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1. Introduction

Compactifications of M-theory and string theory down to 4d N = 1 supersymmetry

are of obvious interest. The reduced supersymmetry is probably necessary for any contact

with real world physics. It also allows for richer phenomena than extended supersymmetry

and so provides a nice playground for theorists.

Generic methods of constructing such models include compactifying the heterotic

string on Calabi-Yau threefolds, F-theory on Calabi-Yau fourfolds, and M-theory on 7-

manifolds of G2 holonomy. Although many basic facts about all of these classes of com-

pactifications remain mysterious, perhaps the least is known about the last class, since at

least the others are amenable to attack using techniques of complex geometry.

A large class of compact 7-manifolds with G2 holonomy was constructed by Joyce

[1,2]. In this note, we make the simple observation that M-theory compactified on many

of these spaces admits, at special loci in its moduli space, a description as an orientifold

of type IIA string theory compactified on a Calabi-Yau threefold.1 This is reminiscent of

the fact that F-theory models can be reformulated, at special loci in their moduli space,

as type IIB orientifolds [4,5].

There are several different reasons this observation can be useful. On the one hand,

the orientifolds we discuss have a rather simple, solvable structure, and so provide a very

concrete handle on these models at some special points in their moduli space. On the other

hand, as we will show, a given G2 space can admit different type IIA orientifold limits.

Thus, by studying limit points in the moduli space of G2 compactifications, we learn

about non-perturbative dualities of IIA compactifications with N = 1 supersymmetry. In

particular, we exhibit an example where orientifolds of type IIA on Calabi-Yau spaces

of different topology (and with different numbers of D-branes and orientifold planes) are

dual to each other. On yet a third hand, our construction “globalizes” interesting gauge

theory/gravity dualities similar to those encapsulated in the local models of [6] and [7].

In §2, we introduce the G2 manifold X which will be our focus in part of this note.

In §3, we show that various limit points in the moduli space of M-theory on X are well

1 We ignore the possibility of a membrane instanton generated superpotential [3] in most of

our discussion. If such a potential exists, it would provide a potential barrier between the large-

volume M-theory and perturbative type IIA limits. Our successful comparison of these limits in

many cases suggests that either such a potential is absent, or the interpolation over the potential

barrier is nevertheless physically meaningful.
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described by IIA orientifolds. This observation allows us to find non-perturbative duality

symmetries of these orientifolds. In §4 we make some remarks about the extent to which

our analysis generalizes to other G2 spaces, and also provide a simple proof that a large

class of IIA orientifolds should have an “M-theory lift” to G2 compactifications. In §5 we

explain how gauge theory/gravity dualities analogous to those discussed in [6,7] naturally

arise in simple examples of compact G2 manifolds and the related IIA orientifolds. We

conclude in §6 by mentioning some interesting directions for further study.

Several papers analyzing various related aspects of M-theory on G2 manifolds have

appeared recently. Dual descriptions of N = 1 gauge theories using such spaces have

been discussed in [6,7,8,9,10,11], while [12] discusses a general relationship between certain

classes of wrapped branes and geometries with exceptional holonomy. Earlier work on this

subject appears in [13]. Phase transitions between topologically distinct G2 compactifica-

tions were described in [14].

2. The Manifold X

A basic example of a compact 7-manifold of G2 holonomy is the manifoldX considered

by Joyce in [1]. It is constructed as a toroidal orbifold. Let x1, · · · , x7 parametrize a square

T 7 which is a product of seven circles of radii r1, · · · , r7. Define X as the (desingularization

of the) quotient of this T 7 by the Z3
2 group with generators

α(xi) = (−x1,−x2,−x3,−x4, x5, x6, x7) (2.1)

β(xi) = (−x1, 1/2− x2, x3, x4,−x5,−x6, x7) (2.2)

γ(xi) = (1/2 − x1, x2, 1/2− x3, x4,−x5, x6,−x7) (2.3)

where 1/2 denotes a shift of order 2 around the circle. Then as demonstrated in [1], X has

betti numbers b2(X) = 12, b3(X) = 43. Therefore, M-theory compactification on X gives

rise to a 4d N = 1 supersymmetric low-energy theory with (generically) 12 abelian vector

multiplets and 43 chiral multiplet moduli.

