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Abstract

We propose a new solution to the strong CP problem based on supersymmetric
non-renormalization theorems. CP is broken spontaneously and it’s breaking is com-
municated to the MSSM by radiative corrections. The strong CP phase is protected by
a susy non-renormalization theorem and remains exactly zero while loops can generate
a large CKM phase from wave function renormalization. We present a concrete model
as an example but stress that our framework is general. We also discuss constraints on
susy breaking and point out experimental signatures.
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1 Introduction

The strong CP problem [1] has been a puzzle since the 70’s when it was

understood that the θ parameter of QCD is physical. More recently, the

strong CP problem has sharpened because fits to K and B physics data now

show that the unitarity triangle has three large angles [2, 3]. Thus superweak

models are ruled out, and CP violation in the CKM matrix is large, the phase

is order one. The only other CP violating parameter in the Standard Model,

the strong CP phase, is experimentally bound to be tiny [4], most recent

measurements of the electric dipole moment of the neutron and 199Hg imply

θ <∼ 10−10 [5]. This asymmetry is especially puzzling since in the Standard

Model the CKM phase φCKM and the strong CP phase θ have a common

origin. Both of them come from the Yukawa couplings. The CKM matrix

is the mismatch between the basis in which the up and down quark Yukawa

matrices are diagonal. In the absence of fine-tuning, a large CKM phase

implies large phases in the Yukawa matrices. But if phases in the Yukawa

matrices are large then the bound on the strong CP phase

θ = θ − arg det YuYd (1)

implies fine-tuning of one part in 1010! Here and in the following we assume

real Higgs vacuum expectation values so that phases in quark masses arise

only from phases in Yukawa couplings.

The most popular proposed solutions to this problem are the axion [6],

a vanishing up-quark mass [7] and the Nelson-Barr mechanism [8]. For the

axion solution θ is promoted to be a field, the axion. QCD dynamics gen-

erates a potential for the axion with a minimum at zero as desired. The

trouble with this solution is that experimental searches for the axion have

found nothing and together with cosmological constraints have reduced the

allowed parameter space to a small window [2]. A vanishing up-quark mass

would nullify the strong CP problem because it would render θ unphysical.

When mu = 0 then the strong CP phase can be removed from the Lagrangian

by redefining the phase of the up quark field. However, chiral perturbation

theory disfavors mu = 0 [9]. While this possibility is still under debate,
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the question will eventually be settled by lattice computations [10]. Finally,

the Nelson-Barr mechanism stipulates that CP is a good symmetry at high

scales. CP is broken spontaneously by a complex vev which is coupled to the

quarks in such a way that it induces complex mixing with heavy vector-like

fermions. By a clever choice of quark masses and Yukawa couplings, one

can arrange for a large CKM phase and θ = 0. Loop corrections to θ are

dangerous in the Nelson-Barr scheme, however they can be made sufficiently

small by taking the coupling to the CP violating vev small.

In this Letter we propose a new solution to the strong CP problem which

relies on spontaneous CP violation and uses the non-renormalization theo-

rems of supersymmetry to ensure that θ remains zero. Our basic framework

assumes unbroken CP and susy at a high scale, e.g. the Planck scale. There-

fore we can choose a basis in which all coupling constants are real and θ = 0.

CP breaks spontaneously at the scale MCP , and we assume that the MSSM

fields do not couple to complex vevs at tree level. Thus φCKM = θ = 0 at tree

level. However, a sufficiently large CKM phase is generated by loops if the

CP violating sector (CPX) is strongly coupled to quarks. Naively one would

expect that a strong CP phase of order one is also generated. Happily, θ is

protected by a non-renormalization theorem [11, 12]. Thus in susy quantum

loops can generate a large CKM phase while θ remains exactly zero. After

susy breaking the non-renormalization theorem no longer holds, and a small

θ is generated. We show that θ remains sufficiently small if susy breaking

occurs at low energies and is CP and flavor preserving. Measurements of the

superpartner spectrum, electric dipole moments and CP and flavor physics

in the B-system will test the predictions of our framework.

