simple expression

Γ(B̄0 → D+X−)

Γ(B̄0 → D+π−)
≈
∣∣∣∣∣ f

ϕ(afact
1 + acorr

1 )

fπafact
1

∣∣∣∣∣
2

, (36)

where for simplicity we have neglected the term acorr
1 for the π−, where its effect is of order

1% to 2%. Eq. (36) has corrections due to phase space and the evaluation of the form factor F0

at different momentum transfer q2, which go in opposite directions. The relevant q2 ranges from
roughly 1 GeV2 for the a0(980) to 3 GeV2 for the π2 and ρ3, to be compared with q2 ≈ 0 for the
π. We have checked that the relation (36) is affected by these mass effects by not more than
10% to 15%. This is sufficient in our context, given the dominant theoretical uncertainty of
our calculation hidden in the decay constants and distribution amplitudes. For X = K∗

0 (1430),
K∗

2 we have to include a CKM factor |Vus/Vud|2, which is known to a good precision. In our
numerical analysis we take |Vus/Vud| = 0.23 from [11].

We evaluate (36) using the expansion (31) with the coefficients a
(n)
1 of Gegenbauer moments

in Table 5, the estimates (28) for the Gegenbauer moments Bn, and the maximal values of
the decay constants in (14) to (17). The b1 can have a small decay constant, for which we are
not aware of any information in the literature, and in our calculation we set it to zero. Before
presenting the branching ratios let us study the magnitude of the individual terms entering in

20



(36). We have fπa
fact
1 = 136 MeV for the pion, and for the mesons with leading Gegenbauer

moments fϕB1 and fϕB2, we respectively obtain

|fϕacorr
1 |a0,b1,a2,K∗

0 ,K∗
2

= 1.5 MeV,

|fϕacorr
1 |π(1300),π2,ρ3

= 0.1 MeV, (37)

at renormalization scale µ = mb. The second term is tiny mainly because of the small coefficient
a

(2)
1 from the one-loop calculation. Since our estimate in the Appendix does not yield the sign

of fϕBn, we have a twofold ambiguity when adding fϕacorr
1 to fϕafact

1 , and find

fa0(980) a
fact
1 = 2.6 MeV, |fϕ(afact

1 + acorr
1 ) |a0(980) = 2.4 or 3.5 MeV,

fa0(1450) a
fact
1 = 0.7 MeV, |fϕ(afact

1 + acorr
1 ) |a0(1450) = 1.3 or 1.9 MeV,

fπ(1300) a
fact
1 = 7.5 MeV, |fϕ(afact

1 + acorr
1 ) |π(1300) = 7.4 or 7.6 MeV,

fK∗
0 (1430) a

fact
1 = 48 MeV, |fϕ(afact

1 + acorr
1 ) |K∗

0 (1430) = 47 or 48 MeV. (38)

Notice the enormous correction to the naive factorization result for the a0(1450). The im-
pact of nonfactorizing corrections is similarly strong for the a0(980) if we take the minimum
value fa0(980) = 0.7 MeV from Eq. (15). For the π(1300), nonfactorizing terms remain always
moderate since |fϕacorr

1 |π(1300) is small even compared with the lowest estimate of fπ(1300) in
Eq. (16). The K∗

0 has a decay constant much larger than |fϕacorr
1 |K∗

0
and is the only case where

the corrections hardly matter.
Using B(B0 → D−π+) = (3.0±0.4)·10−3 from [11] and the maximal values in (38), we obtain

the branching ratios in Table 6. To show their dependence on the choice of renormalization
scale, we give them for µ = mb and µ = mb/2. We take the latter as an indication of how
large the branching ratios can be in QCD factorization, although they are not upper bounds
in a rigorous sense. We also show the corresponding results from naive factorization, where for
consistency of comparison we have again neglected the corrections discussed below Eq. (36).
Here the scale dependence is minute, less than 2 percent, and the values in Table 6 are those
for µ = mb.