It may be useful to review the origin of the various cohomology classes on X here.

None of the two-forms and seven of the three-forms on T 7 are invariant under the action of

〈α, β, γ〉.2 In addition, each of the generators fixes 16 T 3s on T 7; however e.g. the 16 T 3s

2 〈· · ·〉 denotes “the group generated by · · ·.”
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fixed by α are identified by the group 〈β, γ〉 to yield 4 on the quotient X, and the fixed

tori of β and γ undergo a similar fate. The local form of the singularities at the fixed T 3s

is R4/Z2 × T 3, and resolving each of these yields a two-form and three three-forms. Since

there are 12 such fixed tori on X, after desingularizing one has the stated betti numbers.

3. Orientifold Limits of X

In this section, we demonstrate that X has several different IIA orientifold limits in

its moduli space. This in particular tells us that the different orientifolds are related to

one another by various dualities.

3.1. Orientifold A

We start by viewing x7 as the “M-theory circle,” or the eleventh dimension. Then in

the limit of small r7, we should be able to get an effective IIA description of M-theory on

X. Denote by α∗ the action of α restricted to the T 6 with coordinates x1, · · · , x6. Then

since α and β don’t act on the M-theory circle anyway, in the limit of small x7 they simply

induce identifications on the T 6 visible to the type IIA string. It is therefore propagating

on the Calabi-Yau space N = T 6/〈α∗, β∗〉.
However, γ also acts on the M-theory circle. Using the results of [15], it follows that

the action of γ (inversion of the M-theory circle and three other coordinates) is mapped

in the IIA theory to w = (−1)FL Ω γ∗. Thus, IIA string theory on the orientifold of N

by w should govern M-theory in the limit of small radius for x7. Let us call this model

orientifold A.

To check this conjecture, let us try to match up the counting of fields. N has hodge

numbers h1,1 = 19, h2,1 = 19. So IIA string theory on N yields an N = 2 supersymmetric

4d theory with 20 hypermultiplets (including the dilaton) and 19 vector multiplets. Now,

projecting by w has the following effect (see e.g. [16]). Each of the 20 hypermultiplets is

projected down to a chiral multiplet. The vector multiplets (which came from the Kähler

moduli) are more subtle: those which come from (1,1) forms invariant under w give rise

to N = 1 vector multiplets, while those which are anti − invariant under w give rise

to chiral multiplets. It is easy to convince oneself that the untwisted (1,1) forms on N

are anti-invariant, while the 16 twisted (1,1) forms split into ± eigenspaces of equal size.

Therefore, the Kähler moduli contribute 11 chiral multiplets and 8 vector multiplets.
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This accounts for 31 chiral multiplets and 8 abelian vectors so far. However, we must

also take into account the fixed points of the w action. γ∗ acts with 8 fixed loci on T 6.

Identification by 〈β, γ〉 reduces this to 2 fixed loci; a neighborhood of each in the threefold

is of the form R3/Z2 × T 3. Therefore, there are orientifold six-planes wrapping each of

these T 3s (as in [15]).

By the normal tadpole cancellation considerations, we must introduce 2 D6 branes for

each O6 plane. Hence, we introduce a total of 4 D6 branes wrapping T 3s in this model.

Each of the D6 branes comes with a U(1) vector multiplet and 3 chiral multiplet moduli

(coming from the Wilson lines on the T 3, together with the moduli of the three-cycle in N).

So the D6 branes contribute a total of 12 chiral multiplet moduli and 4 vector multiplets

to the low-energy theory.

Totalling up the spectrum, we find that orientifold A (at generic points in its moduli

space) has 43 chiral multiplet moduli and 12 vector multiplets, just as it must to match the

spectrum of M-theory on X. At special points in moduli space when the D6 branes coin-

cide, one achieves enhanced gauge symmetries, which come from geometrical singularities

in the M-theory picture [15].

