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1 Introduction

There are many oft-stated reasons for believing that the standard model of elemen-

tary particles is incomplete. One is the large number of “fundamental” parameters,

of order 20, for the “old” standard model. And this number increases to about

30 for the “new” standard model, which includes parameters describing neutrino

masses and mixings. Either way, one expects the future, better theory to contain

fewer parameters, implying that there should exist relationships between the existing

standard-model parameters. The search for possible relationships is the topic of this

note.

It is most likely that such relationships are very complicated and indirect. There-

fore the attempt to find them with the information at hand can and should be viewed

with deep suspicion and skepticism. But if there is a nonvanishing chance, however

small, that simple, discoverable relationships do exist, then it would seem that there

is little to lose by supposing that this is the case and engaging in the pursuit. It is

this attitude, with eyes wide open, that we adopt here.

Existence of such relationships will be most likely if the amount of “new physics”

between accessible energies, at and below the electroweak scale, and ultrahigh en-

ergies, at or beyond the grand-unification (GUT) or Planck scale, is minimized [1].

Therefore an implicit assumption taken here is that new physics at energies between

electroweak and GUT scales is absent or of minimal importance. This in turn im-

plies that the “hierarchy problem”, i.e. why the quadratically divergent Higgs-boson

mass is so small, is resolved at a level deeper than supersymmetry at the electroweak

scale, perhaps at the same level as for the resolution of the “cosmological constant

problem”. We shall return to this point in Section 6.

Existence of simple relationships between standard model parameters may also

imply that the dynamics of the future theory is relatively simple. Otherwise, why

should any such simple relationship exist? This is an additional stimulant for at-

tempting the search.

Our considerations will proceed in three stages. The starting point will be a review

of the standard model parameters and of the “gaugeless limit”, which expresses in a

way the conventional wisdom on how the standard model is constructed. We then

discuss an intermediate version which relates parameters in the gauge sector to those

in the Higgs sector. Our final, most speculative step is to relate them all to parameters

in the gravitational sector.
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2 Standard Model Parameters

The standard model parameters include the three gauge coupling constants, which we

here assume evolve from a common source at the GUT scale characterized by a GUT

fine-structure constant αgut ≈ 1/40 or so. Many of the remaining parameters lie in

the Higgs sector. The two most important are the strength v of the Higgs condensate

(the vev) and the strength λ of the elastic scattering amplitude of the Higgs boson

with itself. In addition there are many Yukawa coupling constants hi of the Higgs

fields to quarks and leptons, responsible for their masses and mixings, including CP

violating effects. By far the largest of these couplings is that of the Higgs boson to

the top quark, which we simply denote by h. In this note we lack the sophistication

to consider the myriad of smaller couplings, and will effectively set them to zero.

We shall keep both parameters from the gravitational sector. The scale of the

Planck mass M , which determines Newton’s constant, will be considered equivalent

to the GUT, grand-unification scale, because again we will lack the sophistication

to distinguish them. However we shall not neglect the cosmological-constant scale

Λ ∼ µ4, with µ ∼ 30 cm−1 ∼ 7× 10−4 eV .

Finally, we shall have nothing to say about the parameter θ, which controls CP

violation in the strong-interaction QCD sector, and will set it to zero.

3 The Gaugeless Limit

At electroweak energy scales and above, all gauge couplings are small, and it is a

reasonable approximation, both for phenomenological and conceptual purposes, to

set them to zero, most efficiently by letting αgut → 0. The dynamics left behind is

that of the Higgs sector, which is brutally exposed in all of its intrinsic ugliness. The

intermediate bosons become massless, allowing rapid decay cascades of all quarks to

the up quark. All leptons, including the electron, decay to neutrinos via (longitudinal)

W emission. The longitudinal W ’s remain coupled in the gaugeless limit, emerging as

the massless Goldstone modes associated with spontaneous symmetry breaking [2].

This gaugeless limit quite accurately expresses (in reverse) the textbook picture

of how the standard-model electroweak dynamics works: first the Higgs mechanism

in isolation is constructed; then the effect of the gauge interactions is included. But

it is possible that this two-step approach is in the long run better viewed as a linked,

single step. Something like this is expressed in the “second gaugeless limit”, to which

we now turn.
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4 The Second Gaugeless Limit

If standard-model parameters are linked, it should be the case that if αgut is set to

zero, other standard-model parameters are changed. In searching for simple ways this

might occur, we shall ask that the limiting theory is not pathological.

