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Abstract

We examine the phenomenological consequences of a supersymmetric bulk in the
scenario of large extra dimensions. We assume supersymmetry is realized in the bulk
and study the interactions of the resulting bulk gravitino Kaluza-Klein (KK) tower of
states, with supersymmetry breaking on the brane inducing a light mass for the zero-
mode gravitino. We derive the 4-d effective theory, including the couplings of the bulk
gravitino KK states to fermions and their scalar superpartners. The virtual exchange
of the gravitino KK states in selectron pair production in polarized e™e™ collisions is
then examined. We find that the leading order operator for this exchange is dimension
six, in contrast to that of bulk graviton KK exchange which induces a dimension eight
operator at lowest order. The resulting kinematic distributions for selectron production
are dramatically altered from those in D = 4 supersymmetric scenarios, and can lead
to a enormous sensitivity to the fundamental higher dimensional Planck scale, of order

20 — 25 X /5.
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1 Introduction

There has been much interest recently in the framework, proposed by Arkani-Hamed, Di-
mopoulos, and Dvali (ADD) [1, 2], which resolves the hierarchy problem by exploiting the
geometry of spacetime. In this scenario, the fundamental scale of gravity in a higher D = 4+§
dimensional spacetime is assumed to be of order the electroweak scale ~ 1 TeV. The appar-
ent weakness of gravity in our 4-dimensional world originates from the large volume of the
additional ¢ spatial dimensions. The 4-dimensional Planck scale is no longer a fundamental
scale, leaving the electroweak scale as the ultraviolet cut-off of the low-energy effective the-
ory. The gauge hierarchy is thus effectively eliminated and reduced to the more tractable
problem of stabilizing the higher dimensional radii [3]. In this scenario, gravity propagates
throughout the higher dimensional volume, known as the bulk, whereas the Standard Model

(SM) fields are confined to a 3-dimensional brane, or wall.

In this theory Gauss’ Law relates the Planck scale of the 4-dimensional theory, Mp,
to the fundamental scale of gravity, Mp, through the volume of the compactified dimensions
Vs via

Mp = VsME* (1)

where Mp = 1.2 x 10* GeV is the 4-d Planck scale. Setting Mp ~ 1 TeV then determines
the compactification radius R. of the extra dimensions, with the exact relationship being
set by the geometry of the compact dimensions. Assuming that the extra dimensions are
of toroidal form and are all of equal size, we have Vs = (27rR.)°. R. then ranges from a
sub-millimeter to a few fermi for 6 = 2 to 6. The case of § = 1 is excluded as it predicts
corrections to Newtonian gravity at distances comparable to those in the solar system. A
similar scenario can be realized in string theory where the string scale plays the role of

the higher dimensional fundamental scale [4], with the string scale acting as the ultraviolet



cut-off of the theory.

Proposals for the localization of SM matter and gauge fields to a 341 dimensional wall
have been made in the context of topological defects of higher dimensional field theories [5].
Such localization can occur naturally in string theory via D-branes where the SM particles
are represented by open strings whose ends lie on the D-brane, while gravitons, which carry

no gauge charges, may propagate in the bulk and correspond to closed strings [2, 6, 7].

Since this scenario modifies gravity at the electroweak scale, it is natural to expect
the emergence of new phenomena at the TeV scale which may reveal itself in experiments
and lead to signatures very different from SM predictions. Upon compactification, the bulk
graviton expands into a Kaluza-Klein (KK) tower of states, referred to as a bulk graviton KK
tower, which interact with the SM fields on the brane. Collider signals for the graviton KK
states have been studied by various authors [8, 9], who have considered the virtual exchange
of bulk graviton Kaluza-Klein towers, processes which radiate gravitons into the bulk, and
stringy excitations of the Standard Model particles. Data from the Tevatron, LEPII, and
HERA [10] presently constrain Mp 2 1 TeV for all values of §, while the LHC and a future
high energy e*e™ Linear Collider are expected to probe fundamental scales in the 5 —9 TeV

range. Astrophysical and cosmological considerations [11] place stringent bounds, of order

> 1 TeV

~

Mp =z 100 TeV, for the case of § = 2; these limits weaken substantially to Mp
for higher values of . Mechanical experiments have tested the inverse-square nature of the
gravitational force law down to distances of 150um [12] for the case of ¢ = 2. This scenario is
thus consistent with all data as long as the number of extra dimensions is greater than one,

with the case of § = 2 being disfavored in terms of being relevant to the hierarchy problem.

While the original motivation for the ADD scenario was to solve the hierarchy problem

without the introduction of low-energy supersymmetry (or technicolor), one still might ask



whether supersymmetry plays a role in such a scenario. Clearly, bulk supersymmetry is
not in conflict with the basic assumptions of the model. In fact, various reasons exist for
believing in a supersymmetric bulk, not least of which is the motivation of string theory. As
discussed above, D-branes of string theory provide a natural mechanism for the confinement
of the SM fields. If string theory is the ultimate theory of nature then the proposal of
ADD might be embedded within it with a supersymmetric bulk, i.e., a bulk supporting a
supersymmetric gravitational action. In addition, extra dimensional geometries have been
shown to provide novel methods for breaking supersymmetry [13, 14|, the possibility that
a supersymmetric bulk might provide a source for a tiny cosmological constant has been
discussed [15], and supersymmetry might also serve as a mechanism for stabilizing the bulk
radii. Supersymmetry has also been considered in the context of warped extra dimensions

present in the Randall-Sundrum scenario of localized gravity [16].

In this paper, we investigate the consequences of a supersymmetric bulk in the ADD
scenario. If bulk supersymmetry remains unbroken away from the brane, then it is natural
to ask what happens to the superpartners of the bulk gravitons, the gravitinos. The bulk
gravitinos must also expand into a Kaluza-Klein tower of states and induce experimental
signatures. Up to now, the phenomenology of such gravitino KK states has been unex-
plored. The existence of a light graviphoton, which is present if there is no orbifolding, in
supersymmetric ADD has been shown to alter the non-supersymmetric ADD phenomenology
[17], and hence we also expect large effects from the gravitino sector. Here, for concrete-
ness, we examine the virtual exchange of the bulk gravitino KK tower in superparticle pair

production.

We now outline the approach taken in this paper. We study the compactification of
the gravitino sector of a generic supergravity theory living in the bulk and work out the form

of the effective action describing the free part of the reduced action on the 3+ 1 dimensional



brane to which the fields of the Minimal Supersymmetric Standard Model (MSSM) are
assumed to be confined. We assume that supersymmetry on the wall is broken, giving rise
to masses for the zero-modes of the Kaluza-Klein tower resulting from the reduction of
the higher dimensional gravitinos, and shifting the masses of all higher modes. We make no
special assumptions about the nature or origin of confinement of the MSSM fields to the wall.
We then derive the couplings of the Kaluza-Klein modes of the higher dimensional gravitinos
to fermions and their scalar superpartners on the wall, yielding an effective 4-d theory which
we then use to study the corrections to collider signatures of certain processes in the MSSM.
For purposes of illustration, we work with a 10 dimensional theory; the generality of our
results should be apparent (up to considerations of representations of fermions in various

dimensions).