3.2. Orientifold B

It is of course also possible to view other circles as the M-theory circle. For instance,

we could take x4 to be the M-theory circle. However, repeating the same logic as in §3.1,

we would find that we again arrive (in the small r4 limit) at an orientifold (which we could

call orientifold B) of type IIA string theory on the Calabi-Yau orbifold with hodge numbers

h1,1 = 19, h2,1 = 19, and we again have to introduce the same numbers of D6 branes.

The role of the dilaton in orientifoldA is played by a geometrical modulus in orientifold

B, and vice-versa. However, they are really compactifications on the same target space.

This means that the IIA theory on the orientifold of N by w, discussed in §3.1, has a sort

of S − T exchange symmetry, where S is the dilaton chiral multiplet and T is the chiral

multiplet containing the radius of x4. This way of seeing the S−T exchange symmetry of

these orientifold models is analogous to the way that the S−T exchange symmetry [17] of

the main heterotic string examples in [18] can be understood as arising from the existence

of multiple K3 fibrations in the type II-dual Calabi-Yau compactifications [19,20].

In fact, this model enjoys more symmetry than just a single S − T duality; one could

equivalently consider the x6 circle to be the M-theory circle, with the same results, yielding

a sort of S − T −U triality symmetry.
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3.3. Orientifold C

A more interesting possibility is to interpret x5 as the M-theory circle. Then acting

on the T 6 coordinates x1, x2, x3, x4, x6, x7, we have

α(xi) = (−x1,−x2,−x3,−x4, x6, x7) (3.1)

βγ(xi) = (x1 + 1/2, 1/2− x2,−x3, x4,−x6,−x7) (3.2)

The manifold N ′ = T 6/〈α, βγ〉 is then a Calabi-Yau threefold with hodge numbers h1,1 =

11, h2,1 = 11. In particular, it is topologically distinct from the threefold N which appeared

in §3.1 and §3.2.

Define u to be the composition of (−1)FLΩ with the action of γ on the T 6 coordinates.

Then in the limit of small r5, M-theory on X should be well described by IIA theory on

the orientifold of N ′ by u, which we will call orientifold C.

Let’s check that the spectrum matches our expectations. v, the composition of

(−1)FLΩ with the action of β on the T 6 coordinates, arises upon composing u with ele-

ments of the orbifold group. Both u and v act with fixed loci on N ′. Each has 8 fixed T 3s

in the T 6, which descend to 2 fixed T 3s in the orbifold N ′. Therefore, one has to introduce

four O6 planes, and 8 wrapped D6 branes are required to cancel the RR tadpoles. These

give rise to 8 abelian vector multiplets and 24 chiral multiplets, at generic points in moduli

space.

The projection of the spectrum of IIA on N ′ can be done as before. Once again, half

of the 8 twisted (1,1) forms are invariant under the orientifold action, while the other half

(and the untwisted (1,1) forms) are anti-invariant. So we get 4 vectors and 7 chirals from

the (1,1) forms; adding in the 12 chirals descending from the N = 2 hypermultiplets, we

indeed find a total of 43 chiral multiplets and 12 vectors.

In this orientifold C picture, the radii r4, r6, r7 which are related (up to triality) to the

dilaton in the pictures of §3.1 and §3.2 are all geometrical moduli of the IIA compactifica-

tion, while r5 (which is geometrized in orientifolds A,B) is playing the role of the dilaton.

This gives an example of a strong/weak duality between IIA orientifolds of topologically

distinct Calabi-Yau spaces, with different numbers of space-filling D-branes and orientifold

planes.
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4. Generalization to Other Models

In this section, we generalize our results in two directions. We first show that a large

class of G2 spaces should similarly have orientifold limits. We then take the opposite

approach, and prove that a wide class of IIA orientifolds have an M-theory lift to G2

compactifications.

4.1. Other Classes of G2 Manifolds

Beyond the toroidal orbifold constructions of Joyce, there are other methods of con-

structing G2 holonomy spaces which are amenable to an orientifold interpretation.

Barely G2 Manifolds

Harvey and Moore defined “barely G2 manifolds” as quotients of the form X = (Y ×
S1)/Z2, where Y is a Calabi-Yau threefold and the Z2 action is a composition of a freely

acting antiholomorphic involution σ on Y with inversion on the circle factor x7 [3]. These

are of course a special case of a more general construction which should arise when σ has

fixed points [1,2].

