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Abstract

We apply the method of Fleischer and Mannel to extract information on sin α

in the charged B system. Hadronic contributions are fixed through appeal to
data allowing one to cleanly interpret the CP asymmetry without assuming
dominance of the top quark penguin contribution.

Keywords: Discrete symmetries, CKM matrix elements, Vector-meson
dominance, Decays of bottom mesons

PACS numbers:11.30.Er, 12.15.Hh, 12.40.Vv, 13.20.He

Typeset using REVTEX

∗Work supported by the US Department of Energy contract DE-AC03-76SF00515.

1



In the Standard Model (SM) CP violation arises exclusively from a phase in the CKM
matrix [1,2]. If the SM is complete this matrix must be unitary giving, for example,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1)

There are nine such relationships, of which only three are independent. Of these three,
Eq. (1), relevant to b quark interaction, has a special status, as the other two contain
one term that is very small making them difficult to test experimentally. Eq. (1) can be
conveniently represented by a triangle in the complex plane, whose angles are given by

α ≡ arg

(
− VtdV

∗
tb

VudV
∗
ub

)
, β ≡ arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
, γ ≡ arg

(
−VudV

∗
ub

VcdV
∗
cb

)
. (2)

The unitarity condition can then be conveniently written in a form independent of the
particular convention used for the CKM matrix elements

α + β + γ = π|mod 2π . (3)

The equality only holds modulo 2π because α, β and γ, in principle, can be either the
internal or external angles of a triangle depending on the sign of sin δCKM [3], though it
is usually assumed that sin δCKM > 0 and hence the angles are internal [4] (see however,
Ref. [5]). This relation therefore provides a significant test of the Standard Model making
a detailed study of the weak decays of B mesons one of the major goals of contemporary
physics (for reviews see Ref. [6]).

Usually the neutral B system is considered for this purpose, as the asymmetries from
direct CP violation in the charged B sector are often subject to considerable hadronic un-
certainty. However the ease of tagging differently charged particles lends motivation to a
theoretical study of charged B decay that would eliminate unknown hadronic contributions
to the asymmetries and allow for a clean extraction of CKM information. Moreover, neutral
B experiments typically yield sin 2α, leading to a discrete four-fold ambiguity in the deter-
mination of α [4]. Therefore, our interest lies in deducing complementary information from
charged B experiments to lessen this ambiguity.

Recent studies of direct CP violation due to ρ−ω mixing in decays in both the mesonic
[7–9] and baryonic [10] b hadrons suggest the study of systems in which the non-perturbative
strong physics is phenomenologically well constrained through vector meson dominance
(VMD) (for a review of VMD see, for example, Ref. [11]). Here we shall be concerned
with the extraction of CKM information free from hadronic uncertainty.

We shall follow the approach of Fleischer and Mannel (FM) [12] to eliminate the possible
hadronic uncertainty in the penguin terms. Let us begin by considering the general definition
of the CP asymmetry in the charged system

a =
|A−|2 − |A+|2
|A−|2 + |A+|2 =

1− |A+/A−|2
1 + |A+/A−|2 ≡

1− |ξ|2
1 + |ξ|2 (4)

where A− is the negative particle decay amplitude and A+ that for the positive, such that
A+ = CP [A−]. We now wish to focus on the CP parameter, ξ, defined in Eq. (4). To do this
we need to build up amplitudes in which CP violation is possible, through strong and weak
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phase differences. As usual, we shall consider tree and penguin contributions to supply the
weak phase difference. Following Refs. [7,8] we shall consider A− = B− → ρ−(π+π−) where
the π+π− pair is produced in the ρ−ω resonance region. As seen in e+e− → π+π− data
[13], there is a considerable G-parity violating contribution of the ω to π+π− production. In
Ref. [7] it was suggested that this could supply the necessary strong phase difference through
ρ−ω mixing (for a brief review of ρ−ω mixing see, e.g., Ref. [14]). We thus introduce the
hadronic quantity,

X ≡ Π̃ρω

s−m2
ω + imωΓω

≡ Π̃ρω

sω

=
Π̃ρω

|sω|2 (s−m2
ω − imωΓω), (5)

introducing the ω propagator term sω in an obvious fashion. Though, as an isospin violating
quantity, Π̃ρω = 3500MeV2 is small compared with, say, m2

ρ, the narrowness of the ω width
(Γω = 8.4MeV) allows X to differ appreciably from unity near s ∼ m2

ω, and to develop
the necessary strong phase. All other sources of isospin violation are always small and
unimportant.