In the following section we discuss the general framework in more detail.

We give a specific model of CP violation which exemplifies our mechanism

in section 3. In section 4 we discuss susy breaking and in the fifth section we

list model independent predictions. We conclude in section 6.
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2 CP phases from wave functions

We now discuss our general scenario in more detail. Below the cut-off scale

(for example the Planck scale or the string scale) we assume that susy and CP

are good symmetries so that we can describe physics at this scale by a local

supersymmetric Lagrangian with real couplings and vanishing θ-parameters.

CP must be broken spontaneously at a lower scale MCP by the complex vev

of one or several scalar fields Σ. In order to prevent a direct large contribu-

tion to θ at this scale we assume that there are no tree level superpotential

couplings of Σ to the MSSM or other colored fields. This could be enforced

by a symmetry, or such couplings may be suppressed for geometric reasons in

extra dimensions [13]. In order to communicate CP violation to the MSSM

we assume that the CPX sector couples to the quarks through messenger

fields which couple to Σ. There may also be arbitrary Kaehler potential cou-

plings of Σ to the MSSM. Such couplings are harmless, because the Kaehler

potential is real and cannot contribute to θ [14].

This Lagrangian is renormalized at the loop level. In the following, it is

convenient to use the “holomorphic” renormalization scheme in which non-

renormalization theorems are manifest. Then both the superpotential and

θ are not renormalized. However the Kaehler potential is renormalized, and

if the CP messenger sector and it’s couplings violate flavor non-canonical

complex kinetic terms for the quarks are induced. The most general CP

violating kinetic terms are 3 × 3 hermitian matrices Z for each set of fields

with identical gauge quantum numbers. Because the Z’s are hermitian and

positive definite we can write Z−1 = T 2 with a hermitian T and change to

the canonical basis

L ∼
∫

d4θ Z ijQ̂†
i Q̂j =

∫
d4θ δijQ†

iQj where Q = T−1Q̂ . (2)

Note that wave-function renormalization by the hermitian matrix leaves θ

invariant 1, because θ shifts proportional to arg det T = 0. In the new basis

1This was pointed out to us by Holdom but has been known by others as well [15, 16, 17]
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the Yukawa terms are QT YuUHu, QT YdDHd, where

Yd = T T
q ŶdTd and Yu = T T

q ŶuTu , (3)

and also

θ = θ − arg det YdYu = 0− arg det ŶdŶu = 0 , (4)

reflecting the non-renormalization of θ.

However, even though θ remains zero, the new Yukawa matrices are

clearly complex and a complex CKM matrix is generated. It is intuitive

(but somewhat tedious to show [14]) that a large CKM phase is generated if

the wave-function renormalization factors T are not close to the unit matrix.

Thus if the CP violating dynamics breaks CP by order one and is strongly

coupled to the quarks then we obtain

φCKM ∼ O(1) , θ = 0 (5)

as desired. It is also easy to show that all values for quark masses, mix-

ing angles and CKM phase can be generated in this way. To see this,

pick as an example Ŷd = Ŷu = 1 = Tq , Tu ∝ diag(mu, mc, mt) , Td ∝
VCKMdiag(md, ms, mb)V

†
CKM . Before discussing susy breaking and correc-

tions to eq. (5) in section 4 we give an explicit example for the CP violating

sector.

3 An explicit model

In this section, we give one of many possible models as an example. This

model generates large wave function renormalizations only for the down

quark singlet which is sufficient to obtain a large CKM phase. Other models

with SU(5) or SO(10) unification and messenger fields in full representations

of the GUT group can also be built and may be more attractive/predictive.

In addition to the usual MSSM superpotential and canonical kinetic terms

we assume the following superpotential at the high scale, MP l

W = rijDiFjT + MCP TT + ΣijFiF j . (6)
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Here T and T are a vector-like, fourth-generation down quark singlet with

real mass MCP , F and F are three vector-like SM singlets which obtain

complex masses from their coupling to the complex vev ‖Σ‖ ∼ MCP and we

have absorbed a coupling constant into the definition of Σ.