For the barely G2 spaces, it turns out that

H3(X) = H2(Y )− +H3(Y )+ (4.1)

H2(X) = H2(Y )+ (4.2)

where ± refer to eigenvalues under the action of σ on Y . For simple examples which come

from hypersurfaces in toric varieties, one simply keeps the complex structure deformations

which preserve the real structure (i.e. defining equations with real coefficients), so H3(Y )

has ± eigenspaces of equal dimension. For such examples, we find nC = h1,1(Y )− +

h2,1(Y ) + 1 chiral multiplets and nV = h1,1(Y )+ vector multiplets in M-theory on X.

As one shrinks the radius r7 of the S1, one should obtain a IIA description. Indeed,

since the Z2 above acts with an inversion on x7, we should expect that the orientifold of

IIA on Y by (−1)FLΩ composed with σ arises in this limit. It follows from the general

considerations of [16] (as discussed in §3) that the spectrum of this type IIA orientifold

agrees with the M-theory spectrum.

Cases with Fixed Points
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It is attractive to speculate about generalizations of the previous case to cases where

σ acts on Y with fixed points. On general grounds, the fixed point locus Σ ⊂ Y will

be a special Lagrangian (sL) three-cycle (or several, in which case one should repeat the

discussion below for each component). It is not known in generality how to resolve the

singularities in this case to obtain a smooth metric of G2 holonomy.

However, the existence of an orientifold limit leads to a very natural conjecture.

Shrinking the x7 circle again, we find a IIA model which should have an O6 plane and two

D6 branes wrapping Σ. For Σ special Lagrangian, a D6 brane wrapping Σ gives rise to

a single N = 1 vector multiplet and b1(Σ) chiral multiplets in spacetime. Therefore, we

expect that there will be 2 vectors and 2b1(Σ) chiral multiplets associated with the D6

branes in this limit. When the D6 branes are coincident, the model has enhanced gauge

symmetry (which shows up in the M-theory as the singularity of the G2 space related to the

fixed points of σ). For b1(Σ) > 0, one can move in the D6 brane moduli space to remove

the enhanced gauge symmetry. It is then attractive to conjecture that in the M-theory

picture, b1(Σ) > 0 is a condition that allows the singularities of this class of G2 orbifolds

to be repaired, and that furthermore resolving the singularity gives rise to precisely two

elements of b2(X) and 2b1(Σ) elements of b3(X).3

4.2. “All” Orientifolds of type IIA on CY have a G2 Limit

Suppose we have a IIA orientifold which gives rise to a four dimensional N = 1

supersymmetric theory. For simplicity, let us first restrict ourselves to orientifolds of tori.

The orbifold part of the orientifold group must have (at most) SU(3) holonomy, to preserve

(at least) 4d N = 2 supersymmetry.4 Let us assume we are in the most generic case, so

that it preserves precisely N = 2 supersymmetry. Denote the full orientifold group by

G = Γ1 × (−1)FLΩΓ2 (4.3)

The (−1)FL is present because we choose, as in [15], a convention where reflection on three

circles must be accompanied by a (−1)FL to preserve supersymmetry in the IIA theory,

and we will show momentarily that all elements of Γ2 must reflect precisely three circles

3 This could be related to Condition 4.3.1 in [2], which was stated without proof to be an

important condition in resolving singularities of this sort.
4 This is because there are no geometric compactifications of IIA down to 4d which preserve

precisely 4d N = 1 supersymmetry.
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of the T 6. With these assumptions, T 6/Γ1 alone is Calabi-Yau, and so has a holomorphic

three-form Ω(3,0) and a Kähler form J .

Now, consider the (−1)FLΩΓ2 part of the group. Any element (−1)FLΩg2 of this part

must have g2 reversing the orientation of the 6d target, or it cannot be a symmetry of the

IIA theory. So we know a few things about the g2 action:

i) g2 maps J to −J (orientation reversal) and

ii) g2 maps Ω(3,0) to Ω
(0,3)

. Notice that this implies that g2 reflects precisely three circles

of the T 6/Γ1, as required above.

