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Abstract

The equilbrium phase distribution of stored colliding electron beams is studied

from the viewpoint of Vlasov-Fokker-Planck (VFP) theory. Numerical integra-

tion of the VFP system in one degree of freedom revealed a nearly Gaussian

equilibrium with non-diagonal covariance matrix. This result is reproduced ap-

proximately in an analytic theory based on linearization of the beam-beam force.

Analysis of an integral equation for the equilbrium distribution, without lin-

earization, establishes the existence of a unique equilbrium at su�ciently small

current. The role of damping and quantum noise is clari�ed through a new repre-

sentation of the propagator of the linear Fokker-Planck equation with harmonic

force.
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1 Introduction

The competition of damping and noise from synchrotron radiation in quanta results in a

unique equilibrium state of a stored electron beam of su�ciently small current [1, 2]. Al-

though very familiar, this is a noteworthy example of a macroscopic e�ect of quantal pro-

cesses. At higher current, more complicated quasi-equilbrium states have been observed [3]

and simulated [4]. These states have been called \sawtooth" modes; they are nearly periodic

with very long period, comparable to the damping time. Again, the existence of such modes

depends on the presence of damping and quantum noise.

An elegant and natural mathematical framework for study of equilibrium and non-

equilibrium phase space distributions is based on the VFP equation, which is to say the

ordinary Vlasov equation for self-consistent multi-particle motion, augmented with Fokker-

Planck terms to account for damping and noise. Recently, stable, long-term numerical

integration of the VFP equation for longitudinal motion has been achieved [4]. Calculations

[4] with a realistic wake �eld gave good agreement with several aspects of observations at

the SLAC damping rings [3].

Two counter-rotating stored beams, undergoing beam-beam collisions, can be treated by

coupled VFP equations for the distribution functions of the two beams. This approach was

formulated for the Vlasov part of the system by Chao and Ruth [5], in a model with one

degree of freedom. In this paper we adopt their model, extended to include Fokker-Planck

terms. Generalizations to more realistic models are certainly possible, and are on the agenda

for future work.

The �rst order of business in the beam-beam problem is to determine the equilibrium

distribution, understood as a distribution that is periodic in the machine azimuth s. Later,

one will want to study stability of the equilibrium. If it is stable at small current, as

expected, then the threshold current for instability and the character of trans-threshold,

time-dependent motion are of interest. Surprisingly, the question of existence and character

of an equilibrium state is rarely mentioned in the extensive beam-beam literature, although

a few authors do recognize it as an open problem [6, 7, 8]. A �rst step [5] is to note

that when the beam-beam force is linearized, the transverse motion for one beam has the

familiar Courant-Snyder description, but with a \dynamic beta function". Consequently,

there should be a conserved action , and the equilibrium distribution function in action-angle

coordinates should be a function of action alone. This argument alone does not solve the

equilibrium problem, however, since the dynamic beta function and the corresponding action

are nonlinear functionals of the charge distribution of the opposing beam. Determination of

the charge densities of the two beams so as to be self-consistent in the steady state is thus

a remaining nonlinear problem. Certain aspects of this problem were treated by Furman,

Ng, and Chao [6], and by Chao [7]. Another approach [8, 9] is to average the beam-beam

force over a turn, neglecting its almost impulsive character. This leads to coupled integral

equations of Ha��ssinski type [9], but seems unnecessarily rough as a physical model.

We have found it better to avoid both action-angle coordinates and averaging of the

force. Also, we do not linearize the beam-beam force, except for an approximate analytic

treatment which models in a simple way the important aspects of the full problem. We treat
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the full VFP system by numerical time-domain integration, and also by a nonlinear integral

equation for the equilibrium distributions. We must defer to a longer report the comparison

of our results to those of Furman et al. [6, 7].

2 De�nitions and Equations

We treat vertical betatron motion with normalized phase-space variables (q; p) de�ned in

terms of the vertical lattice function �(s) and emittance � as

q = y(��)�1=2
; p = (�y0 � �

0

y=2)(��)�1=2
; (1)

where y is the vertical displacement and the prime denotes d=ds. The Hamiltonian is H =

(p2+q
2)=2 and the independent \time" variable of Hamilton's equations is the phase advance

� =
R s
0 du=�(u). The two beams may have dissimilar optics and intensities; we distinguish

their properties by superscripts (1); (2).

