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Abstract

In this note, we study a matrix-regularized version of non-commutative U(1) Chern-
Simons theory proposed recently by Polychronakos. We determine a complete minimal
basis of exact wavefunctions for the theory at arbitrary level k and rank N and show
that these are in one-to-one correspondence with Laughlin-type wavefunctions describing
excitations of a quantum Hall droplet composed of N electrons at filling fraction 1/k. The
finite matrix Chern-Simons theory is shown to be precisely equivalent to the theory of
composite fermions in the lowest Landau level, believed to provide an accurate description
of the filling fraction 1/k fractional quantum Hall state. In the large N limit, this implies
that level k noncommutative U(1) Chern-Simons theory is equivalent to the Laughlin
theory of the filling fraction 1/k quantum Hall fluid, as conjectured recently by Susskind.
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1 Introduction

In its simplest form, noncommutative geometry is characterized by a pair of coordinates
which do not commute in the same sense that canonically conjugate positions and mo-
menta do not commute in quantum mechanics,

[x, y] = iθ , (1)

where θ is a dimensionful parameter. Over the past few years, it has become increasingly
apparent that noncommutative geometry plays an important role in string theory [1, 2].
However, such a commutation relation also appears in a much simpler context, that of
charged particles in a strong magnetic field.

For a single particle of unit charge moving in two dimensions under the influence of a
constant magnetic field, the Lagrangian is given by

L =
m

2
(ẋ2 + ẏ2) +

1

2
B(ẋy − ẏx). (2)

It is well known that the eigenstates of this system lie in Landau levels, degenerate sets
of states at energies given by En = (n + 1

2
)B
m

. In each level, the degeneracy is equal to
one state for each unit of area defined by the inverse density of flux quanta. In the limit
of very large magnetic field, particles are restricted to the lowest Landau level, and the
physics may be described by ignoring the first term in (2). Canonically quantizing the
resulting system, we are led to precisely the commutation relation (1) with θ replaced by
1
B

. Thus, the two dimensional coordinate space becomes the phase space for the system
and gives a simple realization of a noncommutative geometry.

The physics of electrons in the lowest Landau level exhibits many fascinating prop-
erties. In particular, when the electron density lies at certain rational fractions of the
density corresponding to a fully filled lowest Landau level, the electrons condense into
special incompressible fluid-like states whose excitations exhibit such unusual phenomena
as fractional charge and fractional statistics. These states also have a gap in their exci-
tation spectrum which gives rise to the experimentally observed fractional quantum Hall
effect (for a recent review, see [3] and references therein). For the filling fractions 1/k,
the physics of these states is accurately described by certain wavefunctions proposed by
Laughlin, and more general wavefunctions may be written down describing the various
types of excitations about the Laughlin states.

Given that the first quantized system of a particle in a strong magnetic field naturally
realizes a noncommutative space, it is interesting to speculate that the second-quantized
field theory description of the Quantum Hall fluid for various filling fractions might involve
a noncommutative field theory. In a recent paper by Susskind [4], this possibility was put
forward in a precise conjecture, that the Laughlin state of electrons at filling fraction 1/k
is precisely described by the noncommutative version of U(1) Chern-Simons theory at
level k. Subsequently, Polychronakos [5] proposed that a particular matrix regularized
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version of this level k noncommutative Chern-Simons theory could be used to describe a
finite number of electrons in a “droplet” of the Quantum Hall fluid at filling fraction 1/k.

In this paper, we cement the connection between noncommutative Chern-Simons the-
ory and the Laughlin theory of the Quantum Hall fluid. Specifically, write down the
complete set of exact wavefunctions of the Polychronakos model and show that they are
in one-to-one correspondence with wavefunctions describing excitations of a filling frac-
tion 1/k Quantum Hall droplet in the Laughlin theory (the Hilbert spaces are isomorphic
and the energy levels are the same). By taking the limit of a large number of electrons,
this should imply that the filling fraction 1/k Quantum Hall fluid of infinite extent is well
described by the noncommutative U(1) Chern-Simons theory at level k, as conjectured
by Susskind.