In ii), we are using the fact that to preserve one supersymmetry, some linear combi-

nation of the killing spinors must be preserved. This means that g2 either preserves the

holomorphic and anti-holomorphic three-form individually, or at least preserves a linear

combination. But since Ω(3,0) ∧ Ω
(0,3) ∼ J ∧ J ∧ J , by i) above g2 must permute the two.

One might worry that g2 could act with a phase in relating Ω(3,0) to its conjugate; but

all g2 ⊂ Γ2 which exchange Ω(3,0) and its conjugate would have to have the same phase

to preserve N = 1 supersymmetry. It can then be redefined to 1 by a phase rotation of

Ω(3,0).

To proceed, we add a seventh M-theory circle x7. Define the new group G̃, which

acts on T 7, as follows: take each element of G and replace (−1)FLΩ anywhere it appears

with inversion of the x7 coordinate (while elements which don’t include a (−1)FLΩ act

trivially on the x7 coordinate). This will not change anything about elements of Γ1 (since

the minus sign on x7 will cancel in the product of two (−1)FLΩΓ2 elements). However,

under assumptions i) and ii) above, the three-form

Φ = J ∧ dx7 +Re[Ω(3,0)] (4.4)

is preserved by the whole (now orbifold) group G̃ acting on T 7. This form is preserved by

a G2 subgroup of GL(7, R) [2]. This is sufficient to prove that the resulting manifold is a

G2 space.

It is clear that this argument is more generically applicable to supersymmetric models

which are not toroidal orientifolds. One could replace the T 6 in the IIA theory with any

manifold M , use the fact that M/Γ1 should be Calabi-Yau to preserve supersymmetry in

the IIA theory, and apply the same logic.
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5. The Case of the Disappearing Orientifold

Recent work has made it clear that gauge dynamics on wrapped D6 branes (or arising

from singular M-theory geometries) can often be encoded by smooth geometries in a “dual”

gravity description [6]. The gauge dynamics is then encoded in appropriate RR-fluxes, or

in changes of the behavior of the M-theory three-form C field, which (suitably interpreted)

capture the low-energy physics of the gauge theory. In this section, we discuss examples

of this phenomenon which arise in string/M-theory compactifications in a natural way.

The most obvious source of consistent compact models with wrapped D6 branes is

the Calabi-Yau orientifolds discussed here. The components of the orientifold fixed locus

provide sL three-cycles Σ, which are wrapped by orientifold planes and D6 branes. In

fact, examples of sL cycles Σ which arise in this way were studied in [21,22] precisely with

the motivation of understanding the dynamics on the worldvolumes of such wrapped D6

branes.

One interesting fact (which had perplexed some of the authors of [21,22] for some time)

is that it is possible for the fixed locus of an anti-holomorphic involution to disappear as

the complex structure of the Calabi-Yau varies; and the relevant complex structure moduli

survive in the orientifold models. This fact was used in [22] to identify D6 branes on such

real slices as mirror to D5 branes on vanishing holomorphic curves. However, it raises the

question: if one continues past the point in moduli space where the fixed locus disappears

(so there is no orientifold plane, and no need to introduce D6 branes), where has the

information about the gauge theory on the D6 branes gone? The gauge theory/gravity

dualities relevant to this situation were studied in [6,7], and provide the answer to this

question.

Let us illustrate this with a simple example. The easiest examples discussed in [22]

basically involve a sL three-cycle which is the fixed locus of a real involution and which

collapses at a conifold singularity. So locally, the geometry of the compact Calabi-Yau M

looks like

z2
1 + z2

2 + z2
3 + z2

4 = µ (5.1)

where µ is chosen to be a positive real parameter. Then under the involution

I : zi → zi (5.2)

9



the fixed point locus Σ+ is the three-sphere

Σ+ :

4∑

i=1

x2
i = µ (5.3)

where zi = xi + iyi.