The Chao-Ruth model is intended to represent vertical motion of beams with width

Lx much greater than height Ly. We calculate the force as though it came from uniform

planes of charge normal to the y-axis, which is to say from a charge density of the form

�(x; y; z) = ��(y), where
R
1

�1

�(y)dy = 1 and � is the total charge per unit area in (x; z)-

space accounting for charge at all y. To get the electric �eld E(y) we apply Gauss's Law to a

semi-in�nite cylinder running along the y-axis to y = +1, with a face perpendicular to the

axis at y. We then do the same for a cylinder running from y to �1, and eliminate E(1) =

�E(�1) between the two resulting equations to �nd E(y). An analogous calculation of

H(y) by Amp�ere's Law shows that the magnetic force is precisely equal to the electric force

for an ultrarelativistic particle. The full Lorentz force on an ultrarelativistic particle is in

the y-direction and has the following value in m.k.s. units:

e(E+ v �B)y =
e�

�0

Z
1

�1

sgn(y � y
0)�(y0)dy0 ; (2)

where sgn(x) is 1 for x > 0 and �1 for x < 0. Now suppose that the beam has width Lx

and length Lz, and bears a charge �eN . We approximate the force it exerts on a particle

in the other beam by (2) with � = �eN=LxLz. This force acts only during the transit time

of the particle through the oncoming beam. During that time the particle moves a distance

�s = Lz=2 in the lab frame, so that the force as a function of s with IP at s = 0 is

�e2Nh(s)

�0LxLz

Z
1

�1

sgn(y � y
0)�(y0; s)dy0 ; (3)

where h(s) is 1 for 0 < s (mod C) < Lz=2 and 0 otherwise, where C is the circumference

of the reference orbit. Since the transit time is tiny compared to a betatron period, it seems

reasonable to concentrate this force at s = 0. To do that we replace 2h(s)=Lz, made up of

step functions of unit integral, with �C(s) =
P

n �(s � nC), the periodic delta function of

period C. The resulting force is smaller by a factor of 2 than that of Chao and Ruth [5], but

agrees with later papers of Chao [7] and Forest [10].
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Knowing the force we can �nd the kick in transverse momentum py, and translate that

into the kick of y0 = py=P , where P is the total momentum. For relativistic beams of opposite

charge, dy0=ds for beam (1) has the value given in Eq.(4) of Ref.[[5]], reduced by a factor of

2.

We now turn to VFP theory with two phase-space distribution functions f (i)(q; p; �) ; i =

1; 2, normalized to unit integral. The corresponding particle position densities �(i)(q; �) are

obtained by integrating over p. In general, � is de�ned di�erently for the two beams, but we

do not distinguish the �'s with a superscript. Just remember that each equation and each

function has its own independent variable. Translating our results in terms of (y; y0; s) to

(q; p; �), we �nd the coupled VFP equations for beams of opposite charge as follows:

@f
(1)

@�
+ p

@f
(1)

@q
�
�
q + (2�)3=2�(1)

X
n

�(� � 2��(1)n) �

�
Z
1

�1

sgn(q � q
0)

Z
1

�1

f
(2)(q0; p0; �)dq0dp0

�
@f

(1)

@p

= 2�(1) @

@p

�
pf

(1) +
@f

(1)

@p

�
; (and 1$ 2) : (4)

The beam-beam parameter is �(1) = N
(2)
�
�(1)

re=((2�)
1=2


(1)
�
(1)
y L

(2)
x ). Here �

� is the beta

function at the IP, re = e
2
=(4��0mc

2) is the classical electron radius,  is the Lorentz factor,

and �y = (���)1=2 is the bunch height. The right hand side of (4) is the Fokker-Planck

contribution, with damping constant �(1) = 1=(2��(1)n
(1)
d ), where nd is the number of turns

in a damping time. Our phase space coordinates have been de�ned so that the damping and

di�usion constants are equal.

Equation (4) has only a formal signi�cance, since the �- dependent factors multiplying

the delta function actually change discontinuously at the IP where the delta function acts.

Consequently, we cannot say how to evaluate those factors without further analysis. Actually,

the correct change of the distribution function at the IP is easy to see. Let f (1)(q; p; 0�)
and f

(1)(q; p; 0+) represent the distributions just before and just after � = 0 (mod 2��(1)).