The plan of the paper is as follows. In section 2, we review some basic properties
of charged fermions in the lowest Landau level. We review Laughlin’s wavefunctions for
the filling fraction ν = 1/k states as well as the more general wavefunctions describing
excitations about these states. In section 3, we describe the noncommutative Chern-
Simons theory and its matrix description, and review some of the evidence put forward
by Susskind that this theory describes the fractional quantum Hall fluid. In section 4, we
present the finite dimensional matrix Chern-Simons theory proposed by Polychronakos
and review its quantization. Section 5 contains the main results of this paper: we write
down explicitly the wavefunctions for a complete minimal basis of energy eigenstates
for the theory and show that they are in one-to-one correspondence with wavefunctions
describing excitations of a quantum Hall droplet described by the Laughlin theory at 1/k.
In section 6, we offer some concluding remarks.

2 Charged particles in the lowest Landau level

In this section, we review some aspects of the physics of charged fermions in a strong
magnetic field. We recall Laughlin’s wavefunctions describing particles in the lowest
Landau level at filling fractions 1/k as well as the more general wavefunctions describing
excitations about these states.

We begin by considering a single particle of mass m and unit charge in a magnetic
field B. It is convenient to break the degeneracy arising from translation invariance, so we
also include a harmonic oscillator potential (which we may take to be arbitrarily weak).
The complete Lagrangian is then given (in the radial gauge Ai = 1

2
Bεijxj) by

L =
m

2
ẋ2
i +

B

2
εijẋixj −

1

2
κx2

i . (3)

The energy eigenstates for this system may be determined exactly. In the limit m →
0 (equivalent to strong magnetic field), the wavefunctions whose energies remain finite
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relative to the ground state energy may be labeled by an integer n ≥ 0 and are given by

〈~x|n〉 =

√
Bn+1

2n+1πn!
zne−

B
4
|z|2 (4)

where z = x+ iy. These have energies En = κ
B

(n+ 1
2
).

Another way to arrive at these states is by taking m = 0 at the start. Then the
canonical commutation relations give

[x, y] =
i

B
(5)

and the Hamiltonian is that of a Harmonic oscillator,

H =
κ

B
(a†a+

1

2
)

where we have defined a =
√

B
2

(x + iy) so that a and a† have the usual commutation
relations of creation and annihilation operators. The eigenstates, again labeled by n, are
of course

|n〉 =
1√
n!

(a†)n|0〉 (6)

with energies as above.
It will be helpful to understand the precise relationship between these wavefunctions

(6), which depend only on a single variable, and those in (4) which depend on two coordi-
nates. In the reduced system, we may define a coherent state basis |z〉 by a|z〉 = z|z〉. In
this basis, we have 〈z|n〉 = 1√

n!
zn, so we see that the analytic part of the lowest Landau

level wavefunctions (4) should be identified with the coherent state wavefunction 〈z|ψ〉 in
the system with reduced phase space.

In the second picture, it is valuable to note that the hamiltonian H is proportional
to the radius squared operator, H = 1

2
κR2 and also generates rotations (because of the

commutation relation (5)). Thus, the state labeled by n has energy, angular momentum
and R2 all proportional to n.

Consider now the system of N fermions, each described by the Lagrangian (3) in
the limit of large magnetic field (we assume for now that their interactions may be ig-
nored). The wavefunctions must be completely antisymmetric and it is easy to see that
an orthogonal basis of energy eigenstates is provided by the set of wavefunctions

|{ni}〉 = εi1···iNa†i1
n1 · · · a†iNnN |0〉 , (7)

where n1 < n2 < · · · < nN . These correspond to states with one particle in each of the
energy levels labeled by ni, so the total energy is E = κ

B
(N

2
+
∑
ni). In the original two

dimensional language, these may be written as

〈~x|{ni}〉 = εi1···iN zn1
i1
· · · znNiN e−

B
4

∑
|zi|2 . (8)

3



The ground state corresponds to choosing ni = i−1, so that the R2 expectation value
for the outermost particle is R2 = 2

B
(N − 1

2
). The disc bounded by this radius contains

∼ N quanta of flux (the density of flux quanta is B/2π), so we see that the ground state
corresponds to a circular “quantum hall droplet” with filling fraction ν = 1. Since the
number of states per unit area in the lowest Landau level is equal to the number of flux lines
per unit area, this ground state droplet is maximally dense and therefore incompressible.
This may be seen directly by noting that the size of the droplet is independent of the
strength of the harmonic oscillator potential. As a result, the external potential we have
introduced should not significantly affect the physics of the droplet.