We can embed this situation in a G2 manifold as in §4.1, where the G2 manifold X is

of the form (M × S1)/σ. The Z2 symmetry σ acts by I combined with inversion on the

M-theory circle, x7 → −x7. Then for µ > 0, the fixed point loci of σ, which consist of

copies of Σ+ at x7 = 0, 1/2, are actually S3s of A1 singularities in X. This gives rise in

M-theory on X to two 4d, N = 1 pure SU(2) gauge theories (with equal gauge couplings).

Now, consider taking µ through 0. At µ → 0 there are collapsing associative three-

cycles in X, and hence membrane instanton effects are expected to be large [3]. However,

the sizes of the S3s come paired in chiral multiplets with periods of the three-form C field

over the S3s, and for generic values of this phase, there is no singularity in the physics –

singularities in N = 1 moduli spaces happen at complex codimension one. Therefore, one

can smoothly (in the physical sense) continue from µ > 0 to µ < 0. This raises a puzzle:

the SU(2) gauge groups present for µ > 0 have now disappeared, since the Z2 symmetry

σ acts on X without fixed points for µ < 0. However, the information about the gauge

theory must be encoded somehow in the µ < 0 geometry.

The basic point is as in [6]. For µ < 0, one can still look for a homologically nontrivial

three-sphere which membrane instantons can wrap. For instance, consider the locus of

pure imaginary zi, still at x7 = 0, 1/2. This is given by a three-sphere

4∑

i=1

y2
i = −µ (5.4)

which is orbifolded by the freely-acting Z2 symmetry yi → −yi. Call the resulting IRIP3

Σ−. It turns out that Σ−(−µ) has exactly half the volume of Σ+(µ), due to the orbifolding.

These IRIP3s are associative three-cycles in X for µ < 0. However, as in [6], changing the

period of the C field on Σ+(µ) by 2π, which is physically meaningless, corresponds to

changing it by π on Σ−(−µ), due to the smaller volume. This ambiguity in the choice of

phase for µ < 0 corresponds to the vacuum degeneracy due to the gaugino condensate in

the gauge theory.5

5 Notice that since the two associative S3s at x7 = 0, 1/2 are in the same homology class, their

volumes (and the periods of the C-field) are the same. So although there are two SU(2)s, the

choice of phase in the two gaugino condensates is related – there is only a single Z2 ambiguity.

This carries over to the IIA picture as well.
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In the IIA picture, with x7 taken as the M-theory circle, this becomes an example

where an orientifold plane and two D6 branes, present for µ > 0, disappear as µ passes

through 0. This system has an SO(4) gauge symmetry, and should give rise to multiple

vacua after gaugino condensation, in agreement with the M-theory picture above. The

phase ambiguity detected by membrane instantons in M-theory is detected by D2 brane

instantons in the string theory picture. This is in accord with our gauge theory intuition,

since D2 branes are the instantons of the D6 brane gauge theory in the phase where the

D6 branes exist [23]. The fact that Σ−(−µ) has half the volume of Σ+(µ) then becomes

the familiar fact that the superpotential from a gaugino condensate in N = 1 SU(2) gauge

theory looks like a “half-instanton effect.”

More precisely, once we have compactified this setup, the superpotential we are dis-

cussing destabilizes the closed-string modulus µ (which is a parameter in the non-compact

case). In our discussion here, we are imagining that we can hold µ fixed at various values,

which is reasonable as long as the scale generated by the superpotential is parametrically

smaller than the string/Planck scale. This is true for large enough |µ|.
It is clear that the other examples of [22], which involve sL three-cycles Σ with b1(Σ) >

0, could also be lifted in this way to find examples of M-theory “dualities” in gauge theories

with adjoint matter. Some examples of this have already appeared in [9].

6. Discussion

Little is known about M-theory compactification on spaces of G2 holonomy. Naive

extrapolation of the kinds of results that exist so far suggests that further study of the

relationship between IIA orientifolds and M-theory compactifications could yield:

1) A large class of examples of non-perturbative dualities between orientifolds of type II

compactifications on Calabi-Yau spaces of different topologies, with different numbers

of space-filling D-branes.

2) New gauge theory/gravity dualities along the lines of [6], in a compact context (i.e.,

coupled to 4d gravity).