Then by the usual argument from probability conservation [4] the distribution is changed by

the inverse of the kick map; i.e., by the Perron-Frobenius operator for that map:

f
(1)(q; p; 0+) = f

(1)(q; p� F (q; 0�); 0�) ; (5)

where

F (q; 0�) = �(2�)3=2�(1)
Z
sgn(q � q

0)f (2)(q0; p0; 0�)dq0dp0 : (6)

For propagation of the distribution function between IP kicks, we have in (4) a linear

Fokker-Planck equation with harmonic force. The propagator or fundamental solution of

that equation is known [11], namely a function K(z; z0; �) ; z = (q; p) such that for any

initial distribution f(z; 0) the solution at time � is

f(z; �) =

Z
K(z; z0; �)f(z0; 0)dz0 : (7)
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There are several equivalent representations of K. The following form, derived from a prob-

abilistic argument, is especially appealing:

K(z; z0; �) =
1

2�(det �)1=2
exp[�(z � e

A�
z
0)
T
��1(z � e

A�
z
0)=2] ;

� = I � e
A�
e
AT �

: (8)

Here T denotes transposition and e
A� is the transfer matrix for the single-particle harmonic

motion with damping. With damping constant � we have

e
A� = e

���

 
cos 
� + (�=
) sin
� (1=
) sin
�

�
(1 + (�=
)2) sin
� cos 
� � (�=
) sin
�

!
; (9)


 = (1� �
2)1=2 ; det eA� = e

�2��
: (10)

Let K denote the operator corresponding to the kernel K(z; z0; �). The action of K has a

simple expression in Fourier space. Writing ĥ for the Fourier transform of h, we have

dKh(v) = exp[�vT eA��eA
T �
v=2]ĥ(eA

T �
v) : (11)

3 Numerical Integration of the VFP Equation

The kick map (5) followed by the action of K gives the complete propagation of the distribu-

tion function over one turn, and thus speci�es the meaning of the delta function in the VFP

equation. For numerical work it is highly ine�cient to use K, however. Instead, we shall

follow the method of [[4]], based on operator splitting. We write @f=@� = LV (f) + LFP (f),

where LV and LFP are the operators associated with the Vlasov and Fokker-Planck terms,

respectively. We make a � step under LV alone followed by a � step under LFP alone, and

so on. It turns out that in this problem the step for LFP can be a full turn, owing to the

small value of the damping constant �. For LV we apply the Perron-Frobenius (PF) opera-

tor for the map T = RK, where K is the beam-beam kick and R the phase-space rotation

through angle 2��. The PF operator is discretized on a grid in phase space, being de�ned

at o�-grid points by local polynomial interpolation [4]. The kick is calculated at grid points

from values of the distribution on grid points. Then f(T�1(z)) is computed for grid points z

by interpolation to give an update of f at grid points. For LFP we use a divided-di�erence

discretization and a simple Euler step [4] with �� = 2��. In a typical run we use a 201�201

grid, and the calculation takes 6.5 hours for 30000 turns on a 400 MHz work station. The

algorithm conserves charge to one part in 105 (or 104 at high current) over several damping

times, and reproduces the known solution for zero current.

We show results for parameters suggested by PEP-II design values; namely, �(1) =

0:6342 ; �
(2) = 0:6387 ; n

(1)
d = 5014 ; n

(2)
d = 8579 ; �

(1)
=�

(2) = 1:11, where beam (1) is

in the high energy ring (9 GeV) and beam (2) in the low energy ring (3.1 GeV). Keeping

the ratio of beam-beam parameters at the stated value, we increase �
(1) in steps, starting

with a small value such as 0:01. The initial distribution for each beam is the Gaussian

f0(z) = exp(�zT z=2)=2� ; z = (q; p), which is the solution for zero current. Figure 1 shows
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Figure 1: Normalized dimensionless beam

size �(1)
q vs. turn number, �(1) = 0:0280.
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Figure 2: A contour plot of � log f (1),

where f
(1) is the equilibrium distribution

for beam (1) just before the IP. The dot-

ted curves are for the Gaussian with the

same covariance.

the normalized r.m.s. bunch size �(1)
q for beam (1), just before the IP. It undergoes rapid

oscillations in a region of transient behavior extending to about 150 turns, and then de-

creases slowly, reaching a steady state at about 2 damping times. Figure 2 is a contour plot

of � log f (1), where f (1) is the �nal distribution at �(1) = 0:028. The solid lines are curves

given by � log f (1)(z) = c, with c = 2; 3; 4; 5; 6. At smaller c the contours appear to be nearly

elliptical, indicating a nearly Gaussian behavior.