Using Fact 1 from the appendix, we may rewrite the ν = 1 ground state wavefunction
|ψ1〉 ≡ |ni = i− 1〉 in a more standard form,

〈~x|ψ1〉 =




N∏

i<j

(zi − zj)

 e−

B
4

∑
|zi|2 . (9)

As required by antisymmetry, the wavefunction vanishes as any two particles become co-
incident. This also ensures that the wavefunction will continue to provide a good descrip-
tion in the presence of repulsive interparticle interactions as long as they are sufficiently
weak/short-ranged.

Systems of electrons in a strong magnetic field also condense into special incompressible
states at certain rational filling fractions, giving rise to the fractional quantum Hall effect.
Generalizing the ν = 1 ground state wavefunction (9), Laughlin [6] proposed that for ν =
1/k, these fractional Quantum hall states could be accurately described by wavefunctions

〈~x|ψ1/k〉 =




N∏

i<j

(zi − zj)k

 e−

B
4

∑
|zi |2

=
(
εi1···iN z0

i1
· · · zN−1

iN

)k
e−

B
4

∑
|zi|2 . (10)

It is easy to see that the highest power of a given zi appearing (proportional to the radius
squared of the droplet) is k(N − 1), so this state has an electron density of 1/k times
the ν = 1 ground state, as required. The presence of an additional factor (zi − zj)k−1

for each pair of particles relative to the ν = 1 state (and therefore an additional phase of
(−1)k−1 when the particles are interchanged) may be understood to arise from interparticle
interactions which result in the binding of k − 1 flux lines to each electron, forming a
“composite fermion” [7, 8]. This helps to minimize the repulsive Coulomb potential, as
is evident from the rapid vanishing of the wavefunction as any two particles approach
each other. The resulting composite fermions are weakly interacting and feel a reduced
net magnetic field corresponding to the unattached flux lines. The density of composite
fermions is precisely equal to the density of these unattached flux lines, so the ν = 1/k
state may be interpreted as the ν = 1 state of the composite fermions. It is important
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to note that k must be an odd integer in order to preserve the fermionic statistics of the
particles (reflected in the antisymmetry of the wavefunction).

Based on this composite fermion picture, the general set of wavefunctions describing
excitations of the ν = 1/k state should be obtained from the ν = 1 wavefunctions (8)
simply by multiplying by the factor

∏
(zi − zj)k−1 corresponding to the flux attachment.

Equivalently, the wavefunctions describing excitations of the 1/k state may be taken to
be the subset of energy eigenstates states spanned by the basis (8) which contain a zero
of order at least k when any pair of particles become coincident.

Using the harmonic oscillator representation (which will be most convenient for our
later comparison), a minimal basis of wavefunctions describing excitations of the ν = 1/k
state in the Laughlin theory is therefore given by

|{ni}, k〉 = εi1···iNa†i1
n1 · · · a†iN nN

(
εi1···iNa†i1

0 · · · a†iNN−1
)k−1 |0〉 (11)

where ni are integers such that 0 ≥ n1 < · · · < nN . The energies of these states is given
by E({ni}, k) = κ

B
(N

2
(1 + (k − 1)(N − 1)) +

∑
ni)

Using Fact 2 from the appendix, it is not difficult to see that another minimal basis
of wavefunctions is given by

|{ci}, k〉 = (
∑

a†i
N)cN · · · (

∑
a†i)

c1
(
εi1···iNa†i1

0 · · · a†iNN−1
)k |0〉 (12)

where ci are arbitrary non-negative integers and the energy of these states is E = κ
B

(N
2

(1+
k(N − 1)) +

∑
mcm).

In section 5, we will construct two bases of the wavefunctions for the finite N matrix
noncommutative Chern-Simons theory and see that they have a structure almost identical
to the two bases constructed here. In preparation for this, we provide a brief review in
the next two sections of the noncommutative Chern-Simons theory, its matrix decription,
and the finite dimensional matrix version proposed by Polychronakos.

