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Abstract

A dispersion relation for a microwave instability of a coasting
beam is derived from the Vlasov-Fokker-Plank equation which
takes into account the effects of synchrotron damping and quan-
tum fluctuations. This derivation generalizes the standard anal-
ysis of the beam stability in which the diffusion and damping are
usually neglected. Our results are also applicable for a bunched
beam when the wavelength of the instability is much smaller than
the bunch length.
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1 Introduction

Consider a coasting beam with the line density nb and the relativistic factor
γ. Let us use (p, z) variables, where p = δ/δ0 is the relative energy variation
δ = ∆E/E of a particle in units of the rms relative energy spread δ0 = 〈δ2〉1/2,
z is the longitudinal coordinate measured relative to the reference particle
with the nominal energy, and s = ct.

The beam is described by the longitudinal distribution function ρ(p, z, s)
normalized so that

∫
ρ(p, z, s)dzdp = N , where N is the number of particles

in the beam. This function satisfies the Vlasov-Fokker-Planck equation

∂ρ

∂s
− ηδ0p

∂ρ

∂z
− r0

γδ0

∂ρ

∂p

∫ ∞

−∞
dz′dp′W (z′ − z)ρ(p′, z′, s)

=
γd

c

∂

∂p

(
∂ρ

∂p
+ pρ

)
, (1)

where η is the momentum compaction factor, r0 is the classical electron
radius, γd is the single particle radiation damping, and the function W (z′−z)
is the longitudinal wake function per unit length of the path. The right-hand-
side of Eq. (1) describes diffusion and damping caused by the synchrotron
radiation (SR).

We represent the distribution function ρ as a sum of the equilibrium
distribution function ρ0 and a perturbation ρ1

ρ = ρ0(p) + ρ1(s, p, z), (2)

with ρ1 ¿ ρ0. Note that the equilibrium beam density nb is equal to
nb =

∫
ρ0(p)dp, and the density perturbation n1 is given by n1 =

∫
ρ1(p)dp.

Linearizing Eq. (1) and assuming that

ρ1 = ρ̂1(s, p)eikz, (3)

where k is the wavenumber, we find

∂ρ̂1

∂s
− ikηδ0pρ̂1 − r0

γδ0

∂ρ0

∂p
Z(k)

∫
dp ρ̂1(s, p) =

γd

c

∂

∂p

(
∂ρ̂1

∂p
+ pρ̂1

)
, (4)

where Z(k) is the impedance of the ring,

Z(k) =
∫ ∞

0
dζW (ζ)eikζ . (5)
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For stability analysis it is often assumed that diffusion and damping are
negligible provided the growth time of the instability is much shorter than
the single particle SR damping time τd = γ−1

d . Then the the RHS can be
omitted, and the remaining Vlasov equation has a solution

ρ̂1 = n̂1
icr0Z(k)

γδ0(ω + ckηδ0p)

dρ0

dp
e−iωs/c, (6)

where ω satisfies the dispersion relation

1 =
ir0cZ(k)

γδ0

∫ dp (dρ0/dp)

ω + ckηδ0p
, (7)

and n̂1 in Eq. (6) is the amplitude of the density perturbation, n̂1 =
∫

dpρ̂1.
Assumption that the RHS of Eq. (4) is negligible is not quite satisfactory.

It is certainly not valid at the threshold of the instability where the growth
rate vanishes. For the beam density nb close to the threshold of the instability,
the effect of the SR is usually taken into account by defining the threshold
value nth as the beam density at which the growth rate calculated without
SR effects is equal to the damping rate γd, Im ω ' γd. This approach is
equivalent to replacing the RHS of the linearized Fokker-Plank equation (4)
by −γdρ̂1/c. Such an approximation, qualitatively reasonable and common
in kinetics and plasma physics, does not give the exact value of frequency
and the growth rate near the threshold.

In this note, we derive the dispersion relation for a coasting beam taking
into account the correct right-hand site of the linearized Fokker-Plank equa-
tion. The coasting beam result should also be valid for a bunched beam for
harmonics with large harmonic wavenumber k, such that kσz À 1 where σz

is the rms bunch length.