To test the deviation from a Gaussian we compute the covariance matrix M of the �nal

f , and look at the contour plot of � log g, where g is the Gaussian with the same covariance,

namely

g(z) =
exp(�zTM�1

z=2)

2�(detM)1=2
: (12)

The dotted curves in Figure 2 represent � log g(z) = c, for c equal to 3 and 6. They lie close

to the corresponding solid curves, with more deviation at c = 6. Figure 3 shows a graph of

the force in the equilibrium state.

The threshold of instability of the equilibrium state is somewhere between �
(1) = 0:0280

and �
(1) = 0:0373. Figure 4 shows �q at the latter value. The fast oscillations at large time

are reminiscent of what was found in longitudinal single beam motion with wake �eld [4].

4 Equilibrium with Linearized Force, without Radia-

tion

For a �rst step in an analytical discussion we take two beams with equal properties and turn

o� the synchrotron radiation by putting �
(i) = 0 in (4). We linearize the beam-beam force
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Figure 3: Beam-beam force F (q) in the

equilibrium state.

Figure 4: �q above the threshold of insta-

bility, at �(1) = 0:0373.

as a function of q, but do not linearize the Vlasov equation in its dependence on f . By (6)

the Taylor expansion of the force is

F (q) = �(2�)3=2�
�
(

Z 0

�1

�
Z
1

0
)�(q0)dq0 + 2�(0)q +O(q2)

�
: (13)

Motivated by the numerical results, we seek an equilibrium having the general Gaussian form

(12) just before the beam-beam kick. Integrating this form over p to get � we �nd �(q) =

exp(�q2=(2m11))=
p
2�m11, hence F (q) = �4��q=

p
m11+ � � �. We de�ne � = 4��=

p
m11, and

note that the condition of equilibrium, which is to say periodicity, is g((RK)�1
z) = g(z),

where R is the one-turn transfer matrix for the betatron motion, and K is the matrix

transformation representing the kick:

R =

 
cos 2�� sin 2��

� sin 2�� cos 2��

!
; K =

 
1 0

�� 1

!
: (14)

In other words, with T = RK (hence detT = 1), the equilibrium condition is

TMT
T = M ; (15)

where M must be symmetric and positive de�nite. For any matrix T with unit determinant,

(15) has in�nitely many symmetric solutions M , since the system regarded as three linear

equations for three unknowns m11 ; m22 ; m12 has zero determinant. Provided that t12 =

sin 2�� 6= 0, all solutions can be expressed in terms of one parameter, m11. In fact,

m22 = �
t21

t12
m11 ; m12 = m21 =

t22 � t11

2t12
m11 : (16)

Also, the T that we actually have depends on M only through m11, so that (16) gives the

general solution of (15). From the de�nition of T = RK we �nd

m22 = m11 + 4�� cot 2��
p
m11 ; m12 = 2��

p
m11 : (17)
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Remarkably, the nonlinear equation (15) for M has been solved by linear means.

We have yet to impose the condition that M be positive de�nite, which is equivalent to

the conditions m11 > 0 ; detM > 0 taken together. It is easy to check that detM > 0 if

and only if

� <

p
m11

2�

�
1

j sin 2��j
+ cot 2��

�
: (18)

Through (17) we have an in�nite family of Gaussian equilibria parametrized by m11 > 0,

provided that sin 2�� 6= 0 and � satis�es (18). Actually, in the present case without radiation

the Gaussian is irrelevant: only the invariance of the quadratic form z
T
Mz under T was essen-

tial to the argument. Let us look for an equilibrium of the form f(z) = �(zTM�1
z)=N (M),

where M is positive de�nite, � is an arbitrary positive function on the positive real line,

and N is a normalization constant chosen to make
R
f(z)dz = 1. Calculating the latter

integral by a change of variable that diagonalizes M then scales by eigenvalues, we �nd

N (M) = �
p
detM

R
1

0 �(x)dx. Furthermore, integration of f(0; p) over p gives

�(0) =
2
R
1

0 �(x2)dx

�
p
m11

R
1

0 �(x)dx
; (19)

the same dependence on m11 as in the Gaussian case. It is now clear that the solution is

again given by (17), if we replace � by ��, where

� =
2
q
2=�

R
1

0 �(x2)dxR
1

0 �(x)dx
: (20)

All we require of � is that the integrals in (20) exist.