3 Noncommutative Chern-Simons theory

Chern-Simons theory with gauge group U(1) on noncommutative two-dimensional space
is described by an action

S =
k

4π

∫
d3xεµνλ

(
Aµ ? ∂νAλ +

2

3
Aµ ? Aν ? Aλ

)
.

where
f ? g = e

i
2
θεij∂fi ∂

g
j fg

This theory is invariant under arbitrary noncommutative gauge transformations (trivial
at infinity) given by

Aµ → U−1 ? Aµ ? U + iU−1 ? ∂µU
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as long as k (the level) is an integer [9, 10]. Note that the appearance of a cubic term in
the action and the quantization of the level occurs even for the case of U(1), unlike in the
commutative theory.

The theory may be written in an equivalent form by choosing the gauge A0 = 0 in
which case the action becomes

S =
k

4π

∫
d3xεijAi∂tAj (13)

while the equation of motion for A0 must be imposed as a constraint,

Fij = ∂iAj − ∂jAi − iAi ? Aj + iAj ? Ai = 0 (14)

It turns out that this action and constraint also arise from a matrix model in 0 + 1
dimensions, given by

S =
k

θ

∫
dtTr

(
1

2
εijDX iXj

)
+ k

∫
dtTr(A) (15)

where X and A are hermitian matrices [12, 13, 14]. The action is invariant under gauge
transformations

X i → U−1X iU, A→ U−1AU + iU−1∂tU

as long as U is taken to be trivial at t = ±∞ and k is an integer. We may choose the
gauge A = 0 in which case the action becomes

S =
k

θ

∫
dtTr

(
1

2
εijẊ iXj

)
(16)

while the equation of motion for A is

[X1,X2] = iθ11 (17)

which must be taken as a constraint (note that the commutator here is a matrix commu-
tator). This has no solutions for finite dimensional matrices (as may be seen by taking the
trace), thus, we must take X i to be infinite dimensional. A particular solution is X i = yi,
where y1 and y2/θ are the usual matrices representing x and p in the harmonic oscilla-
tor basis. Expanding the action (16) and constraint (17) about this classical solution,
X i = yi + θεijAj and considering Aj to be functions of the noncommuting coordinates
yi gives precisely the Lagrangian (13) with the constraint (14).1 Thus, the matrix model

1This step requires making the transition from the operator formalism for fields on noncommutative
space to the representation in terms of ordinary functions multiplied by the star products. Explicitly, we
have

[yi, f ]→ iθεik∂kf , Tr(f1 · · ·fn)→ 1

2πθ

∫
d2x(f1 ? · · · ? fn)

For more details of the relationship between these two representations, see for example [11].
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(15), expanded about the background X i = yi is equivalent to the noncommutative U(1)
Chern-Simons theory. To be precise, we should restrict to fluctuations Ai about the back-
ground described by compact operators (this is equivalent to the condition that the fields
vanish at infinity in the field theory language) with a similar condition on the allowed
gauge transformations [11]. Interestingly, the same matrix model expanded about a dif-
ferent background X i = yi⊗11N×N gives the U(N) noncommutative Chern-Simons theory
(this highlights the need to restrict the allowed X’s to a specific subset of all hermitian
matrices before the matrix model gives a well defined theory).

Starting from the matrix action (16), canonical quantization gives the commutation
relations

[X1
mn,X

2
pq] = i

θ

k
δmqδnp .

Thus, we may choose the wavefunction to be a function of the matrix X = X1 and
represent X2 as

X2
mn =

θ

k
i

∂

∂Xnm
.

The constraint (17) should then be imposed as an operator constraint on the wavefunction.
With the proper operator ordering, the left side of (17) generates U(N) transformations
on the wavefunction [4], and it follows that the constraint is equivalent to the condition

Ψ(U−1XU) = (detU)kΨ(X) . (18)

Since the Hamiltonian for the theory is zero, this equation provides all the information
about the allowed wavefunctions.2

Because the matrices are infinite dimensional, it is difficult to determine solutions to
this constraint or even to understand whether it has well defined solutions without some
sort of regularization. However, as pointed out in [4] this constraint already provides some
direct evidence for a connection with the Laughlin states. Specifically, if U is taken to be
a permutation matrix which would permute two elements of a diagonal matrix, then we
have det(U) = −1, so (18) indicates that the wavefunction obeys fermionic statistics for
odd values of k and bosonic statistics for even values of k. Identifying k with the inverse
filling fraction in the Laughlin theory, this gives precisely the relation between statistics
and filling fraction obeyed in the Laughlin wavefunctions.