We proceed to decays into a vector meson, B̄0 → D∗+X−. The contraction of qµ with the
matrix element 〈D∗|c̄γµγ5b|B̄〉 depends again only on a single form factor, commonly referred
to as A0 and defined e.g. in [3]. The decay rate is then given by

Γ(B̄0 → D∗+X−) =
G2

F

4π
p3

X |VcbV
∗
ud|2

∣∣∣fϕ(afact
1 + acorr

1 )A0(m
2
X)
∣∣∣2. (39)

As mentioned in Sect. 6.2, the coefficients acorr
1 for decays into D∗ are different from those into

D, and we now have

|fϕ(afact
1 + acorr

1 ) |a0(980) = 2.2 or 3.5 MeV,

|fϕ(afact
1 + acorr

1 ) |a0(1450) = 1.2 or 1.9 MeV,

|fϕ(afact
1 + acorr

1 ) |π(1300) = 7.5 MeV,

|fϕ(afact
1 + acorr

1 ) |K∗
0 (1430) = 47 or 49 MeV (40)

at µ = mb. The analogous expression for the ratio (36) of decay rates still holds, although
with different mass corrections. We estimate them to be not much larger than for the D and

21



decay mode naive factorization QCD factorization

µ = mb µ = mb/2

B̄0 → D+a0(980) 1.1 · 10−6 2.0 · 10−6 4.0 · 10−6

B̄0 → D+a0(1450) 8.6 · 10−8 5.8 · 10−7 2.1 · 10−6

B̄0 → D+b1, D
+a2 0 3.5 · 10−7 1.7 · 10−6

B̄0 → D+π(1300) 9.1 · 10−6 9.3 · 10−6 9.6 · 10−6

B̄0 → D+π2, D
+ρ3 0 1.4 · 10−9 8.1 · 10−9

B̄0 → D+K∗
0(1430) 2.0 · 10−5 2.0 · 10−5 2.1 · 10−5

B̄0 → D+K∗
2 0 1.9 · 10−8 9.2 · 10−8

B̄0 → D∗+a0(980) 1.0 · 10−6 1.8 · 10−6 3.7 · 10−6

B̄0 → D∗+a0(1450) 7.9 · 10−8 5.2 · 10−7 1.9 · 10−6

B̄0 → D∗+b1, D∗+a2 0 2.9 · 10−7 1.5 · 10−6

B̄0 → D∗+π(1300) 8.3 · 10−6 8.4 · 10−6 8.4 · 10−6

B̄0 → D∗+π2, D
∗+ρ3 0 5.7 · 10−10 3.2 · 10−9

B̄0 → D∗+K∗
0 (1430) 1.8 · 10−5 1.9 · 10−5 1.9 · 10−5

B̄0 → D∗+K∗
2 0 1.5 · 10−8 7.7 · 10−8

Table 6: Branching ratios for various decay modes obtained in QCD factorization for two
choices of the renormalization scale µ. For comparison we also give the branching ratios in the
naive factorization approach. We recall that we have set fb1 = 0 for lack of better knowledge.

neglect them as before. Normalizing to B(B0 → D∗−π+) = (2.76 ± 0.21) · 10−3 from [11] we
obtain the branching ratios in Table 6, which are somewhat smaller than the corresponding
ones for decays into the D. With the exception of decays into K∗

2 , π2, or ρ3, all estimated
branching ratios are larger than 10−7 and within experimental reach at the B-factories. We
expect similar branching ratios for Bs decays into D(∗)

s and the same candidate mesons X, up
to SU(3) breaking effects.

To facilitate comparison of the branching ratios of Table 6 into K∗
0 and K∗

2 with those into
a K, we estimate the latter as

B(B̄0 → D+K−) ' f 2
K

f 2
π

∣∣∣∣Vus

Vud

∣∣∣∣
2

B(B̄0 → D+π−) = (2.4± 0.3) · 10−4 ,

B(B̄0 → D∗+K−) ' f 2
K

f 2
π

∣∣∣∣Vus

Vud

∣∣∣∣
2

B(B̄0 → D∗+π−) = (2.2± 0.2) · 10−4 , (41)

which is in good agreement with data on the ratios B(B̄0 → D+K−)/B(B̄0 → D+π−) =
0.079± 0.011 and B(B̄0 → D∗+K−)/B(B̄0 → D∗+π−) = 0.074± 0.016 reported in [28].