An example of one such limit can be obtained by starting with the assumption

(true in supersymmetric theories, and in some sense in Coleman-Weinberg scenar-

ios of radiatively induced symmetry breaking) that the quartic Higgs coupling λ is

proportional to g2, or αgut:

λ ∼ g2 ∼ αgut . (1)

Then in order for the Higgs mass µ2 ∼ λv2 to remain finite, we must have

v2 ∼ g−2 ∼ α−1
gut . (2)

If one demands that fermion masses remain finite and nonvanishing, then the Yukawa

couplings h must be proportional to the gauge couplings g:

h2 ∼ g2 ∼ αgut . (3)

Evidently, the gauge boson masses

m2
W,Z ∼ g2v2 (4)

also remain finite and nonvanishing.

The net result in this “second gaugeless limit” is a noninteracting theory of mas-

sive quarks, leptons, gauge bosons, and Higgs bosons. Conceptually, it is a radical

departure from the conventional picture, if only because the Higgs Yukawa coupling

constants are proportional to gauge couplings. How does this occur? Is it through

symmetries, or dynamics, or geometry, or some combination? Examples of this kind

of behavior do exist in the literature, in terms of attempts to relate the couplings

through an assumed cancelation of divergent radiative corrections between gauge and

Higgs sectors [3, 4].

It is especially interesting that in this second gaugeless limit the dependence of

the standard model Lagrangian density on the coupling constants g ∼ h is extremely

simple. After appropriate field redefinitions, the residual dependence is an overall

multiplicative factor 1/g2 in front of the bosonic Lagrangian, with no dependence at

all within the fermionic sector (in the limit of only the top quark possessing mass).
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To see this, one simply rescales the gauge potentials A in the familiar way, and does

the same with the Higgs fields φ as well

gA→ A (5)

gφ→ φ . (6)

If one wishes, one may also rescale the fermion fields in the same way,

ψ → g−1ψ (7)

in which case the g-dependence of the entire Lagrangian density is simply an overall

coefficient g−2.

5 A Third Gaugeless Limit

We now go still further and look for connections between the gauge/Higgs parameters

and the gravitational sector. Our starting point is within the gauge sector, and can

be motivated by the hypothesis that gauge bosons originate at the GUT scale as

composites of other degrees of freedom. In more familiar contexts, this is expressed

as a compositeness condition [5],

Z3 =
g

g0
→ 0 , (8)

where the limit g0 → ∞ implies compositeness: the probability Z3 of finding a bare

boson within the physical boson becomes zero in the limit.

The observed coupling g is typically related to g0 as follows

1

g2
=

1

g2
0

+ c log → c log , (9)

where the logarithm is typically an integral over contributions from the boson’s con-

stituents. We now adopt the same structure, but using gravitational parameters as

arguments of the logarithm:

1

αgut
=

4π

g2
' cg

4π
`n
M2

µ2
. (10)

If the coefficient cg of the logarithm is chosen to be three, there is good numerical

agreement. But no claim of a “derivation” of that coefficient, however, is implied,

nor indeed of the functional form.
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Once the gauge couplings are expressed in such a way, it becomes reasonable to

assume that the Higgs couplings are also expressed in a similar way

4π

λ
∼ cλ

4π
`n
M2

µ2

4π

h2
∼ ch

4π
`n
M2

µ2
. (11)

Only the Higgs vev remains to be estimated. Given the dependence of the other

couplings upon the gravitational parameters, a natural choice is the rather well-known

relation [6]

v2 ∼ Mµ (12)

or, if one wishes

v2 ∼ Mµ `n
M2

µ2
. (13)

In this variant, the “second gaugeless limit”, is attained in the limit

M → ∞
µ → 0 (14)

0 < Mµ <∞ . (15)

If one chooses to omit the logarithm in Eq. (13), then one obtains in the limit a

noninteracting theory of massless quarks, leptons, Higgs bosons, and gauge bosons.

Clearly both the massless and massive options should be considered.