In order to proceed further, it is very helpful to work with a regulated version of
the theory that is consistent with finite dimensional matrices. Such a theory has been
proposed by Polychronakos [5]. In the next section, we review his construction, and in
section 5 determine the complete set of allowed wavefunctions for the theory.

2However, as discussed above, we must be careful to restrict to an appropriate subset of allowed X’s
and U ’s before the theory is well defined.
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4 Finite N Matrix Chern-Simons theory

In [5], Polychronakos proposed a modification of the action (16) to make it consistent with
matrices of arbitrary finite dimension N . He suggested that the resulting action should
provide a description of the states of a quantum hall droplet of finite extent composed of
N electrons. Further, he showed that many of the expected excitations of a quantum hall
droplet, including area-preserving boundary excitations and quasiholes with fractional
charge 1/k, appear naturally in the model.

The action proposed by Polychronakos is

S =
k

2θ

∫
dtTr

(
εijDX iXj − ωX2

i

)
+ i

∫
dtΨ†DΨ + k

∫
dtTr(A) .

Relative to the orginal matrix model (16), there are two additional terms. The first is a
potential term −ωX2

i analogous to the harmonic oscillator potential considered in section
2. Again, this serves to break the degeneracy arising from translation invariance and also
provides a Hamiltonian for the theory that selects a unique ground state.

The other new term involves complex bosons Ψi transforming in the fundamental
representation of the gauge group. With the additional Ψi term, the constraint becomes

[X1,X2]mn +
iθ

k
ΨmΨ†n = iθδmn . (19)

This is now consistent with finite dimensional X i since the left side is no longer traceless.
For N ×N matrices the trace of this equation gives

Ψ†mΨm = Nk . (20)

As demonstrated in [5] the constraints may be explicitly solved classically by using the
U(N) symmetry to makeX1 diagonal and Ψ real. The resulting system, with no remaining
gauge symmetry apart from the permutations, contains N real degrees of freedom, the
same number as N electrons in the lowest Landau level.3

As discussed in [5], a useful way to understand the relationship of this theory to the
original Chern-Simons theory is to note that in a particular gauge, we may solve the trace
part of constraint (20) by taking

Ψi = (0, 0, · · · ,
√
kN ) .

The resulting theory, with the harmonic oscillator potential taken to zero, retains a U(N−
1) × U(1) symmetry, and is described by the Lagrangian (16) and the constraint (17)
modified so that the (N,N) entry of the right hand side becomes iθ(1 − N). This is

3In fact, as discussed in [5] the theory obtained in this way is precisely the Calogero model for N
particles in one dimension.
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essentially the minimal modification of the original matrix Chern-Simons theory to make
it consistent with finite dimensional matrices. In theN =∞ limit, the constraint equation
formally goes over to the original one (17) so it seems reasonable to claim that the N =
∞, ω → 0 limit of the Polychronakos model is noncommutative Chern-Simons theory.
Alternately, we may think of this limit as a particular way of giving a well defined definition
of non-commutative Chern-Simons theory.

Let us now consider the finite matrix Chern-Simons theory quantum mechanically,
following [5]. Rather than solving the constraint before quantization, we will proceed by
first quantizing the theory and then applying the constraints as operator conditions on

the wavefunction. It is convenient to introduce the matrix A ≡
√

k
2θ

(X + iY ). Then the
canonical commutation relations give

[Aij, A
†
kl] = δilδjk [Ψi,Ψ

†
j] = δij .

Thus, we haveN2 creation and annihilation operators coming from the A’s and N creation
and annihilation operators coming from the Ψ’s. The hamiltonian is given by

H = ω(
N2

2
+NA) (21)

where NA =
∑
A†ijAji is the number operator associated with the A’s. Thus, energy

eigenstates will be linear combinations of terms with a fixed number of A† creation oper-
ators acting on the Fock space vacuum. Examining the trace part of the constraint (20),
we see that the left hand side is simply the number operator NΨ associated with the Ψ
creation and annihilation operators, so all wavefunctions must have a fixed number Nk
of Ψ† creation operators acting on the Fock space vacuum. Finally, as shown in [5], the
traceless part of the constraint (19) demands that the wavefunction be invariant under
SU(N) transformations, under which the creation operators transform in the adjoint and
antifundamental,

A† → UA†U † , Ψ† → Ψ†U † . (22)

Therefore, as pointed out in [5] the problem reduces to a group theory problem of deter-
mining all ways of combining Nk antifundamentals (symmetrized) and any fixed number
of adjoints to form a singlet of SU(N). In the next section we solve this problem explicitly
and write down the complete set of wavefunctions for the model. We will see that they
bear a striking resemblance to the Laughlin-type wavefunctions considered in section 2
and then argue that the two systems are in fact equivalent.