3) Connections between the study of disc instanton effects in type II compactifications

with branes (see e.g. [21,22,24,25]) and membrane instanton effects in M-theory [3].

The real involution of the CY pairs holomorphic discs [22] even when the sL three-

cycle on which they end is deformed away from the real slice. In this way, pairs of

discs times the M-theory circle form closed orbifold-invariant three-manifolds which
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membrane instantons can wrap. Similarly, IRIP2 worldsheets with their crosscap on

the real slice lift to orbifolds of membrane instantons on the M-theory circle times the

covering sphere of the IRIP2 [7].

4) A good understanding of the new physics which arises at singularities of M-theory on

spaces of G2 holonomy (some examples of this were discussed in [10]). It would be

particularly interesting to find various singularities which correspond to chiral gauge

theories. Perhaps these would provide a useful tool for the further exploration of

chirality changing phase transitions [26].

5) A new window into type I compactifications. The type IIA orientifolds studied here

are T-dual to type I string compactifications (roughly speaking, by T-duality on the

T 3 fibers [27] of the Calabi-Yau space which is being orientifolded). Therefore, any

insights gained about these models through their M-theory interpretation will carry

over to the study of certain type I theories.

Acknowledgements

We would like to thank J. Polchinski and E. Silverstein for helpful discussions, and B.

Acharya for pointing out a minor error in §5 of the first version of this note. This work

was supported in part by NSF grant PHY-95-14797 and by the DOE under contract DOE-

AC03-76SF00098. S.K. enjoyed the hospitality of the ITP Santa Barbara “M-theory”

program while performing the work reported here, and was supported by the National

Science Foundation under grant number PHY-99-07949. The work of S.K. was supported

in part by a David and Lucile Packard Foundation Fellowship for Science and Engineering

and an Alfred P. Sloan Foundation Fellowship. The work of J. M. was supported in part

by the Department of Defense NDSEG Fellowship program.

12



References

[1] D.D. Joyce, “Compact Riemannian 7-manifolds with G2 Holonomy, I,” J. Diff. Geom.

43 (1996) 291.

[2] D.D. Joyce, “Compact Riemannian 7-manifolds with G2 Holonomy, II,” J. Diff. Geom.

43 (1996) 329.

[3] J. Harvey and G. Moore, “Superpotentials and Membrane Instantons,” hep-th/9907026.

[4] A. Sen, “F-theory and Orientifolds,” Nucl. Phys. B475 (1996) 562; A. Sen, “Orien-

tifold Limit of F-theory Vacua,” Phys. Rev. D55 (1997) 7345, hep-th/9702165.

[5] R. Gopakumar and S. Mukhi, “Orbifold and Orientifold Compactifications of F-

theory and M-theory to Six and Four Dimensions,” Nucl. Phys. B479 (1996) 260,

hep-th/9607057.

[6] M. Atiyah, J. Maldacena and C. Vafa, “An M-theory Flop as a Large N Duality,”

hep-th/0011256.

[7] S. Sinha and C. Vafa, “SO and Sp Chern-Simons at Large N,” hep-th/0012136.

[8] B.S. Acharya, “On Realizing N = 1 Super Yang-Mills in M-theory,” hep-th/0011089;

“Confining Strings from G(2) Holonomy Space-Times,” hep-th/0101206;

B.S. Acharya and C. Vafa, “On Domain Walls of N = 1 Supersymmetric Yang-Mills

in Four-Dimensions,” hep-th/0103011.

[9] F. Cachazo, K. Intriligator and C. Vafa, “A Large N Duality via a Geometric Transi-

tion,” hep-th/0103067.

[10] E. Witten, “M-theory Dynamics on Manifolds of G2 Holonomy,” talk presented March

3, 2001 at “Heterotic Dreams and Asymptotic Visions,” the 60th birthday celebration

for David Gross, ITP, Santa Barbara.

[11] J. Edelstein and C. Nunez, “D6 branes and M theory geometrical transitions from

gauged supergravity,” hep-th/0103167.

[12] J. Gomis, “D-branes, Holonomy and M-theory,” hep-th/0103115.

[13] B.S. Acharya, “M-theory, Joyce Orbifolds and Super Yang-Mills,” Adv. Th. Math.