Numerically, one has for the value of the v2

v2 ∼ 6× 104 GeV2 . (16)

If one uses the Planck scale for M in Eq. (12), we obtain

Mµ ∼ 107 GeV2 (17)

which is a little too large. On the other hand, if the GUT scale of, say, 3× 1015 GeV

is used in Eq. (13), then

Mµ ∼ 103 − 104 GeV2 (18)

which is a little too small. Inclusion of unknown coefficients and/or the logarithm

can in principle provide the needed numerical agreement. More important than that

is to find even a hint of such behavior from an underlying theory.
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The above speculations can be expressed in differential form, in terms of Gell-

Mann-Low equations [7]. Our basic premise is that the GUT scale gauge and Higgs

couplings are sensitive to the value of the cosmological constant. This sensitivity is

to be expressed in terms of familiar-looking equations

µ
dg2

dµ
= βg g

4 + · · ·

µ
dh2

dµ
= βh h

4 + · · · (19)

µ
dλ

dµ
= βλ λ

2 + · · · .
While these look like the usual renormalization-group equations, they are not. They

express the dependence of the usual running coupling constants, evaluated at the

GUT scale, upon the value of the cosmological constant. While the general form of

the dependence has been assumed to be the same, these “cosmological β-functions”

differ in detail; in particular the sign is changed for the gauge couplings but not for

the Higgs couplings.

We may also write a Gell-Mann-Low equation for the Higgs vev. Without the

logarithm we have

µ
dv2

dµ
= v2 + · · · (20)

and with the logarithm

µ
dv2

dµ
= v2(1− βgg

2) + · · · . (21)

No matter which way this idea is expressed, the main question is whether such a

dependence of standard model parameters on the cosmological constant is credible.

In its favor are the rough numerical agreements, which we at least regard as unforced.

Also perhaps in favor of this scenario is the feature that the dynamics becomes triv-

ial, including the vanishing of the vev, in the limit of vanishing of the cosmological

constant. This is an avenue for at least reducing the electroweak hierarchy problem

to that of understanding the nature of the cosmological constant. And it clearly de-

mands that the role of the cosmological constant in the future theory be a central

one.

6 A Possible Connection to Cosmology

Recently there has been a line of argument [8] which utilizes analogies of the standard

model vacuum and its excitations with that of quantum liquids, in particular with
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3He-A. In this visualization, it is rather natural to expect a nearly vanishing vacuum

pressure, characteristic of an infinite liquid in equilibrium at zero temperature. It

is not much of a stretch to thereby obtain a vanishing vacuum energy (cosmological

constant) as well in that limit. If the liquid has a boundary, to be identified with

an event horizon, then there will be corrections, leading to a nonvanishing but small

cosmological constant. A rather concrete example of this general idea has been pro-

vided by the picture of a black hole recently put forth by Chapline et al.[9] They

assume that a phase transition occurs on the horizon between the conventional ex-

terior Schwarzschild black-hole spacetime and an unconventional interior black-hole

spacetime, taken to be static de Sitter space. This interior space possesses a cosmo-

logical constant, which scales as follows:

Λ ∼ µ4 ∼ R−2 (22)

where R is the radius of the black hole. With the coupling constant relations obtained

in the previous section, this would imply that the standard model parameters within

the black hole differ from those outside, in such a way that for infinite radius the gauge

couplings and particle masses vanish. In the opposite limit of a Planck-radius black

hole, the gauge couplings become strong and the particle masses approach the Planck

scale. If our universe contains a similar de Sitter horizon [10], then the standard

model parameters will scale in a similar way. In particular, because of the above

behavior of the cosmological constant, the electroweak vacuum energy v4 will scale as

v4 ∼M2µ2 ∼M3R−1 . (23)

There will have to be a close connection between cosmology in the large, in particular

horizon structure, and the existence and nature of the Higgs condensate [11]. This is

reinforcement for the arguments regarding the electroweak hierarchy problem made

in the introductory section of this note.

7 Concluding Comments

These ideas are of course extremely speculative. Their value is in proportion to what

further, if anything, can be done with them. We do find encouragement in the nu-

merics, and in the simplicity and cogency of the relations which have been presented,

especially with respect to the Gell-Mann-Low equations for the couplings. In the

case of the renormalization group equations of the standard model, the coefficients
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are simple and calculable by essentially perturbative techniques. Perhaps there is an

analogously simple scheme (but radically different in its physics!!) to be found. And

the fact that the logarithmic factors, logM2/µ2, associated with gauge and Higgs cou-

plings only appear as a multiplier of the entire standard-model Lagrangian density

might indicate that they are some kind of extra-dimensional phase volume. However,

implementation of this idea in more concrete terms is beyond the scope of this note.
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