5 Determining the wavefunctions

From the results of the previous section, any wavefunction describing an energy eigenstate
will be a sum of terms of the form

A†i1j1 · · ·A†
iM
jM

Ψ†l1 · · ·Ψ†lNk |0〉

9



with Nk creation operators Ψ† and a fixed number M of A† creation operators acting
on the Fock space vacuum, such that the set of terms forms a singlet under the SU(N)
transformations (22). Here, we have written fundamental indices as upper indices and
antifundamental indices as lower indices. The problem of forming a singlet out of the Nk
antifundamentals and M adjoints is basically just a matter of contracting all the indices
using the invariant tensors of SU(N). In particular, we may contract any upper index
with any lower index using δij, or we may contract any set of N lower indices (or N upper
indices) with an N -index completely antisymmetric ε tensor. We may place the further
restriction that only one type of epsilon tensor may appear (either upper or lower index)
since the product of an upper index epsilon tensor and a lower index epsilon tensor may
be rewritten as a sum of products of 2N delta functions.

Let us consider first the indices on the Nk Ψ†s. The lower index on each Ψ† must
contract either with the upper index on an A† or with an epsilon tensor. If the Ψ† contracts
with an A†, the resulting object will again have a single lower index. Repeating this logic,
we conclude that each Ψ† will contract with some number of A†s and that the resulting
object will have its single lower index contracted with an (upper index) epsilon tensor.

On the other hand, consider a given upper index on an epsilon tensor. This will be
contracted either with a Ψ† or with the lower index on an A†, leaving another upper index.
In the second case, the new upper index will either contract with a Ψ† or another A†,
etc..., so it is clear that a given upper index on an epsilon tensor will contract with some
number of A†s and then with a Ψ†.

The previous two paragraphs show that the lower indices on the Nk Ψ†s and the upper
indices on the epsilon tensors (there must be k of them) must pair up completely (with
arbitrary numbers of intermediate A†s) giving k blocks of the form

εi1···iN (Ψ†A†n1)i1 · · · (Ψ†A†nN )iN . (23)

Because of the antisymmetry of the ε tensor, this expression will vanish unless all of the
ni’s are different, so without loss of generality, we may take 0 ≤ n1 < · · · < nN in each of
the blocks.

We have now accounted for all Ψ†s and epsilon tensors, but we may have some addi-
tional A†s with indices contracted amongst themselves. Such terms will be generated by
products of Tr(A†), . . . ,Tr(A†N ).4 Thus, a given singlet wavefunction may also include a
set of A†s of the form

(tr A†N )cN · · · (tr A†)c1 . (24)

To summarize, a general SU(N) singlet energy eigenstate wavefunction will be built
out of terms with identical numbers of A†s each containing k blocks of the form (23) plus
a block of the form (24) acting on the Fock space vacuum. Actually, this description is
rather redundant, and using Fact 3 from the appendix, it is straightforward to obtain the
following two minimal bases of these singlet energy eigenstate wavefunctions.

4Note that det(A†) as well as traces of higher powers of A† may be written in terms of these.
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The first basis is obtained by restricting to ci = 0 in (24), taking ni = i − 1 in k − 1
of the blocks (23) and taking ni arbitrary (but distinct) in the kth block to get

|{ni}, k〉 = εi1···iN (Ψ†A†n1)i1 · · · (Ψ†A†nN )iN
(
εi1···iN (Ψ†A†0)i1 · · · (Ψ†A†N−1)iN

)k−1 |0〉 ; .

(25)
where 0 ≤ n1 < · · · < nN . From (21), we find that these states have energy levels
E({ni}, k) = ω(N

2
(N + (k − 1)(N − 1)) +

∑
ni).

An alternative basis is obtained by fixing ni at their minimum values ni = i − 1 in
each block (23) and taking ci arbitrary in (24),

|{ci}, k〉 = (tr A†N )cN · · · (tr A†)c1
(
εi1···iN (Ψ†A†0)i1 · · · (Ψ†A†N−1)iN

)k |0〉 . (26)

The energy levels for these states are given by E({cm}, k) = ω(N
2

(N+k(N−1))+
∑
mcm).