2 Dispersion relation with damping

First we introduce dimensionless variables ξ, Λ and Γ

ξ = skηδ0, Λ =
r0Z(k)

γkηδ2
0

, Γ =
γd

ckηδ0

, (8)

and write the linearized Fokker-Plank equation in the following form,

∂ρ̂1

∂ξ
− ipρ̂1 − Λ

∂ρ0

∂p

∫ ∞

−∞
dp ρ̂1(ξ, p) = Γ

∂

∂p

(
∂ρ̂1

∂p
+ pρ̂1

)
. (9)
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To solve Eq. (9) we use the Fourier transform over p,

ρ̂1(ξ, p) =
1

2π

∫ ∞

−∞
dqf(ξ, q)eipq, f(ξ, q) =

∫ ∞

−∞
dpρ̂1(ξ, p)e−ipq. (10)

This gives the first-order differential equation for f(ξ, q),

∂f

∂ξ
+ (1 + Γq)

∂f

∂q
= −Γq2 + n̂1(ξ)g0(q), (11)

where

g0(q) = Λ
∫ ∞

−∞
∂ρ0

∂p
e−ipqdp, (12)

and
n̂1(ξ) = f(ξ, q = 0) =

∫ ∞

−∞
dpρ̂1(ξ, p). (13)

Introducing a new variable ζ,

ζ(ξ, q) =
1

Γ

[
(1 + Γq)e−Γξ − 1

]
, (14)

we will use ζ, ξ as independent variables instead of q and ξ. This defines a
new function F (ξ, ζ) which is the function f expressed in terms of variables
ζ, ξ: F (ξ, ζ) = f(ξ, q(ξ, ζ)), where the dependence q(ξ, ζ) can be found by
inverting Eq. (14)

q(ξ, ζ) =
1

Γ

[
(1 + Γζ)eΓξ − 1

]
. (15)

The equation for F (ζ, ξ) can be now obtained from Eq. (11),

∂F

∂ξ
= −Γq2(ξ, ζ)F + n̂1(ξ)g0(q(ξ, ζ)). (16)

It can be easily integrated:

F (ξ, ζ) = F0(ζ)e−H(ξ,ζ) + e−H(ξ,ζ)
∫ ξ

0
dξ′eH(ξ′,ζ)n̂1(ξ

′)g0(q(ξ
′, ζ)), (17)

where F0(ζ) is the initial value of F (ξ, ζ) at ξ = 0, and

H(ξ, ζ) = Γ
∫ ξ

0
dξ′q2(ξ′, ζ)

=
1

2 Γ2

[
3 + 2Γζ − Γ2ζ2 − 4eΓξ (1 + Γζ)

+ e2Γξ(1 + Γζ)2 + 2Γξ
]
. (18)
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Note that q(ξ = 0, ζ) = ζ, and F0(ζ) is given by

F0(ζ) = f(0, ζ) =
∫ ∞

−∞
dpρ̂1(0, p)e−ipζdp. (19)

Making inverse Fourier transform of F we find ρ̂1(ξ, p)

ρ̂1(ξ, p) =
1

2π

∫ ∞

−∞
dqF (ζ(ξ, q), ξ)eiqp

=
eΓξ

2π

∫ ∞

−∞
dζF (ζ, ξ)eiq(ζ,ξ)p

=
eΓξ

2π

∫ ∞

−∞
dζeiq(ζ,ξ)p−H(ξ,ζ)

×
[
F0(ζ) +

∫ ξ

0
dξ′eH(ξ′,ζ)n̂1(ξ

′)g0(q(ξ
′, ζ))

]
. (20)

Now we integrate this equation over p to obtain an integral equation for n̂1(ξ)

n̂1(ξ) =
∫ ∞

−∞
dp

eΓξ

2π

∫ ∞

−∞
dζeiqp−H(ξ,ζ)

[
F0(ζ) +

∫ ξ

0
dξ′eH(ξ′,ζ)n̂1(ξ

′)g0(q(ζ, ξ′))

]

= eΓξ
∫ ∞

−∞
dζδ(q(ζ, ξ))e−H(ξ,ζ)

[
F0(ζ) +

∫ ξ

0
dξ′eH(ξ′,ζ)n̂1(ξ

′)g0(q(ζ, ξ′))

]
.

