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Abstract 
The parameters for a 30 GeV test beam are outlined for use with an undulator in the 

FFTB tunnel where the LCLS will eventually be housed. It is proposed to use the SLAC 

linac and damping rings in their present mode of operation for PEP II injection, where 

30 GeV beams are also delivered at 10 Hz to the FFTB. High peak currents are obtained 

with the addition of a second bunch compressor in the linac. In order to minimize the 

synchrotron radiation induced emittance growth in the bunch compressor it is necessary 

to locate the new bunch compressor at the low-energy end of the linac, just after the 

damping rings. The bunch compressor is a duplicate of the LCLS chicane-style bunch 

compressor. This test beam would provide an exciting possibility to test LCLS undulator 

sections and provide a unique high-brightness source of incoherent X-rays and begin 

developing the LCLS experimental station. The facility will also act as a much needed 

accelerator test bed for the production, diagnostics and tuning of very short bunches in 

preparation for the LCLS after the photo injector is commissioned. 

                                                           
* email pkr@slac.stanford.edu 
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1 Introduction 
There are two factors that motivate building this test facility with the existing 30 GeV 

beams in the SLAC linac. One is a desire from the user community to develop high-

brightness sources of X-rays as soon as possible. The LCLS promises to deliver coherent 

X-rays in the 1.5 to 15 Angstrom range with a brightness that is 10 orders of magnitude 

higher than existing undulator insertion devices. An undulator using the 30 GeV beam at 

the end of the linac would provide only incoherent X-rays in this range, but their 

brightness would still be several orders of magnitude above existing sources. This makes 

the proposed facility a stepping stone towards developing experiments for the LCLS. Not 

only would the experiments act as prototypes for experiments with the much brighter 

LCLS beams, but they would also be built up within the future LCLS user facility area. 

 

The prototyping and testing of LCLS accelerator technology is the second principal 

motivating factor for the early development of this intermediate-brightness X-ray source. 

In parallel with the present development of the photo injector for the LCLS it is possible 

to use the existing SLAC linac beam from the damping ring to produce, diagnose and 

tune very short bunches. The preservation of the emittance during bunch manipulation 

and acceleration in the SLAC linac is a key milestone to be demonstrated for the 

successful operation of the LCLS. 

 

The beam from the SLAC damping rings falls short of the final LCLS requirements, but 

the small vertical emittance from the damping rings, which is comparable to the LCLS 

transverse emittance requirements, is an ideal diagnostic for investigating accelerator 

issues.  The present Ring-To-Linac, RTL, compressor is not sufficient to produce the 

kilo-ampere peak currents desirable in an X-ray undulator, so a second bunch compressor 

must be installed in the linac. 

 

Using the SLAC linac for LCLS accelerator development has the following advantages: 

• The bunch compressor has identical beam line and rf parameters as the LCLS 

design and is installed in the same linac housing as the LCLS. 

• Bunch compression and emittance growth measurements would be performed 

with the same accelerating structures and hence wakefields as the LCLS 

• The complete operation of the linac bunch compressor system would be 

tested, including the controls and instrumentation for reproducible tuning. 
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• Phase stability and pulse-to-pulse jitter of the LCLS linac would also be tested 

in this facility. An advance start could be made on the precision phase 

measurement and stabilization R&D needed for the LCLS. 

 

Finally, the promotion of research into the production and tuning of very short bunches 

fits in well with our laboratory’s broader program and goals. The shorter bunches 

delivered to the end of the linac could be immediately used to advantage in the advanced 

accelerator research experiments into plasma wakefield acceleration (E150). The 

production, diagnostics and tuning of short bunches is directly applicable to the Next 

Linear Collider development where the same issues of tuning and stability are also 

worthy of study. 

2 Accelerator Layout 
The basis of this proposal is to use the existing SLAC linac in a configuration as close as 

possible to the present setup for PEP II injection, as shown in figure 1. The North 

Damping Ring provides 10 Hz electrons for PEP II injection and positron production on 

separate 1/60th of a second duration store cycles. The PEP II injection bunch is extracted 

from the linac at the 9.5 GeV point in sector 10 where it is deflected into the NIT bypass 

line by a 30 Hz pulsed magnet. The scavenger bunch for positron production is 

accelerated up to sector 19 to approximately 30 GeV. In sector 4 a pulsed magnet deflects 

positrons at 3.5 GeV into the SIT bypass line. The damping rings operate at 30 Hz so a 

3rd FFTB beam pulse is also available for acceleration to the end of the linac. Beyond 

sector 19 the beam coasts through non-energized sectors to sector 30. Sector 30 is 

powered for energy feedback control of the beam. It is proposed to use this beam pulse 

with an undulator installed in the FFTB tunnel to produce X-rays for synchrotron light 

users. 