F

T

D D

ΣΣ

r

F

r

Figure 1: A diagram contributing to the down quark kinetic term Zd.

Integrating out the massive fields at the scale MCP sets the above su-

perpotential to zero, the MSSM superpotential remains unchanged in the

“holomorphic” renormalization scheme, and the one-loop diagram of Figure

1 renormalizes the wave function of the right handed down quarks

δZd ∼ r†Σ†Σr

16π2M2
CP

× Log . (7)

Note that the coupling constant r needs to be strong (∼ 4π) in order for

Zd and Td not to be close to the unit matrix. The strong coupling renders

this one-loop calculation of Z unreliable, and we simply parameterize the full

result by Td.
2 It is important that there are no true vertex renormalizations of

Yd due to the non-renormalization theorem. This should highlight why susy

is crucial for our approach. In a non-supersymmetric theory one-particle-

irreducible vertex corrections do arise at some order, and because of the

strong coupling diagrams with arbitrarily many loops are dangerous.
2Maintaining such a large Yukawa coupling at the scale MCP < MPl requires new

strong gauge interactions for the T ’s and F ’s. We have checked that quantum corrections
involving these new gauge interactions do not spoil our mechanism, neither perturbatively
nor non-perturbatively [14].

5



At the renormalizable level, the wave-function renormalization factor Td

is the only parameter which remains from the CP violating dynamics at

scales below MCP . Higher dimensional operators suppressed by MCP are

also generated. In the presence of susy breaking they lead to important

corrections to θ as we discuss in Section 4.

Finally, we note that we can relax the condition that Σ not couple at

all to MSSM fields in the superpotential to a less stringent constraint by

allowing couplings at the non-renormalizable level. Operators such as

tr
(

Σ

MP l

)n

WαW α (8)

result in contributions to θ ∼ (MCP /MP l)
n which implies MCP /MP l

<∼
10−10/n. The existence of such operators is model dependent, and the upper

bound on MCP is therefore not mandatory.

4 Supersymmetry breaking

Since susy is broken in nature we need to check that our mechanism for

protecting θ from radiative corrections remains stable after susy breaking. In

this Letter we only discuss this topic very briefly, a more detailed discussion

is in our longer paper [14], and many of the results of this section can also

be found in [16, 18, 19, 20].

The non-renormalization theorems are violated in the presence of susy

breaking, and θ is renormalized. One contribution to θ that is always there is

the well-known heavily GIM suppressed and therefore finite SM contribution

which arises at four-loops [15] from the “cheburashka” diagram [21] and gives

δθ ' 10−19. The diagram is dominated by loop momenta near the QCD scale

and is therefore independent of the mechanism of susy breaking.

However, there are also new contributions which are specific to softly

broken susy theories. In the MSSM the expression for θ must be generalized

to include the phase of the gluino mass mg̃

θ = θ − arg det YuYd − 3 arg mg̃ . (9)
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Figure 2: Lowest order susy diagrams contributing to θ. A cross denotes a
LR mass insertion.

Thus the gluino mass must be real to one part in 1010. The same bound

applies to the b-term, because a complex b leads to complex Higgs vevs. The

phases of the remaining flavor-universal MSSM parameters are also tightly

constrained ∼ 10−8, because they induce contributions to θ from the one-loop

diagrams in Figure 2.

But even if all phases in soft terms vanish the diagrams of Figure 2 can still

generate large contributions to θ because they involve the complex MSSM

Yukawa couplings. The diagrams give expressions such as Im tr
[
Y †A

]
and

renormalize θ unless A is either zero or else proportional to Y . The most

natural way to suppress these contributions is to assume that susy breaking

is universal and proportional

m2
ũ ∼ m2

d̃
∼ m2

q̃ ∝ 1 , Au/d ∝ Yu/d . (10)

Then Im tr
[
Y †A

]
= 0, and all other similar traces vanish to 12th order in

an expansion of Yukawa couplings [14, 16], and therefore contributions from

susy breaking to θ are negligibly small.