Phys. 3 (1999) 227, hep-th/9812205.

[14] H. Partouche and B. Pioline, “Rolling Among G2 Vacua,” JHEP 0103 (2001) 005,

hep-th/0011130.

[15] A. Sen, “A Note on Enhanced Gauge Symmetries in M and String Theory,” JHEP

9709 (1997) 001, hep-th/9707123.

[16] C. Vafa and E. Witten, “Dual String Pairs with N = 1 and N = 2 Supersymmetry

in Four Dimensions,” Nucl. Phys. Proc. Suppl. 46 (1996) 225, hep-th/9507050.

[17] A. Klemm, W. Lerche and P. Mayr, “K3 Fibrations and Heterotic-Type II String

Duality,” Phys. Lett. B357 (1995) 313, hep-th/9506112.

[18] S. Kachru and C. Vafa, “Exact Results for N = 2 Compactifications of Heterotic

Strings,” Nucl. Phys. B450 (1995) 69, hep-th/9505105.

13

http://arXiv.org/abs/hep-th/9907026
http://arXiv.org/abs/hep-th/9702165
http://arXiv.org/abs/hep-th/9607057
http://arXiv.org/abs/hep-th/0011256
http://arXiv.org/abs/hep-th/0012136
http://arXiv.org/abs/hep-th/0011089
http://arXiv.org/abs/hep-th/0101206
http://arXiv.org/abs/hep-th/0103011
http://arXiv.org/abs/hep-th/0103067
http://arXiv.org/abs/hep-th/0103167
http://arXiv.org/abs/hep-th/0103115
http://arXiv.org/abs/hep-th/9812205
http://arXiv.org/abs/hep-th/0011130
http://arXiv.org/abs/hep-th/9707123
http://arXiv.org/abs/hep-th/9507050
http://arXiv.org/abs/hep-th/9506112
http://arXiv.org/abs/hep-th/9505105


[19] P. Aspinwall and M. Gross, “Heterotic-Heterotic String Duality and Multiple K3

Fibrations,” Phys. Lett. B382 (1996) 81, hep-th/9602118.

[20] D. Morrison and C. Vafa, “Compactifications of F-theory on Calabi-Yau Threefolds,

I,” Nucl. Phys. B473 (1996) 74, hep-th/9602114.

[21] S. Kachru, S. Katz, A. Lawrence and J. McGreevy, “Open string instantons and

superpotentials,” Phys.Rev. D62 (2000) 026001, hep-th/9912151.

[22] S. Kachru, S. Katz, A. Lawrence and J. McGreevy, “Mirror symmetry for open

strings,” Phys.Rev. D62 (2000) 126005, hep-th/0006047.

[23] M. Douglas, “Branes within branes,” hep-th/9512077.

[24] H. Ooguri and C. Vafa, “Knot Invariants and Topological Strings,” Nucl. Phys. B577

(2000) 419, hep-th/9912123.

[25] M. Aganagic and C. Vafa, “Mirror Symmetry, D-branes and Counting Holomorphic

Discs,” hep-th/0012041.

[26] S. Kachru and E. Silverstein, “Chirality Changing Phase Transitions in 4d String

Vacua,” Nucl. Phys. B504 (1997) 272, hep-th/9704185;

B. Ovrut, T. Pantev and J. Park, “Small Instanton Transitions in Heterotic M-theory,”

hep-th/0001133.

[27] A. Strominger, S.T. Yau and E. Zaslow, “Mirror Symmetry Is T-Duality,” Nucl. Phys.

B479(1996) 243, hep-th/9606040.

14

http://arXiv.org/abs/hep-th/9602118
http://arXiv.org/abs/hep-th/9602114
http://arXiv.org/abs/hep-th/9912151
http://arXiv.org/abs/hep-th/0006047
http://arXiv.org/abs/hep-th/9512077
http://arXiv.org/abs/hep-th/9912123
http://arXiv.org/abs/hep-th/0012041
http://arXiv.org/abs/hep-th/9704185
http://arXiv.org/abs/hep-th/0001133
http://arXiv.org/abs/hep-th/9606040