 

The damping ring complex uses a bunch compressor in the ring-to-linac (RTL) beam line 

to compress the 6 mm bunch from the damping ring to approximately 1.3 mm at the 

entrance to sector 2 of the linac. A second bunch compression stage is therefore required 

to reach the higher peak currents that are of interest to X-ray production.  

 

In an earlier note [Emma, Krejcik] we described the parameters for a chicane style bunch 

compressor to be installed in sector 24. The basis of this earlier proposal was to build one 

of the LCLS bunch compressors at the location prescribed for future operation with the 
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LCLS RF photo-injector. A 4.5 GeV test beam was to be delivered from the damping 

rings to sector 24 (by acceleration to 9.5 GeV and subsequent deceleration to 4.5 GeV) in 

order to test the bunch compressor using the small vertical emittance from the damping 

ring as a probe. This scenario is not suitable for use with the higher energy beams 

proposed here for X-ray production at 30 GeV. In order to minimize emittance growth 

due to synchrotron radiation the bunch compression must be done at low energy. 

Alternatively, at high energy a very large radius of curvature bend must be employed. An 

example would be the SLC arcs, but this is a different technology and takes the beam out 

of the LCLS experimental area. A separate proposal by Emma and Frisch (SLAC Pub 

8308) describes such a scheme. 

 

In order to make use of the beam with an undulator in the LCLS experimental area 

beyond the FFTB tunnel it will be necessary to compress the beam at the low energy end 

of the linac. Several locations can be considered that are suitable for a chicane style 

bunch compressor. One possibility is in sector 2 where the 1.19 GeV damping ring beam 

is injected into the linac. The ASSET chicane and an instrumentation section are also 

located in sector 2. The new bunch compressor chicane has to be downstream of at least 

one girder of accelerating sections (i.e. one klystron) that would be appropriately phased 

to introduce a suitable correlated energy spread. 

 

Another possibility is in sector 4 at the positron extraction chicane. At this location the 

beam is close in energy to the design energy of 4.5 GeV for the LCLS 2nd bunch 

compressor, so that an installation here could be considered a working prototype for the 

LCLS. The specific correlated energy spread required at the entrance to the bunch 

NRTL
Compressor

Undulator
In FFTB
tunnel

LCLS
Experimental
Building

ASSET
Chicane

PEP II
e+ Inj.
Sect. 4

PEP II
e- Inj.
Sect. 10

2nd stage
bunch
compressor
sect. 4

E+ target
Sect. 19

LCLS
Future
injector

NDR

Figure 1 Schematic of the SLAC linac showing the second stage bunch compression in sector 4 proposed for 
producing short bunches in an undulator located in the FFTB tunnel 



Parameters for a 30 GeV Undulator Test Facility in the FFTB/LCLS 
 

6

compressor chicane can easily be achieved with the phase of the klystrons in sectors 2 

through 4. It might be tempting to consider modifying the existing positron extraction 

line with the addition of dc chicane bends to introduce the R56 term into the electron 

transport line. However, there may be some conflict of interest in the choice of bend 

plane for the compressor and the positron extraction. 

 

For this exercise it will be assumed that the new bunch compressor chicane will be 

located at 4.5 GeV in sector 4 beyond the positron extraction bend. The parameters for 

the 2nd LCLS bunch compressor system, designed by Paul Emma, can therefore be 

adopted for this study.  

 

With the addition of the chicane in sector 4 some thought can be given to whether the 

normal operation of the PEP II injection bunch and the scavenger bunch would be 

interfered with. In the unlikely event that the shorter bunches are disruptive to PEP II 

injection or positron production then pulsed phase shifters can be used in sectors 2 

through 4 to remove the correlated energy spread in only those bunches at sector 4. 

Without the correlated energy spread the chicane has no compressive effect. 

3 Electron Beam Parameters 
In table 1 the parameters at each of the LCLS bunch compressors are compared with the 

sector 4 parameters.  