A considerable source of uncertainty in our decay rate estimates are the unknown meson
decay constants and distribution amplitudes. Let us illustrate this for the channel B̄0 →
D+a0(980). With the minimal value of fa0(980) in Eq. (14) we obtain |fϕ(atree

1 + acorr
1 )|a0(980) =

1.3 or 1.9 MeV at µ = mb. The larger of the two possibilities corresponds to a branching ratio
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B(B̄0 → D+a0(980)) = 5.8 · 10−7, about three times smaller than the corresponding one in
Table 6.

We have already seen the sensitivity of our results on the choice of renormalization scale.
This uncertainty is largest for the branching ratios which are zero in naive factorization, with
a variation by a factor of 5 to 6 between µ = mb and µ = mb/2. How important it is for the
other channels depends on the actual size of the decay constants and distribution amplitudes.
We also remark that the reliability of the QCD factorization approach for our “light” mesons
with masses in the range from 1 to 1.7 GeV might be questionable, at least unless finite-mass
corrections can be taken into account.

Most important, however, is that the hard nonfactorizing contributions are small on the
scale of the amplitudes for unsuppressed decays. With all uncertainties discussed above we find
that fϕacorr

1 is at most a few MeV, i.e., less than 5% of fπa
fact
1 . One may well expect that soft

corrections (or annihilation graphs when they can occur) are bigger than the hard ones. For
all our meson candidates except the K∗

0 they would then lead to considerably larger branching
ratios than we have estimated.

The decays into K∗
0 are different in this context. Here the perturbative corrections to

the prediction of naive factorization are quite small and their uncertainties less relevant, and
further soft corrections might or might not overshadow the factorizing piece. Once the decay
constant of the K∗

0 is known experimentally, one should of course refine our estimates by taking
into account the phase space and form factor corrections in (36).

7.1 Background from B0 decay

We see in Fig. 2 that the same final state of our signal mode B̄0 → D+X− just discussed can
be produced in the decay of the CP conjugated parent meson, B0 → D+X−. As mentioned
in Sect. 4, this background is CKM suppressed with respect to the signal. On the other hand,
the signal mode is punished by a small decay constant, whereas the background goes with
fD ∼ 200 MeV. One expects the background-to-signal ratio to be large, since at the amplitude
level λ2fD/fX ∼ O(1). We recall that no such background exists in decays into a strange final
state, B̄0 → D+X−

s or B̄s → D+
s X

−.
The background to B̄0 → D+X− can of course be removed by flavor tagging. Experimental

discrimination between B and B̄ is however challenging in decays with branching ratios of less
than 10−5, and it is worthwhile to see how far one can go without a flavor tag. Let us therefore
investigate in more detail the branching ratios of the background decays for the case of the a0.
We parameterize the matrix element for the B → a0 transition in terms of form factors F a

0

and F a
1 as

〈a0(p
′)|ūγµγ5b|B̄(p)〉 = F a

1 (q2)

{
(p+ p′)µ − m2

B −m2
a0

q2
qµ

}
+ F a

0 (q2)
m2

B −m2
a0

q2
qµ. (42)

Assuming naive factorization, the decay rates for B0 → D(∗)+a−0 decays can be written as

Γ(B0 → D+a−0 ) =
G2

F

16π

(m2
B −m2

a0
)2

m2
B

pa0

∣∣∣VcdV
∗
ub

∣∣∣2 (a1fD)2 |F a
0 (m2

D)|2,

Γ(B0 → D∗+a−0 ) =
G2

F

4π
p3

a0

∣∣∣VcdV
∗
ub

∣∣∣2 (a1fD∗)2 |F a
1 (m2

D∗)|2, (43)
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where a1 is the universal coefficient for color allowed decays in naive factorization, introduced
in Sect. 2. Using a1 = 1.03 we find

B(B0 → D+a0(980)) = 2.1 · 10−6

(
|VcdV

∗
ub|

7.3 · 10−4

)2 (
fD

200 MeV

)2 (
F a

0 (m2
D)

0.5

)2
τB0

1.55 ps
,

B(B0 → D∗+a0(980)) = 1.9 · 10−6

(
|VcdV

∗
ub|

7.3 · 10−4

)2 (
fD∗

230 MeV

)2 (
F a

1 (m2
D∗)