The gravitino zero-mode acquires a mass from the spontaneous breaking of super-
symmetry on the brane, with this mass being proportional to ~ A%, ¢, /Mp, where Agpsy
represents the supersymmetry breaking scale in a generic model, noting that the zero-mode
gravitino couples with the usual Mp" strength. This familiar 4-d expression can also be seen
to arise from the volume factor after integrating over the ¢ extra dimensions and using Eq.
(1). Various SUSY breaking scenarios thus yield different predictions ranging from ultra-
light gravitinos from weak-scale supersymmetry breaking models, light gravitinos in gauge
mediated SUSY breaking, and heavier gravitinos in models of gravity and anomaly mediated
SUSY breaking. The possibility of light gravitinos is an interesting one and their generic col-
lider [18] and astrophysical [19] implications have been studied, with direct collider searches
yielding a bound of ms/, 2 107° eV [20]. In particular, the case of gauge mediated SUSY
breaking (GMSB) has been intensively studied [21], as a light gravitino modifies the standard
collider search techniques for supersymmetry and provides a good candidate for warm dark

matter [22]. In this paper, we work in the context of gauge mediated supersymmetry as it



naturally affords a light gravitino state, however our results apply to any supersymmetric

model with a light gravitino, including weak-scale breaking models.

We focus on the effects of the virtual exchange of the bulk gravitino and graviton KK
tower states in the process ete™ — é7é~ at a high energy Linear Collider (LC). This process
is well-known as a benchmark for collider supersymmetry studies [23], as the use of incoming
polarized beams enables one to disentangle the neutralino sector and determine the degree
of mixing between the various pure gaugino states. The effects of the virtual exchange of a
bulk graviton KK tower in selectron pair production has been examined in [24] for the case
of non-supersymmetric large extra dimensions. Here, we will see that the introduction of
bulk gravitino KK exchange greatly alters the phenomenology of this process by modifying
the angular distributions and by substantially increasing the magnitude of the cross section.
We find that the leading order behavior for this process is given by a dimension-6 operator,
in contrast to the dimension-8 operator corresponding to graviton KK exchange. This yields
a tremendous sensitivity to the existence of a supersymmetric bulk, resulting in a search

reach for the ultraviolet cut-off of the theory of order 20 — 25 x /s.

Our paper is organized as follows: In Section 2 we present the Kaluza-Klein decom-
position of the gravitinos in such a model. In Section 3 we use the general Noether technique
to couple the gravitino Kaluza-Klein states to matter fields, and in Section 4 we present the
phenomenology of this scenario, pointing out some generic features of such models. Our

conclusions are given in Section 5. Various details are relegated to the appendices.

Our notation in this paper is as follows: We assume space-time possesses 3 + 1 +
0 dimensions, with matter confined to a 3 + 1 dimensional brane, and pure supergravity
propagating also in the extra 6 dimensions. Letters from the Greek alphabet are used to
denote curved (world) indices while those from the Latin alphabet denote flat (tangent space)

indices. Hatted symbols range over the full 4 + ¢ dimensions; barred ones are restricted to



the ¢ extra dimensions, while those without any decoration live on the 3 + 1 dimensional
brane. Coordinates over the entire D = 4 + § dimensional manifold split as z# = (z#,y").

Our Minkowski metric convention is n,; = (+1,—1,...,—1).

2 Kaluza-Klein Excitations of the Gravitino

We begin by reminding the reader of some general observations about string theory and su-
pergravity in ten and eleven dimensions. Recall that type ITA (ten dimensional) supergravity
with two supersymmetries of opposite chirality can be deduced via dimensional reduction
of the unique 11 dimensional (N=1) supergravity theory. The type ITA superstring theory
whose low energy effective action gives rise to the type ITA supergravity admits Dp-branes
with p even, and is S-dual to eleven dimensional M-theory [25], with the eleven dimensional
supergravity as its low energy limit. M-theory is believed to unify the five known string
theories. The type IIB string theory (which admits Dp-branes with p odd) is T-dual to the

type ITA theory.

D-branes are extended string theoretic objects on which open strings terminate [7].
Only closed strings can propagate far away from the D-brane, which on a ten dimensional
background is described locally by a type II string theory whose spectrum contains two
gravitinos (their vertex operators carry one vector and one spinor index). The D-brane
introduces open string boundary conditions which are invariant under just one supersymme-
try, so only a linear combination of the two original supersymmetries survives for the open
strings. Since open and closed strings couple to each other, the D-brane breaks the original
N = 2 supersymmetry down to N = 1. The low energy effective theory will then be a
D =10, N = 1 supergravity theory with a single Majorana-Weyl gravitino which couples to

a conserved space-time supercurrent. For our model, we assume that the Standard Model



fields are confined to a 3-brane, with pure supergravity living in the bulk of space-time.

Attempts at constructing a Standard Model on D-branes can be found in [26].

Pure supergravity in four dimensions contains as physical fields the vierbein e, and
the gravitino ¥, [27, 28]. In the free field limit, the gauge action of supergravity reduces to
the standard Fierz-Pauli action (the linearized part of the Einstein-Hilbert action), together
with the Rarita-Schwinger action, which are the unique ghost free actions for a spin 2 and

spin 2 field [29, 30].

The spin of a field ®(z) is given by a representation of the tangent space group at a
fixed point z [31, 32]. Under the above compactification, the metric g;;, decomposes in four
dimensions as a metric g,,,, while the components g,; with one index ranging over the extra
dimensions are seen in four dimensions as a vector, and gz transforms as a scalar. To study
the behavior of spinors on a general manifold, we must introduce a set of orthonormal basis
vectors (the vielbein) e,™(z) in the tangent space of the manifold at the point z, with fi
transforming as a vector index under general coordinate changes, while m transforms as a
scalar under such diffeomorphisms, but as a local Lorentz vector index under SO(D —1,1),
i.e., the Lorentz group acting in the tangent space at the point z, satisfying [33, 34]

mn m, n

’[] = gﬂﬁeﬂ eﬁ s gﬂﬁ e nﬁlﬁeﬂmeﬁﬁ. (2)
Associated with the local Lorentz symmetry is a gauge field for local Lorentz transforma-

tions, the spin connection w4, transforming as a covariant vector under general coordinate

transformations.

We now assume the vacuum of space-time to be of the form M* x T°, where M*
is four dimensional Minkowski space-time and 7% = S! x ... x S, the direct product of
six dimensions each compactified on a circle. This product form of the vacuum insures

four dimensional Poincaré invariance. Physical fluctuations of space-time can be treated in
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perturbation theory by expanding the metric around this vacuum.