 

In addition to compressing the beam it is desirable to preserve as much of the low 

damping ring transverse emittance through to the end of the linac. The relatively long 

bunch length of the 4.5 GeV beam at the entrance to sector 4 compared to BC2 in the 

LCLS means that a larger correlated energy spread of 2.3% is required. Such a large 

energy spread is potentially damaging to emittance growth, but since the beam is further 

accelerated to 30 GeV the relative energy spread becomes less and the effect on 

emittance growth diminishes. This can be further verified with particle tracking.  

Further compression of the damping ring beam beyond the second stage in sector 4 has 

little benefit because of the larger longitudinal emittance relative to the parameters of the 

RF photo injector proposed for LCLS. 
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Parameter LCLS 
BC1 

LCLS 
BC2 

SLC 
RTL 

SLC 
sector 4 

SLC 
sector 30,  

unit 

Energy 0.25 4.5 1.19 4.5 30 GeV 

Initial bunch length (rms) 1 0.39 6 1.3 - mm 

Final bunch length (rms) 0.39 0.02 1.3 0.10 0.10 mm 

Final energy spread (rms) 1.3 0.9 1.3 2.3 0.55 % 

Bunch charge 1 1 1 1 1 nC 

Compressor R56 –31 –27 –605 –56 - mm 

Vertical emittance(norm.) 1 1 1.5 2.0 2.0 µm 

Peak current 0.77 15 0.23 1.2 1.2 kA 

Table 1.  Parameters of the LCLS compressors together with the RTL and sector 4 parameters. 

 

 

 

3.1 Longitudinal tracking 

Longitudinal tracking studies of the existing linac configuration with the RTL 

compressor are compared with the modified linac in which a chicane compressor is added 

in sector 4. The LITRACK program (MATLAB version written by Paul Emma, based on 

Karl Bane's program) is used to track 50,000 particles from the exit of the damping rings 

to the end of the linac. A gaussian distribution with a 6mm rms bunch length is assumed 

at the exit of the damping rings, although we know from experience that at higher 

currents the bunch does not remain gaussian in the damping rings and this effect can be 

included later. The longitudinal wakefield loading on the bunch is computed in the 

program from Karl Bane's point charge wake function for the SLAC linac structure. 

 

In the case of the present linac configuration the RF amplitude of the compressor is set 

for the fully compressed state to give the shortest low-charge bunch at the end of the 

linac. The linac is phased for on-crest acceleration to 30 GeV at sector 20 and then coasts 

to sector 30, to simulate the present mode of FFTB operation. The longitudinal 

distribution and energy spread are show in figure 2 for the bunch at sector 30. 
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For operation with the additional bunch compressor in sector 4 the bunch is slightly 

over-compressed in the RTL (38 MV compressor RF amplitude compared to 34 MV for 

fully-compressed). The correlated energy spread of the over-compressed bunch helps 

compensate the wakefield-induced energy spread in the linac. Sectors 2 through 4 are 

phased off crest as indicated in table 2 to induce the correct phase-energy correlation for 

the given R56 of the chicane in sector 4. Sectors 5 through 20 are phased to accelerate 

the beam on crest to 30 GeV. The remaining sectors 21 through 30 are idle so that only 

the wakefields effects the beam as it coasts to the end of the linac. The longitudinal 

distribution and energy spread are show in figure 3 for the bunch at sector 30. 

 

As the charge in the bunch is increased the wakefields in the linac cause an increasing 

amount of correlated energy spread in the bunch by the time it reaches the end of the 

linac. This is illustrated in figure 4 where the bunch length, peak current and energy  
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Figure 2: Sector 30 bunch length and energy distribution for a 1 nC bunch fully-compressed in the RTL, 
accelerated to 30 GeV in sector 20 and allowed to coast to the end of the linac 
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Parameter symbol value unit 

RTL RF Compressor amplitude stand alone Vcomp 34 MV 

RTL RF Compressor amplitude with sect 4 Vcomp 38 MV 

Average RF gradient used in sectors 2-4 〈G1〉 12 MV/m 

Average RF gradient used in sectors 4-20 〈G2〉 15.3 MV/m 

Average RF phase used in sectors 2-4 〈ϕ1〉 –22.0 deg 

Average RF phase used in sectors 4-20 〈ϕ2〉 –0 deg 

Energy in sector-4 E1 4.5 GeV 

Energy in sector-20 E2 30.0 GeV 

Relative energy spread in sector-4 (rms) σδ
1 2.3 % 

Relative energy spread in sector-30 (rms) σδ
2 0.55 % 

spread are plotted for the tracking results for 1 nC, 2 nC, 3 nC and 4 nC. In these 

simulations all linac parameters are held constant and only the charge is increased. 