(21)

With the δ-function in the integrand, the integration over ζ will be carried
out with the help of Eq. (15) which gives the following relations

q(ζ, ξ′)|q(ζ,ξ)=0 =
1

Γ

(
e−Γ(ξ−ξ′) − 1

)
≡ r(ξ − ξ′), (22)

and

[H(ζ, ξ)−H(ζ, ξ′)]|q(ζ,ξ)=0 =

1

2Γ2

(
3− 4e−Γ(ξ−ξ′) + e−2Γ(ξ−ξ′) − 2Γ(ξ − ξ′)

)
≡ h(ξ − ξ′). (23)

The solution of Eq. (21) then takes the form of the integral equation

n̂1(ξ) = m(ξ) + Λ
∫ ∞

−∞
dp

∂ρ0

∂p

∫ ξ

0
G(p, ξ − ξ′)n̂1(ξ

′)dξ′, (24)
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with
G(p, τ) = e−ipr(τ)−h(τ), (25)

where the term m(ξ) is due to the initial value F0. In stability analysis, the
initial value on the perturbation of distribution function does not play a role,
and we omit this term in what follows.

Laplace transform of Eq. (24) gives for ñ1(Ω) =
∫∞
0 dξeiΩξn̂1(ξ) (we use

the variable −iΩ in Laplace transform, where Ω has a meaning of complex
frequency) [

1− Λ
∫

dp
∂ρ0(p)

∂p

∫ ∞

0
dxeiΩx−h(x)−ipr(x)

]
ñ1(Ω) = 0. (26)

A nontrivial solution ñ1(Ω) exists only if the following dispersion relation is
satisfied

1 = Λ
∫

dp
∂ρ0(p)

∂p

∫ ∞

0
dxeiΩx−h(x)−ipr(x). (27)

In the limit when synchrotron radiation is negligibly small, Γ → 0, we have
h(x) ≈ −Γx3/3 → 0 and r(x) → x and Eq. (27) reduces to Eq. (7).

For Gaussian distribution function, ρ0(p) = N(2π)−1/2ep2/2, one can in-
tegrate Eq. (27) over p to obtain the dispersion relation for the frequency Ω
as a function of parameters Γ and NΛ:

1 =
iNΛ

Γ

∫ ∞

0
dx

(
e−xΓ − 1

)
exp

[
1

2 Γ2

(
1− e−xΓ

)2

+
1

2 Γ2

(
3 + e−2xΓ − 4e−xΓ − 2xΓ

)
+ ixΩ

]
. (28)

This equation was solved numerically for different values of Γ and the stability
diagrams corresponding to the threshold of the instability (Im Ω = 0) are
plotted in the complex plane of the variable NΛ in Fig. 1 (note that in
our definition of Z the inductive impedance has a negative imaginary part).
For small value of Γ the stability curve takes a familiar “onion-like” shape
characteristic for the Γ = 0 limit. Increasing the parameter Γ expands the
stability region, as expected, due to the stabilizing effect of the synchrotron
radiation damping.

Fig. 2 shows the ratio of the two threshold values of the number of
particles in the beam, Nth and Nappr, for the impedance corresponding to the
synchrotron radiation in free space Z = const(1.63 − 0.94i), [1]. The first
number, Nth, was calculated using Eq. (28). The second number, Nappr, was
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Figure 1: Stability diagrams (Im Ω = 0) for Γ = 0.0001, Γ = 0.1 and Γ = 1.
The areas under the curves correspond to the stable beam.
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Figure 2: The ratio of exact and approximate threshold values of N as a
function of Γ for the impedance of the “free-space” Z = const(1.63− 0.94i)
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calculated with the help of a standard recipe that is often invoked for the
estimation of the effect of the synchrotron radiation on the instability. Specif-
ically, one first finds the frequency of the instability Ω̃(N) neglecting the syn-
chrotron radiation, and then takes into account the radiation by subtracting
Γ from the imaginary part of Ω̃. For the threshold of the instability one uses
the equation Im Ω̃(Nappr) = Γ. As is seen from Fig. 2, both methods actually
give a very close results for the value of the threshold.
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