0.5

)2
τB0

1.55 ps
, (44)

where we have indicated the sensitivity to several input parameters which at present have
significant uncertainties. In particular, very little is known about the form factors for B → X
transitions. Chernyak [16] has recently estimated the form factor F1(0)B→a0(1450) ' 0.46 with
light-cone sum rules, indicating only a small enhancement over the corresponding one into a
pion, where he cites F1(0)B→π ' 0.3. That the form factor for B → a0 should rather be larger
than the one for B → π is also plausible in the Bauer-Stech-Wirbel approach [29]. To see this,
consider the constituent qq̄ wave function of a charged a0. In the case where the q and q̄ spins
couple to S3 = 0, it has a zero at momentum fraction u = 1

2
due to charge conjugation, up

to small isospin breaking effects. Being normalized to one, this wave function is then more
pronounced towards the endpoints u = 0 and u = 1, and thus can have a greater overlap with
the asymmetric wave function of the B than the pion wave function can. Further information
may be obtained in relativistic quark models [30].

We wish to point out that experimental information on the form factor F a
1 (m2

D) can be
obtained from semileptonic decays at q2 = m2

D,

dΓ(B̄0 → a+
0 `

−ν̄`)

dq2
=

G2
F

24π3
p3

a0
|Vub|2 |F a

1 (q2)|2, (45)

where we expect similar statistics as for the semileptonic decays B → π, ρ with branching
ratios of a few 10−4, if the form factors have comparable size. One may then relate F a

0 with
F a

1 using large energy effective theory (LEET) [31], originally introduced in Ref. [32]. We are
in the kinematical situation where a light meson (here the a0) is emitted from a heavy parent
with large recoil q2 = m2

D � m2
b and an energy E = (m2

B − q2 + m2
a0)/(2mB) much larger

than ΛQCD and the light masses in the process. This is the region of applicability of LEET.
To leading order in 1/E and 1/mb, we derive

F a
1 (E,mb) =

mB

2E
F a

0 (E,mb). (46)

This is the analog of Eqs. (104) and (105) in [31], to which we refer for details. Hence, the
form factors are equal to leading order in the large energy limit.

From the branching ratios in Eq. (44) we conclude that rather likely the background from
decays of B0 mesons into a0 does not overshadow the signal. A similar discussion can be
given for decays into the other I = 1 mesons of Table 1. Assuming naive factorization and no
anomalous behavior of the relevant form factors, we quite generally expect branching ratios
of the background modes B0 → D(∗)+X− of order 10−6. Any significant excess over both
this and the branching ratios given in Table 6 would imply that either there are important
nonfactorizing contributions in the signal, or that naive factorization drastically fails in the
background channel.
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8 Summary

We have explored how to obtain quantitative information on nonfactorizing effects in exclusive
b decays, using channels where such contributions are not hidden behind larger factorizing
pieces. We achieve this through “switching off” the factorizing contribution by choosing final-
state mesons with either a small decay constant or spin J ≥ 2. Our proposal is similar in
spirit to the study of decay channels where the quark content of the final state does not admit
factorizing contributions, such as B0 → K+K− [33], Bs → π+π−, π0π0, or b-decays into
baryon-antibaryon pairs (see e.g. [2] and references therein). Suppression of the factorizable
contributions thus highlights factorization breaking effects, such as annihilation graphs, soft or
hard interactions, and in general any mechanism dominated by long-distance physics, which
disconnects the b decay vertex from the final state meson. We have explicitly shown that hard
nonfactorizing contributions, calculated in the QCD factorization framework, can yield sizeable
contributions to the decay amplitude.

In a systematic study, compiled in Tables 2, 3, and 4, we have shown that our method applies
to a variety of mesons and channels, in decays of Bu,d, Bs, and b baryons. In particular, the
mesons X we have selected cover a wide range of masses, which makes it possible to explore
whether the energy-mass ratio EX/mX in the parent rest frame is a relevant parameter to
ensure factorization, as is suggested by color transparency but not by large Nc arguments [32].