Consistent with the symmetry of the vacuum state, we assume the vielbein takes the

form

B - B (z) ZaA%(jIJ) K2 (y) | 3)
0 e (Y)

where we have used the local SO(9,1) gauge symmetry to set the E;/ components to zero.
Here e, is the vielbein on the compactified space, A% are the massless gauge fields of the
symmetry group of the internal space (here U(1)%), and the K¢ are the Killing vectors

associated with this symmetry.

The gravitino kinetic term of the Lagrangian is

?

E7L = éxifﬂ AP 7,0, (4)

with F being the determinant of the vielbein in ten dimensions, ['#”? the antisymmetric

product of three I' matrices defined by
(op %) | DA
Fup:F[up}:g(puppp_ppupp_i_“')’ (5)
and ¥, a Majorana-Weyl vector-spinor. We have suppressed the spinor indices for notational

clarity.

We use I'* to denote Dirac gamma matrices for the full D dimensional space, and v*
to denote them on the 3 4 1 dimensional brane. As usual, the Dirac algebra (in the tangent

space) is spanned by a set of constant matrices (which in 10 dimensions are 32 x 32)

{1} = 29™". (6)



The curved space Dirac matrices are field dependent and given by

Ii(z) = e (2)I™ (7)

m
satisfying

{T7(2),T7(2)} = 29™(2). (8)

A convenient representation of the algebra (6) in ten dimensions which makes manifest

the four dimensional decomposition is given in Appendix A. The SO(9,1) generators are

o= = I T (9)

FSUISS

The first four matrices in the set (53) furnish a reducible representation of SO(3,1). Taking

account of the identity acting in the internal 23 = 8 dimensional spinor space, we see that
a D = 10 Dirac spinor decomposes into 8 D = 4 Dirac spinors. A D = 10 Majorana spinor
would decompose into 8 Majorana spinors in four dimensions, and a D = 10 Majorana-Weyl
spinor would decompose into four Majorana spinors, since the D = 10 chirality condition
'3 = +W (where I';; = il'g ... g plays the role in ten dimensions of -5 in four dimensions)
would pair-wise relate half the degrees of freedom, leaving four D = 4 Majorana spinors.
There will also be 24 Majorana spin—% fields. After this reduction we recover the standard
definition of the four dimensional spinor generator. The metric in ten dimensions decomposes

into one spin-2 graviton in four dimensions, 6 vectors, and 21 scalars.

In ten dimensions, a Majorana-Weyl spinor contains 16 real components. To see
this, note that in ten dimensions, the Dirac matrices are 32 x 32, so a Dirac spinor would
contain 32 complex components. The Majorana condition reduces this in half by imposing
a reality condition. Finally, the Weyl condition reduces this again, for a final total of 16

real components. The equations of motion for this spinor imply that not all of the remain-



ing components are independent, reducing further the independent propagating degrees of

freedom.

For simplicity we assume the compactification radii of all six dimensions to be the
same, though the generalization is obvious. Physically this compactification amounts to the

identification
y" = y" +2mnR,, (10)
with n an arbitrary integer and R. the common radius of the compactified dimensions. The

condition on the fields then becomes, recalling our notation z# = (z#,y"),

\I/ﬂ(x”,yﬁ—l—anRc) = \I/ﬂ(x”,yp). (11)

The transformation properties of the Rarita-Schwinger field W are the product of a
vector and a spinor. The covariant derivative Vv is given by

?

4Wﬂmﬁ2mﬁ . (12)

Vi :8,1+

where ™" are the SO(9,1) generators given in (9), and wyms is a sum of the standard spin
connection and terms quadratic in gravitino fields [35], with supercovariantization giving rise
to four fermion terms.

Using the vielbein to translate from curved to flat indices, we can rewrite the action

(4), after linearizing the spin connection, in the form

BTG = %@m [ 9,0 | (13)
where
_ NI
Uy = B0 (14a)
On = E,0,. (14b)



The linearized action possesses the local Abelian gauge symmetry
Sy = e, (15)

with € a Majorana-Weyl spinor. This is the same linearized gauge invariance one would
expect of the fermionic part of the gauge action of supergravity. The above invariance

follows from the realness of £ and the total antisymmetry of I

To make the Kaluza-Klein decomposition [32], we expand the Rarita-Schwinger field
in eigenfunctions of the compactified space (of dimension ¢, which for now is taken to be

arbitrary), assumed here to be the torus 7°, with volume Vs = (27 R,)°. The expansion is

wa() = Y TetD) R (10

The four dimensional fields are seen to arise as the coefficients in this expansion.

We take as our starting point the linearized action (13). We now substitute (16) to-
gether with (3) in the action (13), then decompose the 10 dimensional indices as m = (m, m),
with the indices m and m transforming as vectors under SO(3,1) and SO(J) respectively.

The Rarita-Schwinger field then splits as

Vs = (U, Vi) s (17)

where
v, = E M, (18a)
VU, = B0, = eV, (18b)

Introducing the shorthand notation

—i8 -y +it -y
= = 19
& RC ) ﬂ RC ) ( )

11



we find

e e 55 (s« s

§=—00 t=—00

with e being the determinant of the four dimensional vierbein. The first set of terms propor-
tional to e®™¥ and with the derivative acting on the fields (IDZ and @g are the kinetic terms

since the derivative is taken with respect to coordinates in M*, while the remaining terms
proportional to e® with the derivative acting on the exponential e? will give rise to the mass

terms of the spin 2 and % fields in the effective four dimensional action. It is important

2
to note that fields with indices ranging over the 3 + 1 dimensions (®,,) appear in this La-
grangian coupled to those with indices in the extra ¢ dimensions (@), in both the kinetic

and mass terms. This mixing prevents us from interpreting ®,, as the four dimensional

Rarita-Schwinger field. We introduce the field redefinition [36, 37]

_ 3 1 .
xo(z) = @ (z) + ifmFTCIDQ(:I:), (21)

which will be identified as the four dimensional Rarita-Schwinger field. In what follows,
we shall systematically drop all terms coupling only fields with vector indices in the extra
dimensions (these would give rise to spin 3 ! terms in the four dimensional effective theory),
and concentrate on the gravitino (spin %) part of the effective theory. The field redefinition
(21) completely decouples the kinetic term into spin % and spin % pieces, but the mass term

still contains couplings between spin % and % fields. The mixing with spin % in the mass

12



term is due to the fact that the field x7 transforms as the

B0 [0)=0] - ()0 e G)eld)

representation of SO(1,3). To project out the (%,O) @ (0, %) part we impose the SO(3,1)

invariant gauge condition
"% (z) = 0, (23)
leaving only a spin % field.

To evaluate the derivatives in the mass terms of (20), we note that they are taken
over coordinates in the extra dimensions, and since g ranges over the same coordinates, they

yield

aﬁe'@ = Rictﬁe'@. (24)

Putting together (20), (21) and (24), we see that the spin 2 part of the Lagrangian takes the

form

Lwy) = g 2 e T OA ) ~ R EETIT () | (25)

C

where ¥¥ = (x%)17° ® 1g, the ¥™ are given by restricting the indices of the SO(9,1)
generators (9) to the first 3 + 1 dimensions, and we have summed over 7 ranging over the

extra dimensions.