An interesting exercise, which we leave to the reader, is to explore the behavior of M as

� approaches the limit (18). The ellipses become long and thin, since only one eigenvalue

vanishes. In the limit sin 2�� ! 0 the bound on � depends on the sign of tan 2�� near the

limit. It expands to in�nity for tan 2�� > 0 but shrinks to zero for tan 2�� < 0.

The angles of inclination of axes of the ellipse depend only on the tune. The eigenvectors

of M�1 are v1 = (cos ��; � sin��); v2 = (sin��; cos ��). Then just before the IP, one

axis of the ellipse is displaced by an angle ��� with respect to the q-axis. The beam-beam

kick rotates this axis by +2��, to compensate the lattice motion which rotates the ellipse

by �2��. This is equivalent to saying that the kick reects the distribution in the q-axis.

5 Equilibrium with Linearized Force, Including Radi-

ation

To include radiation we can follow the plan of the previous section, except for replacing

the rotation R by propagation according to the linear Fokker-Planck equation. The latter

is handled most easily in Fourier space, by means of formula (11). The presence of the

exponential factor makes clear that we will be restricted to Gaussian distributions in this

case. Again we assume that the equilibrium distribution has the form (12) just before the
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IP. Translating the equilibrium condition into Fourier space and applying ( 11), we �nd that

M must satisfy

M � TMT
T = e

A��eA
T �

; T = e
A�
K ; � = 2�� : (21)

Here we have 3 inhomogeneous equations for m11; m22; m12 (since 2 of the 4 equations are

equivalent by symmetry). Multiplying on the right by (T T )�1 and recalling that detT =

e
�2��, we see that it is easy to eliminate m12 and m22. First suppose that t12 6= 0, which is

to say sin
� 6= 0. De�ning  = e
2�� and � = e

A�� we �nd

m12 = 1
(1 + )t12

[(t22 � t11)m11 � �11] ;

m22 = 1
t12

[�t21m11 + ( � 1)t22m12 � �21] ; (22)

and the equation for m11 alone�
1� 

2


t12t21 �

1� 

1 + 
(t11 � t22=)(t22 � t11)

�
m11

+
1� 

1 + 
(t11 � t22=)�11 + (�21= � �12 � ��11)t12 = 0 : (23)

If t12 = 0, the equation for m11 is linear, and we get the complete M in explicit form:

m11 =
��11

2 sinh��
;

m12 =
�1

2 sinh��
[�21 � e

���
� m11] ;

m22 =
�1

2 sinh��
[� �21 + �22 � 2� cosh�� m12] : (24)

The sign is to agree with the sign of cos 
� = �1.
Now t11 and t21 are linear in �, and t22 and t12 are independent of �, where � = 4��=

p
m11.

It follows that (23), after multiplication by x =
p
m11, is a cubic equation for x. To lowest

order in the damping constant � the coe�cients of the cubic simplify. Cancelling an overall

factor of �, we get the lowest order form of the equation, independent of �:

x
3 + 4�� cot �x2 � (1 + (2��)2)x� 2��(cot � � cos 2�=�) = 0 : (25)

Of course, this makes sense only if sin � 6= 0, so that the expansion is useful only if sin
� =

sin � + O(�2) is not too close to 0. With that restriction, (25) provides a good model of

the exact polynomial (23). For typical values of � (around 10�5 in our numerical examples)

we �nd that the roots of the two cubics agree to about 3 digits over a grid in the (�; �)

parameter space, including values of � fairly close to 1=2, say � = 0:505.