We have presented a detailed analysis of color allowed decays B → D(∗)X and Bs → D(∗)
s X

with a light meson X. When the factorizable contribution is suppressed, e.g. for the scalar
a0, we found that hard nonfactorizing corrections can be of similar magnitude or even larger
than the Born term. They remain however much smaller than the amplitudes of corresponding
nonsuppressed decays, for instance into a π. In several cases we found branching ratios sub-
stantially enhanced over the ones calculated in the naive factorization approach, see Table 6,
and are within the reach of existing and future experiments at the B-factories BaBar, Belle,
CLEO and at hadron colliders like the Tevatron and the LHC. Comparison of these decays with
modes where the ejected meson is a D meson and further study of those into charmonia χc0 or
χc2 should give complementary information on the origin and limitations of the factorization
approach.

B decays with light-light final states are more complex. Modes such as B̄0 → a+
0 a

−
0 and

Bs → K+a−0 are not entirely suppressed by the small decay constant of the a0 due to the
presence of scalar penguin operators, but we find the corresponding amplitudes to be much
smaller than those of B̄0 → π+π− or Bs → K+π−. Such factorizing penguin contributions
can be eliminated altogether with higher-spin mesons like the b1 or a2 instead of the a0. We
expect hard nonfactorizing contributions to be moderate, too, so that experimental information
on such decays could again tell us whether nonperturbative effects are large. For penguin
dominated decays like B̄0 → π+K∗−

2 the situation is less clear-cut on the quantitative level,
but we argue that they can give valuable indications on the importance of penguin annihilation
contributions. This is a particularly controversial issue since different conclusions regarding
such decays have been drawn in the QCD factorization and the PQCD scenarios [8, 9].

To conclude, we find that the b decays presented here provide a tool for studying impor-
tant issues in exclusive nonleptonic decays. We stress that in order to make this tool more
quantitative, the decay constants of the a0(980), a0(1450), π(1300), K∗

0 (1430) and b1 mesons
should be known experimentally. Their determination from τ decays should be in reach of the
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existing experiments at BaBar, Belle and CLEO, and even more of dedicated τ -charm facto-
ries. Information on the distribution amplitudes of a0(980), a0(1450), a2, π(1300), π2, which
are needed for the calculation of hard nonfactorizable contributions, could be obtained from
γ∗γ collisions at the B factories.
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Appendix

In this appendix we estimate the size of the leading-twist distribution amplitude ϕ of several
mesons. Our method is based on the connection between distribution amplitudes and the Fock
state expansion in QCD, and closely follows the discussion in [34], to which we refer for details.
The starting point is to decompose a hadron state on Fock states consisting of current quarks
and gluons, qq̄, qq̄g, etc. The coefficients in this expansion are the light-cone wave functions
for each parton configuration. For a dū meson, one has

|X−〉J3=0 =
∫ du√

u(1− u)

d2k⊥
16π3

|d↑ ū↓〉 ± |d↓ ū↑〉√
2

ψ(u, k⊥) + . . . , (47)

where u and k⊥ denote the light-cone momentum fraction and transverse momentum of the
d quark in the meson. The arrows indicate quark and antiquark helicities, and the + and
− respectively apply to mesons with natural and unnatural parity. The states |d↑ ū↓〉 and
|d↓ ū↑〉 are understood to be coupled to color singlets. By . . . we have denoted the Fock states
|d↑ ū↑〉 and |d↓ ū↓〉 with aligned quark helicities, and Fock states with additional partons. The
connection of the light-cone wave function ψ(u, k⊥) with the distribution amplitude defined in
Eq. (25) is ∫

d2k⊥
16π3

ψ(u, k⊥) =
1

2
√

6
ϕ(u). (48)

The probability to find the dū Fock state with antialigned helicities in the meson X is

P =
∫
du

d2k⊥
16π3

|ψ(u, k⊥)|2. (49)

This should be below 1 since it is the probability to find a current qq̄ pair in the meson, without
further gluons or sea quark pairs. Note that this is different from the qq̄ wave functions in
constituent quark models, which are by definition normalized to 1. Let us now use the relation
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(49) to estimate the size of ϕ(u). In order to achieve this, we need to make an ansatz for the
k⊥ dependence. A form consistent with several theoretical requirements [34, 35] is

ψ(u, k⊥) =
16π2a2

u(1− u)
exp

[
− a2k2

⊥
u(1− u)

]
1

2
√

6
ϕ(u), (50)

where the prefactor of the exponential is imposed by the normalization (48). a plays the role of
a transverse size parameter of the dū-pair in the meson. For the pion, Brodsky and Lepage [34]
obtained aπ ≈ 0.86 GeV−1 with the above ansatz and the asymptotic form ϕπ(u) = fπ 6u(1−u)
for the distribution amplitude. This corresponds to an average transverse momentum 〈k2

⊥〉 ≈
(370 MeV)2 and to a Fock state probability of Pπ ≈ 0.25. We will take the same values for
the mesons we discuss here, which is certainly a crude assumption but should give the correct
order of magnitude.