Figure 3: Sector 30 bunch length and energy distribution for a 1 nC bunch with second stage 
compression in sector 4, accelerated to 30 GeV in sector 20 and allowed to coast to the end of the linac. 
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4 Components 

4.1 Magnet chicane 

The design of the first chicane of the second bunch compressor in the LCLS calls for four 

1.5 m long dipoles to provide the momentum compaction (R56) term. The overall length 

of the chicane system is 13.2 m with a displacement from the accelerator axis of 0.28 m, 

as shown in figure 2. Four of the 10’ SLAC accelerating sections need to be removed to 
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accommodate the chicane magnets. The LCLS design proposes that the inner two dipole 

be made movable so that the strength of the chicane can be varied to control the R56. 

 

It would be preferable to orient the dipoles to deflect the beam vertically so that in-plane 

emittance growth phenomena could be studied more carefully using the small vertical 

emittance from the damping rings. This might be, in general, desirable for the LCLS to 

avoid blocking the tunnel access with horizontal bends. It is further foreseen to make the 

chicane deflection angle adjustable to control the value of R56. 

 

The cost of the bunch compressor section can be significantly reduced by re-using 

components from the SLC. Several magnets in the SLC have suitable parameters for use 

in the LCLS and have been listed in a separate note (P. Krejcik, 7/30/99). 

4.2 Diagnostics 

An instrumentation section would be incorporated into the compressor section. It would 

comprise: 

• Transverse emittance measuring wire scanners. A minimum of 3 need to be arranged 

with optimal betatron phase advance. 

• Energy spread measurement using a single wire scanner located in the high dispersion 

region of the chicane. 

• Orbit control with precision BPMS to correct the dispersion in the bunch compressor. 

These BPMS dictate that a small-diameter, moveable beam pipe be used in the 

13.2 m

0.29 m

Figure 5 A four-dipole chicane supplies the necessary momentum compaction for the second stage 
bunch compressor proposed in sector 4. 
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chicane bends rather than a single large chamber to accommodate the variable 

chicane strength. 

• Pulse-to-pulse measurement of beam position in the high-dispersion region to 

measure energy jitter. 

• Precision phase measurement for pulse-to-pulse beam phase measurement and for 

monitoring long-term drifts in phase. 

• A precision phase reference system to reference the above measurements. 

• Synchrotron light monitor for streak camera measurements of bunch length. 

• Microwave cavity resonators for monitoring bunch length.  

 

The instrumentation section is as much necessary for tuning the bunch compressor as it is 

for accelerator physics experiments to study emittance growth phenomena associated 

with producing short bunches. Of equal importance is the exercise of operating the bunch 

compressor in the environment of the LCLS and solving the problems of phase stability 

in the linac RF system. 

 

As has been detailed before, the majority of these components are available for 

reclamation from the SLC. There is a considerable cost benefit to this approach, as well 

as the advantage of using components that are already integrated into the SLAC 

accelerator control system. 

5 Properties of the Undulator Radiation 
The radiation wavelength, the average brightness and the peak brightness of the 

incoherent radiation in the LCLS reference design can be compared to the following 

cases: 

Operation over a wider range of energies up to 50 GeV 

Operation with the larger emittance and bunch length using the damping ring beam 

Operation with a much shorter test section of the LCLS undulator 

5.1 Wavelength 

The wavelength of the incoherent radiation, λr, depends only on the undulator magnetic 

parameter, K, the undulator wavelength, λu, and the beam energy, as given by  

( ) 22 21 γλλ Kur +=  
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The wavelength is independent of the emittance or bunch length. Figure 5 shows the 

quadratic decrease in wavelength attainable as the energy is raised above the 15 GeV 

LCLS design energy. 