The only dependence on the coordinates of the extra dimensions in (25) is isolated

in the exponential e**”. Integrating over the extra dimensions gives the four dimensional

effective Lagrangian

Lussla) = [dndys Llzy). (26)

13



The integrals in (26) can be performed using the orthogonality of the exponentials, with the

result
TR TR i ‘5 0
dyl.../ dys exp {—— (§—t ] = Vs st » (27)
/ﬂRc —mR.c R ]:Hl t
where V; = (27R.)° is the volume of the compactified extra dimensions. The effective

Lagrangian defined by (26) can be written as a sum over Kaluza-Klein states

Leprlz Z Lips(x) (28)

with the Lagrangian for each level
- v =5 mn 5 .3 m 1 7 g
! Leff( ) = 5 Xm(‘r)r p(anXp(‘r)) - ZXm(‘r)E p(ﬁr Sﬁ)Xp(x) ’ (29)

and the fields x3, describing an individual Kaluza-Klein mode. In (29), the '™ and Y™
are still 32 x 32. We note that masses of the Kaluza-Klein excitations of the gravitino are the
same as for the gravitons. To arrive at a proper gravitino mass term, we must diagonalize

the term I's;; in the internal space. First we note that in the representation (53)

rmwe — ,ymnp ® 18 ’
(30)
nmn. . gmn ® 18:

with the v""P and ¢™" being products of 4 x 4 four dimensional Dirac matrices. We decom-
pose the fermions into four dimensional ones x5 — wq; with @ =1...32 and a = 1...4
spinor indices in ten and four dimensions respectively, and 7 = 1...8 serving as an internal
index, and then use 2, = (x3,)"°®1g. Making a unitary transformation on the fields allows

us to diagonalize I'"s; without affecting the kinetic term since in the chosen representation,

14



it is already diagonal in the internal space. After diagonalization in the internal subspace,

the Lagrangian can be written as

with the mass eigenvalue coming from the diagonalization and is given by mf’; = (1) ‘%g .
The fields associated with the negative mass eigenvalues can be redefined to remove this
sign, however, care must be taken with the Feynman rule for the coupling of the gravitino
to matter. The ~° in the mass term can be removed via a chiral rotation of the fields, which
introduces an extra factor of i into the mass without affecting the kinetic term. The sum
in (31) runs over the four Majorana vector-spinors in four dimensions. We have applied
the Majorana-Weyl condition in ten dimensions, which, as previously discussed, yields four
Majorana spinors after the decomposition into four dimensions. Generally, the masses of
the four gravitinos at each Kaluza-Klein level can be shifted by supersymmetry breaking
effects on the brane. When we consider the phenomenology of such models, we will assume
that the N = 4 supersymmetry is broken at scales near the fundamental scale Mp, with
only N = 1 supersymmetry surviving down to the electroweak scale. The phenomenological
contributions from the heavy gravitinos associated with the breaking of the extended super-
symmetry near the fundamental scale will be highly suppressed, due to the large mass for

these individual excitations.
Using the identity
P = i, £
the compactified action for each gravitino can be put in the standard form for the action of

a massive spin % particle in four dimensions

- P 1mnr—§' 5,7 mz 3 m N
e L) =~ B it P ) — TGP b P, (39)

YR
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The mass term appearing in (33) has the same form as the mass generated by spontaneous
breaking of supersymmetry. The massless limit of the propagator associated with this La-
grangian contains singular terms, but these terms are all proportional to ¢™ or ¢”, and since
wm couples to a conserved current (the Noether current associated with supersymmetry,
hence the interpretation as the gauge field of supersymmetry), their contributions vanish.
We assume that supersymmetry on the brane is broken, giving a mass to the lowest lying
Kaluza-Klein states (5= 0) in (33), and additively shifting the masses of the higher modes
by mz — mi +mg. A natural mechanism for breaking supersymmetry which ensures a light
gravitino is gauge-mediation [21]. In these models, the gravitino is the lightest supersym-
metric particle, and if R parity is a good symmetry, it is the terminus for the the decay
chains of all superparticles. The lightness of the gravitino simplifies the summation over the
Kaluza-Klein states (see Appendix C) leading to results which are essentially independent

of the mass of the zero-mode.

The Lagrangian (33) implies the field equation

J
i m i
" Y5 Or Wy (1) 7‘9 Y™, AP wy? () = 0 (34)

obeyed by each Kaluza-Klein excitation. Contraction of (34) with =, yields
YW =0, (35)

since by taking the divergence of (34), we have [@,7"] w3/ = 0. This shows that the field

equation (34) indeed describes a particle of spin 2 with no spin

5 admixture [34]. Each

1
2

vector component (m) of the Rarita-Schwinger field w®/ satisfies a Dirac equation.

We note that the kinetic part of the compactified action still possesses the local gauge

symmetry arising from the decomposition of (15), but the mass term breaks this symmetry,

16



thus allowing us to invert the free quadratic operator in the Lagrangian to find an appropriate

propagator, which we derive in Appendix B.

3 Gravitino Couplings to Matter

In this section we discuss the coupling of fermions and scalars to gravitinos. We begin by
formulating a globally supersymmetric theory, and then proceed to gauge this supersymme-
try via the Noether procedure, deriving a locally supersymmetric Lagrangian yielding the
coupling of the fermions and scalars to the graviton and gravitino. The Noether procedure
provides a systematic technique for deriving an action with a local symmetry from an action
possessing a global one [28, 38]. Gauging the rigid supersymmetry transformations yields the
coupling of the Rarita-Schwinger field, which is the gauge field of the local supersymmetry,

to the matter multiplet.

The v matrices are, in the chiral representation, given by

0 o
o= , (36)
a0
with
ot = (1,0), o = (1,-9), (37)

and ¢ being the Pauli matrices. A Dirac spinor is constructed as follows:

U — @Z)L _ ¢a

. L (38)
R X

where we have introduced dotted and undotted indices [39], and 11/ are, in the massless

limit, states of definite helicity each satisfying a Weyl equation.
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We begin with the following off-shell Lagrangian in 3 + 1 dimensions (two copies of

N =1, D = 4, chiral supermultiplet)
L = (0,9 (0"®) + i Uy*0, ¥ + F'TF, (39)

which describes a free massless fermion, a multiplet of complex scalar fields, and a set of

auxiliary fields, with the complex scalar fields written as

o = , F = . (40)

Here, F' and G are non-dynamical (non-propagating) in the sense that their equations of
motion are algebraic constraints that allow us to eliminate them from the action. They have
been introduced to ensure that the number of bosonic and fermionic degrees of freedom match
off-shell and that the algebra closes without use of the equations of motion. After elimination
of F' and G, the supersymmetry algebra no longer closes and demonstration of invariance
requires the use of the equations of motion for the remaining fields. The supersymmetry
transformation parameter © forms a Dirac spinor built from left- and right-handed Weyl

parameters

o- %], (41)

ce
Decomposing the Lagrangian (39) into a sum of left- and right-handed parts yields
Liegr = (0,0)(0"9) + i9a(3")* 0t + F'F,
Loright = (0,0°)(0"p) + i x*(0M)aa0,X* + G*G, (42a)
which is a sum of two Wess-Zumino actions, one each for left- and right-handed multiplets.