With the ansatz (50) and the Gegenbauer expansion (27) we obtain

P = 2π2(afϕ)2

(
B2

0 +
∞∑

n=1

3(n+ 2)(n+ 1)

2(2n+ 3)
B2

n

)
. (51)

Consider now a meson for which B0 = 0, such as the a2 or K∗
2 . If we take a = aπ and

P = Pπ ≈ 0.25 and retain only the term with B1 in the Gegenbauer expansion, we obtain

|fϕB1| ≈ 100 MeV. (52)

Including the zeroth term fϕB0 in the Gegenbauer expansion, as is appropriate for the charged
a0, K

∗
0 and b1, would decrease this estimate by about 5% for theK∗

0 when taking fK∗
0

= 42 MeV.
The effect of that term for the a0 or b1 can be neglected even more safely.

In order to explore the dependence of our estimate on the ansatz we made for the k⊥
dependence of the wave function, we take an alternative form

ψ(u, k⊥) =
16π2ã4

u2(1− u)2
k2
⊥ exp

[
− ã2k2

⊥
u(1− u)

]
1

2
√

6
ϕ(u), (53)

which has a node at k⊥ = 0. For the Fock state probability we find the same expression as
(51) with a replaced by ã/

√
2. Choosing ã = a we then get an estimate of |fϕB1| larger by a

factor
√

2. If instead one requires the average 〈k2
⊥〉 to be the same with the two forms (50) and

(53), one finds ã =
√

3a and thus an estimate of |fϕB1| smaller by a factor of
√

2/3. Given

these observations we expect that (52) should give the correct order of magnitude of the first
Gegenbauer coefficient.

We should add that this does not hold for mesons that are not qq̄ bound states in the
constituent quark picture but for instance made from qq̄qq̄, which may be the case for one
of the a0 mesons. Is plausible that for such a system the probability of finding a single
current qq̄ pair in this meson is reduced compared with the one of a conventional qq̄ state.
Correspondingly, its twist-two distribution amplitude ϕ and the coefficients fϕBn would be
smaller than estimated here.

Our considerations are easily adapted to the case of mesons where B1 is zero or isospin
suppressed, such as the π(1300), the π2, or the ρ3. Retaining only B2 in the Gegenbauer
expansion of ϕ(u) and taking as before a ≈ aπ and P = Pπ ≈ 0.25, we obtain

|fϕB2| ≈ 80 MeV. (54)
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So far we have not displayed the dependence of both the distribution amplitude ϕ and
the light-cone wave function ψ on the factorization scale µ, which physically represents the
resolution scale of the qq̄ pair. Our above estimates are understood as corresponding to a
hadronic scale, say, µ = 1 GeV. Evolving up to µ = mb we obtain |fϕB1| ≈ 75 MeV from
Eq. (52) and |fϕB2| ≈ 50 MeV from Eq. (54).

To conclude this section, we wish to point out that experimental constraints on the distri-
bution amplitudes for the neutral mesons X = a0, a2, π(1300), π2 can be obtained from the
process γ∗γ → X at virtualities Q2 of the photon much larger than the meson mass. This can
be measured in e+e− → e+e−X, and the CLEO data for X = π, η, η′ are in fact one of our best
sources of information on the corresponding distribution amplitudes [36]. To leading order in
1/Q2 and in αs, the amplitude for γ∗γ → X is proportional to fϕ(B0 + B2 + B4 + . . .) for
mesons with unnatural parity, and to fϕ(B1 +B3 + B5 + . . .) for mesons with natural parity.
According to our above estimates, one then expects cross sections comparable to the one for
π production, so that the measurement of these reactions at large Q2 may well be in the reach
of the B factories.
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