The problem now reduces to the vector analogue of B → ππ considered by FM, i.e.,
B− → ρ−ρ0. For this case, we can factor the weak phase from the tree amplitude, T,
through

T ≡ eiγt, (6)

where the weak phase γ (see Eq. (2)) arises from the tree CKM term VudV
∗
ub. We therefore

have

ξ ≡ A+

A− =
T + PX

T + PX
=

te−iγ + PX

teiγ + PX
=

e−2iγ + e−iγPX/t

1 + e−iγPX/t
. (7)

It is now convenient to introduce the unitarity triangle side length

Rt ≡
√

(1− ρ)2 + η2 =
1

λ

∣∣∣∣Vtd

Vcb

∣∣∣∣ = sin γ

sin α
. (8)

The extraction of Rt is possible, for example, through a comparison of the kaon partial decay
widths Γ(K+ → π+νν̄)/Γ(KL → π0νν̄) (see Eq. (38) of Ref. [15]). With this we have

ξ = e−2iγ(1 + 2iλRt|P ′|eiδ′
X sin α/t) (9)

and the asymmetry is thus given by

a2π = 2λRt
|P ′|
t

Π̃ρω

|sω|2
[
(s−m2

ω) sin δ′ −mωΓω cos δ′
]
sin α +O

(
|P ′/t|2

)
, (10)

where the 2π represents the decay B− → ρ−π+π− in the ρ−ω resonance region.
This alone would not be so interesting, but it is possible by examining other decay

channels to determine the RHS of Eq. (9) almost totally from experimental input. This is
possible because the QCD penguin amplitude for the decay b → s is given by

P (s) =
∑

q=u,c,t

VqsV
∗
qbP

(s)
q = −|Vcb|(1−∆P (s))|P (s)

tu |eiδ
(s)
tu . (11)
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In the limit of exact SU(3) symmetry, for which the s and d quarks are equivalent, this
coincides exactly with P ′ of Eq. (7). This approximation for the penguin terms is justified
at the b scale where both s and d quarks are effectively massless. From a comparison of
masses and lifetimes

M(GeV) τ(10−12s)
B± 5.28 1.62± 0.06
B0 5.28 1.56± 0.06
Bs 5.37 1.61± 0.10

(12)

we see SU(3) symmetry is very good for the B sector. Thus the penguin structure of b → s
decays can can provide experimental input to the general expression for the CP asymmetry.
However, to be truly helpful we need to find a decay B → f with no tree contribution and
the same short distance physics as the penguin term in B− → ωρ−. To analyse this, we
shall appeal to the factorisation approximation, where assuming isospin symmetry (ie that
ρ and ω are equivalent)

P (d)
ω =

√
2(a3 + a4 + a5). (13)

The decay Bs → φφ has no tree contribution, and its short distance term is given by

Ashort(Bs → φφ) = P
(s)
φ = 2(a3 + a4 + a5) =

√
2P (d)

ω . (14)

However, in the factorisation approximation the full amplitude for Bs → φφ is given by the
product of Bs → φ, for which SU(3) symmetry is very good, and vacuum→ φ, where we
might expect SU(2) symmetry to be reasonable, but not SU(3) symmetry. Therefore we
need to account for this in Eq. (14) through [16]

f ≡ 〈φ|Vµ|0〉
〈ω|Vµ|0〉 ∼ 1.38. (15)

This leads to ∣∣∣∣∣P
′

t

∣∣∣∣∣ = 1

f

[
Γ(Bs → φφ)

2Γ(B− → ρ−ρ0)

]1/2

. (16)

The asymmetry is therefore given by

a2π =
2λRt

f

[
Γ(Bs → φφ)

2Γ(B− → ρ−ρ0)

]1/2
Π̃ρω[mωΓω cos δ′ − (s−m2

ω) sin δ′]
(s−m2

ω)2 + m2
ωΓ2

ω

sin α. (17)

In Eq. (17) Π̃ρω is accurately known from fitting e+e− → π+π− data [17,18]

Π̃ρω = −3500± 300 MeV2 (18)

with no statistically significant imaginary part or momentum dependence in the ω resonance
region. Similarly for the isospin conserving ω case, B− → ρ−ω where ω → π+π0π−, we have

a3π =
2λRt

f

[
Γ(Bs → φφ)

2Γ(B− → ρ−ρ0)

]1/2

sin δ′ sin α (19)
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which can be obtained by susbtituting X = 1 in Eq. (9).
A comparison of a2π and a3π therefore allows us to extract tan δ′ and hence determine the

magnitude of sin α, enabling us to halve the four-fold ambiguity. Together with the sign of
sin α obtained through a determination of the short distance strong phase from factorisation
calculations [8] this should allow for the elimination of the four-fold ambiguity in sin 2α.
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