The Lagrangian (42) is invariant, up to a total divergence which does not contribute

to the action (at least for topologically trivial field configurations), under the following set of
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supersymmetry transformations, which we write in Weyl component form, forming a closed

algebra on the fields

detta = V2(i(0"),8 00 + &uF ) |

X = V2(i (300" + UG

0d = V2, (43)
0cp = V2("Xa,

0eF = ivV2E(a) 05,

5G = iV2(a(6") 0, x5

We now take the fields in the left- and right-handed multiplets to transform under
the same supersymmetry transformations (yielding N = 1 supersymmetry), with © a Ma-
jorana spinor, and apply the Noether procedure to derive the coupling of the supergravity
multiplet to the matter fields. The gravitino will appear as the gauge field of local super-
symmetry. Supersymmetry breaking will manifest itself through the appearance of a mass

for the gravitino.

To gauge the global symmetry, we let the supersymmetry transformation parameter
© become space-time dependent ® — ©(x). The Lagrangian will no longer be invariant,

but will vary as

5L = J"9,0, (44)

with J# the global supersymmetry current. We must now add terms to the Lagrangian and
the supersymmetry transformation rules until we restore the invariance of the Lagrangian

(up to a total derivative). We add a term coupling the local supersymmetry gauge field to
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the symmetry current

Ly = ¢Q,J", (45)

with Qu a Majorana vector-spinor, which we expect to become the gravitino, and hence must

transform as

2

60, = ~0,0 (46)

to leading order in # in the supergravity theory (here x = /87Gy). The local variation
vanishes to O(k°) if ¢ = —%, but not to order «. Iterating this process to higher orders in &
and covariantizing with respect to gravity, we arrive at a locally supersymmetric Lagrangian
at order k2. The result consists of the Einstein-Hilbert and the Rarita-Schwinger actions
together with the original action (39) minimally coupled to gravity, plus a term coupling
spinors, scalars and gravitinos, and higher order four point terms. The term coupling scalars,

spinors and gravitinos, and minimally coupled to gravity, is

L = @CDL)QV’Y”’Y%% + (0,Pr) Qu’Y“’Y”%«I} + h.c., (47)

—ﬁ\ef{(

with €, a Majorana vector-spinor. Expanding |e| to leading order in the vierbein yields the
Feynman rule displayed in Fig. 1, with the obvious generalization to the hermitian conjugate

piece.

4 Phenomenological Analysis and Numerical Results

We are now ready to apply our results to a phenomenological analysis. For purposes of
illustration we focus on selectron pair production in high energy polarized ete™ collisions.

As discussed in the introduction, this process provides a valuable tool within the MSSM for
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Figure 1: Feynman rule for the gravitino, fermion, scalar coupling. P r represent the
standard projection operators.

determining the composition of the mixed neutralino states, x! in terms of the various pure

SU(2) and U(1) wino and bino components, W°, B°. Here, we investigate how the existence

of supersymmetric extra dimensions modifies this reaction.

The tree level processes contributing to selectron pair production in the presence

of a supersymmetric bulk are presented in Fig. 2. In addition to the standard ~, 7 s-

channel exchange and B®, WO t-channel contributions present in the MSSM, we now have
contributions arising from the s-channel exchange of the bulk graviton KK tower and the
t-channel exchange of the bulk gravitino KK tower. There are no u-channel contributions
due to the non-identical final states. The contributions from neutral higgsino states are
negligible due to the smallness of the Yukawa coupling. The diagrammatic contributions
to the individual scattering processes for left- and right-handed selectron production with
initial polarized electron beams are summarized in Table 1. Note that the W° exchange

only contributes to the process e; et — é;é;, and that the t-channel gravitino and the B°

. . . . . — Jr ~— ~+
contributions are isolated in the reaction ey pe™ — € pép .
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Figure 2: Processes contributing to scalar electron pair production in polarized ete™ col-
lisions. The state h,, represents the bulk graviton KK tower, ¥,, the bulk gravitino KK

tower, and BO, wo correspond to the unmixed MSSM gaugino states.
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e e} ERCl e et Epth
e et | s-channel v, 7, G, s-channel v, 7, G,
t-channel W , B LU, t-channel B LU,
eret | s-channel v, 7, G, s-channel v, 7 , G,
t-channel B, ,, t-channel B, U,

Table 1: The diagrammatic contributions to individual scattering processes for polarized
electron beams. A blank box indicates that there are no contributions for that polarization
configuration.

Our amplitudes for the standard MSSM contributions to the reaction e~ (ps)e™ (p;) —
¢ (kg)et (k1) (with the direction of the charge flow as indicated in Fig. 2) reproduce the re-
sults in [23]. The unpolarized matrix element for the case of massive gravitino KK exchanges

18

ky ks > ,uT
M =5 Z t _1 Wige(pl)’yﬂﬁyljp o ’ypﬁ)/Te(pQ) 5 (48)

where the sum extends over the gravitino KK modes and we recall that k = \/87Gy = Mp"

is the reduced Planck scale. P™*™ represents the numerator of the propagator for a Rarita-
Schwinger field of mass mz and is given in Appendix B. The mass splitting between the
evenly spaced bulk gravitino KK excitations is given by 1/R., which lies in the range 10~%
eV to few MeV for 6 = 2 to 6 assuming Mp ~ 1 TeV; their number density is thus large at
collider energies. The sum over the KK states can then be approximated by an integral which
is log divergent for 6 = 2 and power divergent for 0 > 2. We employ a cut-off to regulate these
ultraviolet divergences, with the cut-off being set to A., which in general is different from
Mp, to account for the uncertainties from the unknown ultraviolet physics. This approach
is the most model independent and is that generally used in the case of virtual graviton
exchange [9]. In practice, the integral over the gravitino KK states is more complicated than

that in the case with spin-2 gravitons due to the dependence of the gravitino propagator on
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mz. We find that the leading order term for 4/|t| < A, results in the replacement (in the

case of § = 6)

2 Lit—mZ  BA

K2 Pt 8w (1
(77“ -3 ) (49)

in the matrix element; the structure of the summed gravitino propagator is thus altered from
that of a single massive state. Hence the leading order behavior for gravitino KK exchange
results in a dimension-6 operator! This is in stark contrast to graviton KK exchange which
yields a dimension-8 operator at leading order. We thus expect an increased sensitivity to
the fundamental scale Mp in the case of a supersymmetric bulk. Our derivation of the
summation over the bulk gravitino KK states in the matrix element is detailed in Appendix