Very near universality and proportionality as in eq. (10) are required at

the weak scale. A susy breaking and communication mechanism which ac-

complishes this is gauge mediation. This is discussed in more detail in [14],

where we find that our mechanism works very naturally with gauge media-

tion [22]. Other susy breaking scenarios which are compatible are anomaly

mediation [23] and gaugino mediation [24]. The scenario cannot, however,

7



be combined with minimal supergravity. The reason being that even if in

mSUGRA soft masses are assumed to be universal at the Planck scale they

are strongly renormalized by the strong CP and flavor violating dynamics at

MCP and become completely non-degenerate. Inserting these non-degenerate

soft masses into the diagrams of Figure 2 gives disastrously large contribu-

tions to θ. This argument implies quite generally (anomaly mediation is an

important exception) that susy breaking needs to be communicated to the

MSSM at a scale well below MCP .

As the messenger scales of gauge mediation and CP violation get near

each other corrections to θ proportional to (Msusy/MCP )2 arise and give the

bound Msusy/MCP
<∼ 10−3 [14] from requiring θ <∼ 10−10. Note that if this

bound is saturated then neutron dipole moment measurements should find

non-vanishing results soon. Using the lowest possible messenger scale in

gauge mediation Msusy ∼ 104 GeV we find MCP > 107 GeV. Therefore the

particles of the CP violating sector cannot be produced at existing or planned

accelerators. However there are several indirect predictions from our scenario

which allow it to be tested. We discuss them in the next section.

5 Predictions

Even though the CPX dynamics of our solution to the strong CP problem

necessarily hides at short distances there are several testable consequences.

We predict [14]:

1. Supersymmetry

2. Minimal flavor violation, i.e., no new flavor violation beyond the Yukawa

couplings with the well-known implications for B-physics [25, 26].

3. No new CP violation beyond the SM, in particular no new CP violation

in the B-system. For example sin 2β is large as in the SM [26].

4. Almost degenerate first and second generation scalars of each gauge

quantum number. The splittings are proportional to the square of the
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corresponding Yukawa couplings and give 4m < 1 GeV which should

be measurable at a linear collider. We stress that this degeneracy has

to hold independent of the susy breaking mechanism.

5. θ is predicted to lie between the current experimental bound of 10−10

and 10−19 depending on the ratios of scales Msusy/MCP and MCP /MP l.

If we are lucky the corresponding hadron electric dipole moments will

be measured soon [27]. Lepton dipole moments are expected to be

much smaller.

6 Conclusions

The strong CP problem has recently become more urgent because experimen-

tal data strongly favor a CKM phase of order one, 10 orders of magnitude

larger than the upper bound on the strong CP phase. This represents a

puzzle because both appear to arise from Yukawa couplings in the SM. In

this Letter we propose a new solution where CP is broken spontaneously and

mediated to the SM by radiative corrections. Obtaining a large CKM phase

requires the radiative corrections to be large, forcing us to consider strongly

coupled models. Whereas such models are very difficult if not impossible to

build without susy we have argued that the non-renormalization theorems

of susy make such a solution to the strong CP problem very natural. The

CKM phase gets O(1) contributions from renormalization whereas the strong

CP phase remains exactly zero in the supersymmetric limit. Our picture re-

quires flavor-universal susy breaking and mediation and is compatible with

gauge-, anomaly-, and gaugino-mediation but not compatible with minimal

supergravity. We presented an explicit model for the CP messenger sector,

but we stress that the framework is much more general because it is based on

model-independent non-renormalization theorems. It would be interesting to

build complete GUT models based on our framework, possibly with flavor

and CP violation originating from the same strongly coupled dynamics. A

promising avenue to pursue is to combine our framework with the models of

Nelson and Strassler [28].
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