It is not difficult to verify that these energy levels and degeneracies precisely match those
of (25).

Each of these bases realize precisely the known energy levels and degeneracies of the
model (given in [5] and references therein), so we may conclude that each gives a minimal
basis of linearly independent energy eigenstate wavefunctions.

We now compare the states (25) and (26) to the Laughlin-type wavefunctions (11)
and (12) respectively that we constructed in section 2. We see that the states have been
labeled in an identical fashion, and that states with the same label have the same energy
level relative to the respective ground states (with the identification ω = κ

B
). More

strikingly, the similarly labeled states have almost precisely the same form. In particular,
the formal substitution Ψ†i → 1, A†ij → δija

†
i maps a given state in (25) or (26) precisely

to the similarly labeled state in (11) or (12).
This comparison makes it obvious that the level k finite matrix Chern-Simons theory

has exactly the same energy levels and the same number of states at each energy level
as the theory of N composite fermions in the lowest Landau level. This guarantees that
the two theories are equivalent, since for each energy level, we can find an orthogonal
basis of wavefunctions in each of the theories and then define an isomorphism that maps
the orthogonal bases into each other. In this way, we generate an isomorphism between
the Hilbert spaces in the two theories that preserves the inner product structure and
maps the respective Hamiltonians into each other. In other words, the finite N , level
k = 2p + 1 matrix Chern-Simons theory is precisely equivalent to the theory of N (non-
interacting) composite fermions with 2p attached flux lines in the Lowest Landau level,
which is believed to accurately describe the filling fraction 1/k state of N electrons and
its excitations.5

It should be noted that despite the formal similarity between the bases (25), (26) and
(11), (12), the similarly labeled states do not precisely map into one another under the

5The equivalence has been established with the inclusion of a harmonic oscillator potential in each
model to break the translation invariance, but the strength of this may be taken to zero if desired.

11



isomorphism. For example, at k = 1 the basis (11) is orthogonal, while we have checked
that two states of the basis (25) in the second excited energy level are non-orthogonal.
However, given the explicit wavefunctions we have derived, it is straightforward to deter-
mine explicitly how the isomorphism acts on the bases we have derived at a given energy
level.

In any case, the ground state wavefunctions map into one another, so the Laughlin
wavefunction for filling fraction 1/k is equivalent to the wavefunction

|0k〉 =
(
εi1···iN (Ψ†A†0)i1 · · · (Ψ†A†N−1)iN

)k |0〉

of the matrix Chern-Simons theory.
It is interesting to note that the equivalence we have described is related to the work

of [15, 16] on the Calogero model [17]. They showed that the Calogero model for a certain
range of parameters could be identified with the physics of anyons (particles with fractional
statistics) in the lowest Landau level (originally conjectured in [18]). On the other hand,
it has been shown [19, 20] that the finite matrix models we have considered are equivalent
to the Calogero model with certain discrete values of the parameters (though not values
appropriate for describing anyons). Thus, the equivalence we have demonstrated is related
to two previously known equivalences, though our system does not contain particles with
fractional statistics, but rather composite fermions with a sort of “higher order” integer
statistics (higher order zeros in the wavefunction when particles become coincident).

6 Discussion

We have established a precise equivalence between the finite N matrix Chern-Simons
theory and the theory of N composite fermions in the lowest Landau level, believed to
accurately describe the filling fraction 1/k fractional Quantum hall state of N electrons.
To be precise, the latter theory is defined to be the theory of N non-interacting fermions
in the lowest Landau level with the constraint that the wavefunctions have a zero of order
≥ k whenever two of the particles become coincident.

In the large N limit, the composite fermion theory should provide a good description of
the ν = 1/k quantum Hall fluid of infinite extent, since the boundary of the quantum Hall
droplet goes off to infinity. On the other hand, as discussed in section 4, we expect that the
large N matrix Chern Simons theory (with the harmonic oscillator potential turned off)
should be equivalent to the original noncommutative Chern-Simons field theory. Thus,
as conjectured by Susskind, the noncommutative field theory at level k provides a good
description of the of the filling fraction 1/k state of electrons in a strong magnetic field, and
in particular is precisely equivalent to the Laughlin theory (and its present understanding
as describing noninteracting composite fermions in the lowest Landau level).
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A Facts to obtain a minimal basis of wavefunctions.