C. Lastly, the bulk graviton KK tower contributes an additional amplitude of the form [24]
2 _
M= 55t —u)(kr — k2)ue(p2)y"e(pr) - (50)

In order to perform a numerical analysis of this process, we need to specify a con-
crete supersymmetric model. We choose that of Gauge Mediated Supersymmetry Breaking
(GSMB) as it naturally contains a light zero-mode gravitino. We specify a sample set of
input parameters at the messenger scale, where the supersymmetry breaking is mediated via
the messenger sector, and use the Renormalization Group Equations (RGE) to obtain the
low-energy sparticle spectrum. We choose two sets of sample input parameters describing
the messenger sector which are consistent with our model. The RGE evolution of these

parameter sets is performed in ISAJET v7.51 [40] and results in the sparticle spectrum

Set I: mg, =217.0GeV, me, =108.0GeV, ¥ = (76.5, 141.5, 337.0, 367.0) GeV

Set I1: ms, =2105GeV, me, = 104.5GeV, ¥ = (110.5, 209.6, 322.5, 324.0) GeV ,

where x? with ¢ = 1,4 corresponds to the four mixed neutralino states. The first set of
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parameters yields a bino-like state for the lightest neutralino, whereas the second set results
in a Higgsino-like state for x{. These two sets are chosen so we can investigate the dependence
of the kinematic distributions on the composition of the lightest neutralino state. Note that
the €, and ez masses are essentially equivalent between the two sets and hence will not
induce any kinematical differences in the distributions. In addition, these input parameters
were selected in order to obtain a sparticle spectrum which is kinematically accessible to the
Linear Collider; our results are essentially insensitive to the exact details of the spectrum.
We stress that our analysis is purely phenomenological and that our conclusions do not
depend on the physics inherent to GMSB. Except where noted, we perform our numerical
analysis for the case of 6 = 6, following our above discussion of supergravity models. From

here on, we refer to these two spectra as our D = 4 supersymmetric models.

It is instructive to first examine the effects of each class of contributions to selectron

pair production. This is displayed in Fig 3, which shows the angular distribution for the
process epet — éhép with /s = 500 GeV assuming 100% polarization of the electron
beam; we show this particular reaction merely for purposes of demonstration. The bottom
curve represents the full contributions (s- and t-channel) from the 4-dimensional standard
gauge-mediated supersymmetric model discussed above in the case where the x{ is bino-like,
corresponding to parameter set I. Our numerical results for the MSSM case agree with those
in the literature [23]. The middle curve displays the effects of adding only the s-channel
contributions of the bulk graviton KK tower in the scenario of a non-supersymmetric bulk
with A, = 1.5 TeV. We see that there is little difference in the distribution between the
D = 4 supersymmetric case and with the addition of the graviton KK tower, in either shape
or magnitude. It would hence be difficult to disentangle the effects of graviton exchange from
an accurate measurement of the underlying supersymmetric parameters using this process

alone. The top curve corresponds to the full set of contributions from a supersymmetric
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bulk, i.e., our standard supersymmetric model plus KK graviton and KK gravitino tower
exchange for the case of six extra dimensions with A, = 1.5 TeV. Here we see that the
exchange of bulk gravitino KK states yields a large enhancement in the cross section and
a substantial shift in the shape of the angular distribution, particularly at forward angles,

even for A, = 3y/s. This provides a dramatic signal for a supersymmetric bulk!

In Fig. 4 we explore the modifications to the angular distribution for eze™ — éfép
from a supersymmetric bulk as the value of  changes, using our parameter set I for demon-
stration. In principle there are two competing effects which may modify the distributions: (i)
the number of degenerate gravitinos in each KK level as a result of the reduction of fermions,
versus (ii) the volume factor that appears in the density of states in the integral over the
gravitino propagator which sums over the states in the KK tower, and its dependence on
A.. As discussed above, the number of degenerate gravitinos is reduced as the number of
extra dimensions decreases; this results in a reduction of the cross section in the general case
of extended low-energy supersymmetries. However, this effect does not modify our analysis
since we have assumed the N =1 at low-energy. The second effect arises from the increase
in R., with A, being held fixed, for smaller values of § as can be seen in Appendix C. This
volume factor arises in the integral over the propagators for the bulk gravitino KK tower and
is discussed in Appendix C. In this figure, we compare the event rates for this process for the
cases 6 = 2 and 6, corresponding to the top and bottom curves, respectively. We note that
the shape of the distribution differs in the two cases due to the form of the sub-leading terms
in the integral over the propagator of the KK states. For the remainder of our analysis, we

will display results only for the more conservative case of 6 = 6.

Let us now study the variations in the distributions between the two different com-
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Figure 3: The angular distribution for epe™ — €55 from the D = 4 supersymmetric model
I, plus the addition of bulk graviton KK tower exchange, and with bulk gravitino KK tower
exchange, corresponding to the bottom, middle, and top curves, respectively.

20000 T T T T | T T T T | T T T T | T T T T
: e§e+ - 8R+éR_ :
- Vs = 500 GeV §
15000 — —
| P,- = 100% |
~
é [ A, = 1.5 TeV ]
) L 4
2 10000 — —
3] L .
e
NG L 4
b L i
o)
5000 — —
L . J
0 4 1 1 1 1 1 1 1 1 1 | 1 1 1 1
-1.0 -0.5 0.0 0.5 1.0

cos 0

Figure 4: A comparison of the event rates for the cases with § = 2 and 6, corresponding to
the top and bottom curves, respectively.
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positions of the lightest neutralino. Figure 5 shows the angular distributions with 100%
electron beam polarization for each helicity configuration listed in Table 1 for the two sets of
parameters discussed above, with and without the contributions from supersymmetric extra
dimensions. In each case, the solid curve corresponds to the bino-like case and the dashed
curve represents the Higgsino-like scenario. The top set of curves are those for a super-
symmetric bulk with A, = 1.5 TeV, while the bottom set corresponds to our two D = 4
supersymmetric models, ¢.e., without the graviton and gravitino KK contributions. We note
that the D = 4 results agree with those in the literature [23]. We see from the figure that in

the process where the gravitino contributions are dominant, e; pe™ — éféﬁ, there is little

difference in the shape or magnitude between the two x{ compositions. The use of selectron
pair production in polarized e*e™ collisions as a means of determining the composition of
the lightest neutralino is thus made more difficult in the scenario with supersymmetric large
extra dimensions. In what follows, we present results only for the bino-like x{ as a sample
case; our conclusions will not be dependent on the assumptions of the composition of the

lightest neutralino.

We now examine in Fig. 6 the total cross section as a function of center-of-mass
energy for each helicity configuration. In each case, the bottom curve represents the D = 4
bino-like supersymmetric model, while the remaining curves, from top to bottom, are for a
supersymmetric bulk with A, = 1.5,3.0,6.0 TeV. In some reactions, the results for A. = 6.0
TeV are indistinguishable from the D = 4 case. Here we can see the effects of unitarity
violation as /s approaches the value of the cut-off scale. Clearly, the new, as of yet unknown,

ultra-violet physics will set-in at this point to regularize the cross section.