For zero current the equation (25) reduces to x
3 � x = 0. The root x = 1 is the correct

solution for zero current, corresponding to the unperturbed Gaussian. The roots x = �1; 0
are unphysical. To lowest order in the current parameter �, the roots of (25) are

x
�
= �1� ��(cot � + cos 2�=�) ; x0 = �2��(cot � � cos 2�=�) : (26)
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Figure 5: Some contours of equal probability for a VFP solution (solid line) and for the

model with linearized force (dashed line)

Now x0 may be positive or negative, but even if positive it corresponds to an unphysical

solution, since the corresponding lowest order form of M is not positive de�nite.

Similarly, for non-zero current and the exact solution of equation (23) we �nd one positive

root which corresponds to a positive de�nite M , one negative root that is clearly unphysical,

and one root near zero that can be either positive or negative, but is unphysical even if

positive since the correspondingM is not positive de�nite. This result was seen in a numerical

exploration over a �ne grid in (�; �) space. This outcome is quite satisfactory: as expected

from experience in the single-beam problem, inclusion of radiation reduces the in�nite family

of Vlasov solutions to a single solution of Gaussian type.

With radiation we have found no analog of the constraint (18). Nevertheless, the beam

can get larger than the beam pipe at large current or in near-resonant conditions (sin
�

small). This is seen in the small-� form of M for sin
� = 0. By (24) we �nd

m11 = 1 +O(�) ; m12 = �
�

2��
+O(1) ; m22 =

�
2

2(��)2
+O(1=�) : (27)

Since m22 = O(��2), the ellipses are long and thin in the p direction. Although the equilib-

rium exists mathematically even at a resonance, it may be unrealizable in the machine.

Figure 5 compares the result of the present linearized model with numerical integration

of the VFP equation for equal beams with � = 0:6364; � = 0:0266; nd = 5000. The angle

of tilt of the near-elliptical curves is given quite well by the linearized theory, but in other

respects the agreement is somewhat rough. The covariance matrix of the VFP solution

is m11 = 0:8297; m22 = 1:016; m12 = 0:1075, whereas that of the linearized model is

m11 = 0:9095; m22 = 1:185; m12 = 0:1593. It is interesting that the Gaussian determined

by the covariance matrix of the VFP solution gives a better �t to the VFP solution than the

Gaussian from the theory with linearized force.
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6 Integral Equation for the Equilibrium state

We write coupled integral equations for the equilibrium distributions f (1)
; f

(2) just after the

IP. The di�erence in convention compared to the above discussion (after rather than before)

arises from a technical point in the analysis. The equations are

g
(i)(q; p+ (2�)3=2�(i)

Z
sgn(q � q

0)g(j)(z0)dz0) = f
(i)(z) ; i 6= j

g
(i)(z) =

Z
K

(i)(z; z0; 2��(i))f (i)(z0)dz0 ; (28)

with Z
f
(i)(z)dz = 1 : (29)

It is essential that the normalization constraint (29) be regarded as part of the de�nition of

the mathematical system.

The physical meaning of (28) should be obvious: we start just after the IP, propagate for

one turn by the linear Fokker-Planck operator, then apply the beam-beam kick, and require

that the result be equal to what we started with.

It is possible to analyze these equations without any approximations, using methods of

functional analysis. By applying the implicit function theorem in an appropriate Banach

space, one can show that there is a solution, unique in that space, at su�ciently small �(i).

The proof will be published elsewhere. In accord with the linearized theory with radiation,

a non-resonance condition is not required. The method of proof is readily generalized to the

beam-beam problem with two degrees of freedom.

The system (28), (29) is analogous to the Ha��ssinski equation for longitudinal motion

with wake �eld, but certainly quite di�erent in form. It lives on phase space, and it depends

on both the damping and di�usion constants (the ratio of the two being buried in our choice

of variables). The principal dependence is on the ratio, however, as the discussion of the

previous section and numerical VFP solutions indicate. The Ha��ssinski equation lives on

q-space, and it depends only on the ratio of damping and di�usion constants.

7 Conclusion

We have found a fairly complete depiction of the equilibrium state in a beam-beam inter-

action model with one degree of freedom. It remains to work out relations to the dynamic

beta function description, and to extend the theory to 2 or 3 degrees of freedom. In higher

dimensions we expect the equilibria to be generally similar to what we have found, but

time-dependent phenomena at high current should be much richer than in 1 degree of free-

dom. Preliminary results on high-current motion suggest that many interesting results can

be expected from numerical integration of the VFP equation in the time domain.
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