In section 5, we derived an exhaustive set of wavefunctions describing energy eigenstates
of the finite matrix Chern-Simons theory. In this appendix, we derive a number of facts
that help to determine a minimal basis of these wavefunctions.

Fact 1: Defining
A(z) ≡

∏

i<j

(zi − zj)

we have
A(z) = εi1···iN z0

i1
· · · zN−1

iN
.

Proof: From the definition, it is clear that A is the lowest order polynomial that is com-
pletely antisymmetric in its arguments, since any such polynomial must have a factor
(zi − zj) for each i 6= j. The second expression is also completely antisymmetric and has
the same order, so it must equal A up to a numerical factor which is easily checked to be 1.

Fact 2: Any polynomial
f(z) = εi1···iN zn1

i1 · · · z
nN
iN

(27)

may be written as a sum of terms of the form

g(z) = ScNN · · · Sc11 A(z) (28)

where Sk =
∑
i z

k
i . Conversely, any polynomial of the form (28) may be written as a sum

of terms of the form (27).

Proof: The polynomial f(z) is completely antisymmetric in its arguments, thus it vanishes
when any two of its arguments are set equal. This implies that A divides f , so f = SA
for some polynomial S. Since f and A are both totally antisymmetric, S must be totally
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symmetric. It is not difficult to show that any symmetric polynomial S(z1, . . . , zN) may
be written uniquely as a sum of terms of the form

ScNN · · · Sc11

where Sk =
∑
i z

k
i . To prove the converse, we simply note that polynomials of the form

(28) are completely antisymmetric and are thus allowed coherent state wavefunctions for
n fermions in a harmonic oscillator potential. On the other hand, as pointed out in sec-
tion 2, polynomials of the form (27) represent the coherent state wavefunctions for an
orthogonal basis of such states.

Fact 3: Let Ψ† and A† be an N -dimensional vector and an N ×N matrix of commuting
variables. Then any expression of the form

F (Ψ†, A†) = εi1···iN (Ψ†A†n1)i1 · · · (Ψ†A†nN )iN (29)

may be written uniquely as a sum of terms of the form

G(Ψ†, A†) = (tr A†N)cN · · · (tr A†)c1εi1···iN (Ψ†A†0)i1 · · · (Ψ†A†N−1)iN (30)

Conversely, any expression of the form (30) may be written uniquely as a sum of terms
of the form (29).

Proof: First note that there is a one-to-one correspondence between expressions of the
form (29) and polynomials of the form (27) obtained by taking the same ni, and a one-to-
one correspondence between expressions of the form (30) and polynomials of the form (28)
obtained by taking the same ci. By Fact 2, given any F , the corresponding polynomial f
may be written uniquely as a sum of terms of the form (28) which we denote

∑
gi. We

now prove that
F (Ψ†, A†) =

∑
Gi(Ψ

†, A†) (31)

where Gi is the expression corresponding to gi. First, note that for A†ij = δijzi we have

F (Ψ†, A†) = f(zi)
∏

Ψ†j =
∑

gi(zi)
∏

Ψ†j =
∑

Gi(Ψ
†, A†) . (32)

Next, let A† be an arbitrary hermitian matrix of complex numbers. Then A† = UDU † for
some unitary matrix U and real diagonal matrix D. It is straightforward to check using
(32),

F (Ψ†, A†) = F (Ψ†U,D) =
∑

Gi(Ψ
†U,D) =

∑
Gi(Ψ

†, A†) .

Now, we have shown that (31) holds for arbitrary Ψ† and any hermitian matrix A†. But
both sides of (31) are simply finite polynomials in the components of Ψ† and A† (and
not their Hermitian or complex conjugates). Therefore the equivalence clearly cannot
depend on A† being Hermitian so it must hold for any numerical matrix A† and vector
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Ψ†. This implies that the two polynomials are equivalent for all numerical values of their
arguments, so we may conclude that (31) is true as an identity between polynomials of
commuting variables. The fact that the decomposition (31) is unique follows immediately
from the uniqueness in fact 2. Thus, any F can be written uniquely as a sum of Gs, and
by an identical argument, we can show that any G can be written uniquely as a sum of
F ’s.
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