Next, we present in Fig. 7 and 8 the number of events for the binned angular dis-
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Figure 5: Angular distributions for each helicity configuration with supersymmetric bulk con-
tributions for A, = 1.5 TeV (top curves), and for the D = 4 supersymmetric models (bottom
curves). The solid (dashed) curves correspond to a bino-like (Higgsino-like) composition of

the lightest neutralino.
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tribution for each helicity configuration with 80% polarized electron beams for /s = 500
GeV and 500fb™! of integrated luminosity. In each case, the solid histogram corresponds to
the D = 4 bino-like supersymmetric model, while the “data” points represent the addition
of the bulk graviton and gravitino KK tower exchange for A, = 1.5,3.0,6.0 TeV from top
to bottom. As before, the contributions with A, = 6.0 TeV are only distinguishable from

the D = 4 results in the case of e} pet — éfé;. The error bars on the “data” points are

statistical only. We see that in most of the reactions, the case of A = 3.0 TeV leads to only
a slight increase in event rate in each bin, whereas for ey pet — éfé;, the t-channel bulk

gravitino KK exchange is significant, leading to observable deviations from the D = 4 case

even for A, = 6.0 TeV.

An interesting polarization asymmetry can be defined for the case of €} é; and éfhén
production. It is given by

dO'L—dO'R

Ao = 5 5 >
pol dop +dog

(51)

where the left- and right-handed subscripts refer to the polarization of the initial electron
beam, i.e., do; = do(ej et — é; ¢} ,épér)/dcosf. This asymmetry is displayed in Fig. 9,
where the solid histogram again represents our D = 4 bino-like supersymmetric model and
the “data” points are for a supersymmetric bulk with A, = 1.5 and 3.0 TeV. The error bars
are again statistical only and assume an integrated luminosity of 500 fb™*. The electron
beam polarization is taken to be 80%. We see that the asymmetry varies substantially from
its D = 4 value with the addition of gravitino KK exchange, thus providing an additional

signal for a supersymmetric bulk.
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Figure 7: (a-b) Polarized binned angular distributions for each helicity configuration, taking

an 80% polarization of the initial electron beam. The solid histogram represents the D = 4
bino-like model, while the “data” points correspond to the effects of a supersymmetric bulk
with A, = 1.5,3.0,6.0 TeV from top to bottom. The A, = 6.0 TeV case is only discernable

in Figure (b).
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Figure 8: (c-e) Polarized binned angular distributions for each helicity configuration, taking

an 80% polarization of the initial electron beam. The solid histogram represents the D = 4
bino-like model, while the “data” points correspond to the effects of a supersymmetric bulk
with A, = 1.5,3.0,6.0 TeV from top to bottom.
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Figure 9: Polarization asymmetry defined in the text binned in cosf. The solid histogram
represents the D = 4 bino-like model, while the two sets of “data” points include the
contributions from supersymmetric bulk with A, = 1.5 and 3.0 TeV.

We now compute the potential sensitivity to the cut-off scale from selectron pair
production using our sample case with a bino-like lightest neutralino state for purposes of

demonstration. We employ the usual x? procedure, taking

2

Xz _ Z (délgse)zld B (ﬁ)md

= : (52)
bins 0 (dcdosO)

where we include statistical errors only. We sum over both initial left- and right-handed
electron polarization states, assuming P,- = 80%. The resulting 95% C.L. search for A,
from each final state, éf¢é; ,é5ép, and éféﬁ, is given as a function of integrated luminosity
in Fig. 10 for /s = 0.5 and 1.0 TeV. We see that for 500 fb~' of integrated luminosity,
corresponding to design values, the search reach in the left- and right-handed selectron pair
production channels is given roughly by A, ~ 6 — 10 x /s, which is essentially what is

achievable for bulk graviton KK exchange in the reaction ete™ — ff [9]. However, the
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éfé;'; production channel yields an enormous search capability with a 95% C.L. sensitivity

to A, of order 25 x /s for design luminosity. This process thus has the potential to either

discover a supersymmetric bulk, or eliminate the possibility of supersymmetric large extra

dimensions as being relevant to the hierarchy problem. We stress that there is nothing special

about our choice of supersymmetric parameters; our results will hold as long as selectrons

are kinematically accessible to high energy ete™ colliders. We conclude that selectron pair

production provides a very powerful tool in searching for a supersymmetric bulk.
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Figure 10: 95% C.L. search reach for A, in each production channel as a function of integrated

luminosity for /s = 0.5 and 1.0 TeV.

5 Conclusions

In summary, we have examined the phenomenological consequences of a supersymmetric

bulk in the scenario of large extra dimensions. We assumed that supersymmetry is unbroken

in the bulk, with gravitons and gravitinos being free to propagate throughout the higher



dimensional space, and that the SM and MSSM gauge and matter fields are confined to a
3-brane. Motivated by string theory, we worked in the framework of D = 10 supergravity,
and found that the KK reduction of the bulk gravitinos yields four Majorana spinors in four
dimensions. We then assumed that the residual N = 4 supersymmetry is broken near the

fundamental scale Mp, with only N = 1 supersymmetry surviving at the electroweak scale.

Starting with the D = 10 action for this scenario, we expanded the bulk gravitino
into a KK tower of states, and determined the field equation obeyed by the spin-3/2 KK
excitations. We then derived the coupling of the bulk gravitino KK states to fermions and
their scalar partners on the brane. We applied these results to a phenomenological analysis
by examining the effects of virtual exchange of the gravitino KK tower in superparticle pair
production. We focused on the reaction ete™ — été~ as this process is a benchmark for
collider supersymmetry studies. Our numerical analysis was performed in the framework
of gauge mediated supersymmetry breaking as it naturally affords a light zero-mode grav-
itino. However, our results do not depend on the specifics of this particular model, with the

exception of the existence of a light zero-mode gravitino state.

Performing the sum over the KK propagators, we found that the leading order con-
tribution to this process arises from a dimension-6 operator, and is independent of the
zero-mode mass. This is in stark contrast to the virtual exchange of spin-2 graviton KK
states, which yields a dimension-8 operator at leading order. We thus found that the grav-
itino KK contributions substantially alter the production rates and angular distributions for

selectron pair production, and may essentially be isolated in the éféﬁ channel. The resulting

sensitivity to the cut-off scale is tremendous, being of order 20 — 25 x /s.

We expect that the virtual exchange of gravitino KK states in hadronic collisions will
have somewhat less of an effect in squark and gluino pair production than what we have

found here. The reason is that these processes are initiated by both quark annihilation and
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gluon fusion sub-processes, only one of which will be sensitive to tree-level gravitino exchange
for a given production channel. The sensitivity to the cut-off scale will then depend on the
relative weighting of the quark and gluon initial states. In addition, t-channel gravitino
contributions will only be numerically relevant for up- and down-squark production due
to flavor conservation; hence their effect will be diluted by the production of the other

degenerate squark flavors and the relative weighting of the parton densities.