5.2 Brightness 

The brightness of the radiation depends both on the undulator and beam properties. The 

noncoherent radiation brightness decreases quadratically with the larger emittance of the 

damping ring electron beam. There is also a decrease in brightness from using fewer 

undulator periods, for example, if shorter test sections of undulator were to be used. The 

brightness does increase with the higher energies achievable with the longer linac. The 

average brightness is a function of: 
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Figure 6: Wavelength of the spontaneous radiation as a function of the electron beam energy 
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Figure 7: The average brightness of the spontaneous emission for the LCLS is compared to brightness 
obtained with an SLC flat (low vertical emittance) and round (equal emittances) beams and for an SLC 
beam in a short test undulator

Νe  charge per bunch 

fr  bunch repetition frequency 

εn  normalized transverse emittances 

βxy  undulator beta functions 

∆ω/ω radiation bandwidth 

and can be written 
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In figure 7 the average brightness is shown as a function of energy for an electron beam 

with the LCLS design parameters compared to the parameters for the damping ring-linac 

beam. The damping rings can provide either round beams with equal emittances 0f 15 

mm mrad, or flat beams with vertical and horizontal emittances of 2x30 mm mrad. The 

flat beams produce a brighter beam since the brightness shown in figure 4 depends on the 

product of the transverse emittances. The case for a shorter, test undulator is also shown. 
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The peak brightness of the radiation is also dependant on the electron beam bunch 

duration, τ, and is given by 

 

The peak brightness as a function of energy is shown in figure 8 for the LCLS case and 

the damping ring-linac beam. 

 

The loss in brightness associated with the larger emittance of the damping ring can be 

partly compensated by employing a higher charge per bunch. Although the damping rings 

have been demonstrated to easily operate with the 5 nC per bunch listed in table 1, there 

will be a trade off in the linac emittance growth. More extensive simulation of the present 

linac would be required to find the optimum charge density above which linac wakefields 

would cause unacceptable emittance growth. 

6 Future Options 
The 30 GeV energy operation at 10 Hz is described here because it coincides with the 

current operating regime for the linac in its PEP II injection mode. Higher energies, up to 

50 GeV are also available in the linac at the cost of powering more of the linac 

accelerating sections. The additional acceleration in sectors 20 through 30 has no effect 

on the PEP II injection. The FFTB beam lines are able to transport 50 GeV beams, giving 

the possibility of even shorter wavelength X-ray production in the LCLS. If the demand 

for higher average brightness becomes an issue for the experimentalist then the repetition 

rate of the facility can be raised from 10 Hz to 120 Hz, where the only major concern 

would be the additional cost for electrical operating power. 

 

The capability to make shorter wavelength incoherent radiation may well remain a 

significant part of the LCLS experimental capability, in which case the sector-4 bunch 

compressor installation would be a permanent feature of the LCLS construction. 

 

A further improvement in peak brightness could be achieved by exploiting the present 

low repetition rate of the damping rings and operating them at lower energy. With 30 Hz 

operation at 750 MeV versus the present 1.19 GeV we can expect a factor 4 improvement 

in transverse emittances as well as shorter bunch lengths (see, Proceedings of DR2000). 
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Looking further ahead it is conceivable that a second rf photo-injector would eventually 

be built near the beginning of the linac to provide high-brightness, high-energy beams to 

produce coherent radiation at the shorter wavelengths. The sector-4 bunch compressor 

would be an integral part of this upgrade. 

7 Conclusion 
The addition of a second bunch compressor to the SLAC linac at the 4.5 GeV location 

gives a capability of delivering bunches as short as 100 µm with peak currents possibly as 

high as several kilo Amperes. The mode of operation where 30 GeV beams are delivered 

LCLS/FFTB is fully compatible with the present PEP II  injection and entails no 

additional operating costs for the linac. The FFTB beam line handles beams up to 50 GeV 

so there is also an option for even shorter wavelength X-ray undulator radiation using the 

full complement of linac klystrons. 

 

Such a facility provides an intermediate source of Xray radiation with a brightness 

between that of present facilities and the proposed LCLS project. This would provide the 

laboratory with an opportunity to develop techniques in handling and diagnosing high-

power X-ray beams. Tests for future LCLS experiments, such as laser pump probe 

measurements, could be performed with the high-brightness spontaneous radiation from 

this facility. 

 

The experience gained in the production and tuning of short bunch electron beams is also 

an invaluable intermediate step towards the LCLS. The compressor components would be 

exact prototypes for the LCLS and would be operating with the same linac and in the 

same RF environment. The machine physics associated with operating the linac with 

short bunches is sufficiently new and challenging to be of interest to the NLC and other 

future accelerator studies at SLAC. 
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