Lastly, we note that virtual exchange of gravitino KK states may also have a large
effect on selectron pair production in e~ e~ collisions, which are tailor-made for t-channel
Majorana exchanges. High energy Linear Colliders thus provide an excellent probe for the
existence of supersymmetric large extra dimensions, and have the capability of discovering

this possibility or eliminating it as being relevant to the hierarchy problem.
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A Representation of the Dirac Algebra

A convenient representation of the Dirac algebra, which simplifies the Kaluza-Klein decom-

position, can be given in the 10 dimensional space-time as follows,

r+ = PYM ® 12 ® 14 )
-0 = % @0 ® o, (53)
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where the v* are standard 4 dimensional Dirac matrices, i,j = 1,2,3 and 4 =0,...,3. Here

a and ( are 4 x 4 matrices satisfying

{ai a5} = {818} = —267,
{ai, 55} = 0, (54a)
and the o’s are standard pauli matrices satisfying
olol = 6 4 ielkgk (55)
and v° anticommutes with the v#
{".7"} = 0. (56)

The o and 3 matrices can be represented as follows [41]

Qp = ) Qg = ; a3 = ’ (573)
—o1 0 o3 0 0 202
0 —1i09 0 —1 109 0
ﬁl = > ﬁQ = s BS = . (57b)
—109 0 1 0 0 —i02

This representation of the Gamma matrices makes manifest the decomposition to four di-
mensions, since I'* for 4 = 0, ..., 3 is the tensor product of four dimensional Gamma matrices
with an 8 x 8 identity acting on an internal index. With these conventions, the space-like

Gamma matrices are anti-hermitian, while the time-like Gamma matrix is hermitian.

B Propagator for a Single Massive KK State

To find the propagator for a single massive Kaluza-Klein state, we invert the kinetic piece

of the operator appearing in (33). We solve
O™ Py = i (K —m3) o (58)
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for P where O™ is obtained by writing the Lagrangian for a single Kaluza-Klein state
in (33) as
i 1= N7, v
Lr = Q\I/“O A, (59)

The propagator for the mode specified by the vector of integers 7 is then given by

ii
Py,

k2 —m2 +ie

(60)

We are free to drop the ie convergence term as we are interested in computing t-channel
diagrams for which ¢ < 0, and so no poles are encountered. To solve (58), we expand Pl’j,j as a
linear combination of the standard set of sixteen 4 x 4 matrices formed from antisymmetrized
combinations of the gamma matrices {1,v*, ", y*7°,7°}, which form a basis for complex
4 x 4 matrices, together with {7,,, k,, k. }, to generate the correct tensor structure. We then
solve for the coefficients in this expansion. The result is

Pﬁ,uy — 4 (%—}—mﬁ) (k;lzy —T]HV> . 1 (,yu 4 k“) (%_ mﬁ) (,7,/ + kV) (61)

3 mp M

—

and satisfies (on-shell) the standard condition k,P* = 0 together with ~,P* = 0 which

projects out the spin % components.

C Summation of Kaluza-Klein States

The summation over the Kaluza-Klein states contributing to the propagator for the exchange
of a virtual gravitino KK tower is inherently more complicated than in the case of spin-2
exchange, and leads to a quantitatively different result. In addition, we must also include

the effects of the finite mass of the zero-mode gravitino, my [42]. We state here the basic
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result to leading order in the cut-off A, for the case when A2 > [t|,m3, and § = 6 extra
dimensions, which is the example considered in the text. The result is easily generalized to

other values of 4.

The mass difference between neighboring KK states, |Am| ~ 1/R,, is much smaller
than the cut-off (|[Am| < A.) leading to a large number of states to be summed over. The

mass of the individual KK state is given by (31)

i i
- (62)

(¢

Siw

m

where R, is the common compactification radius. The near degeneracy of the KK state
masses allows us to treat the discrete population of states on the lattice labeled by the

vector = (nq,...,ns) in the continuum limit. The number of KK states d/N in the thin

shell between m2% and m2 + dm? is

N = p(mZ)dm?, (63)
with the density function
5-2
n 3 °
(47?)2F(g)

The coherent sum over these states is at the amplitude level and involves terms of

the form

A 2 2y Fo
D,(t) ~ —i/ dmg p(mﬁ)m: (65)

2
mo

where the momentum exchange is in the t-channel with ¢ < 0. Here, we have included an

explicit ultraviolet cut-off A, in order to regulate this divergent integral. As can be seen in
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Appendix B, in the case of the gravitino propagator there are four distinct classes of F, 5 to
consider, given by

F,q = |ma|"?, (66)

with 0 = 0,1,2,3. Using (62), (66) and the change of variables y = mz/x, with x = /[t|,

the integral (65) can be put in the form

. o5— . 2 _ Mp\=5=,0-1
Dy(t) ~ 2R X / XY ) T (67)
(47r)gf(g) mo/x 1 +y2

This integral can be evaluated by making use of Appell’s hypergeometric function
Fi(a; by, by; ¢; 21, 22) which generalizes hypergeometric series to two variables [43]. It has the

one dimensional integral representation

[(a)l(c — a)

F(c) Fl(@; b1, ba; c; 21722) =

1
/ w1 — )TN = uz) T (1 = uz) P du,  (68)
0
and the series expansion

o (@) (D1, (62),,
Fi(asbi, bys ¢ 21, 22) = ZZ (@)men(b)m (82) 29" 2y, (69)

where (a), is the Pochhammer symbol defined as

(@), = ala+1)...(a+n—1). (70)

For 6 = 6 extra dimensions, the result to leading order in @ < 1is

.3 D6 Ao+2
—im° Ry NS

D, ~
o+ 2
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o | i D, (r*R%)~
0 A2/2
1 A3/3
2 AY/4
3 A5/5

Table 2: Value of the integrals over the terms in the gravitino propagator in six extra
dimensions.

We note that at this order, the result is independent of the mass of the zero-mode, so long as

this mass is much smaller than the cut-off scale. The results for the various values of o are

explicitly listed in Table 2. For § = 2 extra dimensions, the leading order result for o = 3 is
D,_3 ~ —2iTR? A,. (72)

We note that the behavior of the sub-leading terms for § = 2 is quite different than that
displayed in Table 2 for the case of 6 = 6. We do not rely on the above approximations, but

evaluate (67) numerically in our analysis.

An interesting feature of this result when applied to the gravitino propagator is that
it modifies its qualitative structure, so that the summed propagator is dominated by a few
terms. This gives rise to the following (o = 3) leading order behavior (for 6 extra dimensions)

o —im3 A2 RS 1
S P e SIS (e ) )

) 3

-

n

Following Han et al., in [8], we take the relation between the compactification radius and

the cut-off scale to be

/(2= T(¢
g TG (74)
¢ KZASH2

with the gravitational coupling constant kK = /87Gy.
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