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Abstract 

Analytical solution for self-consistent particle equilibrium distribution in RF field with 

transverse focusing is found. Solution is attained in approximation of high brightness beam. 

Distribution function in phase space is determined as a stationary function of the energy integral. 

Equipartitioning for beam distribution between degrees of freedom follows directly from the choice 

of stationary distribution function. Analytical expressions for r-z equilibrium beam profile and 

maximum beam current in RF field are obtained. 
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1 INTRODUCTION 

Emittance conservation and prevention of halo formation in a high brightness particle beam in 

RF accelerator are issues for existing and future high intensity accelerator projects. If the beam is 

matched with external focusing and accelerating field, its distribution function as well as beam 

emittance are conserved. Matched stationary beam does not exhibit halo formation. Finding 

matched conditions for the beam requires solutions of the self-consistent problem for beam 

distribution function in 6-dimensional phase space, which is typically possible only by numerical 

methods. In this paper we present analytical self-consistent solution for stationary bright bunched 

beam in RF field. 

The problem of stationary self-consistent particle distribution in RF field was considered in 

several books and papers. Typical approximation to the solution of the problem is a uniformly- 

charged ellipsoid. Concept of ellipsoid gives the most simple way to estimate the maximum beam 

current in RF field. Meanwhile in general case ellipsoid is not a self-consistent solution for bunched 

beam in RF field. In Ref. [l] solution of one-dimensional problem in longitudinal phase space was 

found. Space charge density of a cylindrical bunch was found to be constant in every cross section 

of the bunch, but dependent on longitudinal coordinate. In Ref. [2] spatial particle distribution in 3- 

dimensional configuration space was calculated numerically. In this paper an analytical approximate 

solution for 3-D self-consistent particle equilibrium is attained. 

2 SELF-CONSISTENT PROBLEM 

Consider intense bunched beam of particles with charge q and mass m, propagating in a 

continues focusing channel with applied accelerating RF field. Beam is supposed to be bunched at 

the frequency o =2&h, where c is the velocity of light and h is a wavelength. Average longitudinal 

particle velocity of the beam is ps = v, /c, therefore distance between bunches is PA. Particle 

motion is governed by single-particle Hamiltonian [ 11: 

H = px” + py’ + P,2 Ub 
2n-v 2 my3 
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(2.1) 



Uext = F [ I, (F) sin (cp, - k, <) - sincp, + k, 5 coscp,] + Gt $ , 
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(2.2) 

where px and py are transverse particle momentum, pZ = p - ps is a deviation from longitudinal 

momentum of synchronous particle, y = (1 - v,/c ) 2 2 - 1’2 is an average beam energy, c = z - zs is a 

deviation from position of synchronous particle, Uext iS a potential of external field, Ub is a space 

charge potential of the beam, E is an amplitude of accelerating field, cps is a synchronous phase, 

k, = 2n/(P,h) is a wave number, Gt is a gradient of focusing field, and r is a particle radius. 

Space charge density distribution of a moving bunched beam has the form of 

p = p by, z -vst). M oving bunch creates an electromagnetic field with scalar potential 

Ub = Ub (x,y, z -vst) and vector potential &, = &, (x,y, z -v&) , which obey wave equations [3]: 

&la2Lb- --- 
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(2.3) 

(2.4) 

where i = p Ts is a current density of the beam. Current density has only longitudinal component 

j, = j, = 0, j, = vs P (x, y, z - vst> , (2.5) 

and, therefore, vector potential has only longitudinal component A,. In a moving coordinate system, 

where particles are static, the vector potential of the beam is zero, i = 0. According to Lorentz 

transformation, longitudinal component of vector potential in laboratory system is A, = ps Ub / c. 

Therefore, for solution of the problem of self field of the bunch it is enough to solve only equation 

for scalar potential (2.3). Substitution of the value A, into wave equation (2.4) gives the equation 

for scalar potential: 

a2ub + a2ub + a2ub _ l 
- - - E, P (x, Y7 5) * 

ax2 3~2 r2a<2 
(2.6) 

Equation (2.6) has to be solved together with Vlasov’s equation for beam distribution function: 



(2.7) 

where U = UeXt + y - 2Ub is a total potential of the structure. Eqs (2.6), (2.7) define self-consistent 

distribution of a stationary beam which acts on itself in such a way, that this distribution is 

conserved. 

3. BEAM EQUIPARTITIONING IN RF FIELD 

General approach to find a stationary self-consistent beam distribution function is to represent 

it as a function of Hamiltonian f = f(H) and then to solve Poisson’s equation. Because Hamiltonian 

is a constant of motion for stationary process, any function of Hamiltonian is also a constant of 

motion which automatically obeys Vlasov’s equation. Convenient way is to use an exponential 

function f = f. exp (- H / HJ: 

PZ + Py2 2 
f = f, exp (- Pz 

2wH, -2my3H, 
_ q Uext + uby -2 

Ho 
). (3.1) 

Consider important consequence which follows immediately from Eq. (3.1). Let us rewrite 

distribution function (3.1) as 

f =fo exp (- 2 pz+py2 -2& -q Uext + UbY -2 2 
pt P: H, ), 

(3.2) 

wherept=22/<p2,,=2&$andpl=2 c- <pz> are double root-mean-square (rms) beam sizes in 

phase space. Transverse, Et, and longitudinal, EZ, rms beam emittances are: 

(3.3) 

(3.4) 

Taking together Eqs. (3.1) - (3.4), the value of H, can be expressed as a function of beam 

parameters: 

(3.5) 



Equation (3.5) can be rewritten as 
2 - El 
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(3.6) 

where R = 2a is a beam radius and 1 = 2 li <c2> is a half-size of the bunch length. Equation 

(3.6) expresses the equipartitioning condition for the beam in RF field [4]. From the above 

derivations it is clear, that equipartitioning is a consequence of stationarity of the collisionless beam 

distribution function, Eq. (3.1). If distribution function is stationary (time independent), 

equipartitioning is fulfilled. Opposite statement is not valid in general case: there are infinitely large 

number of distribution functions which obeys condition (3.6), but are not necessarily stationary. To 

find the stationary distribution function it is necessary to solve nonlinear Poisson’s equation for 

unknown space-charge potential of the beam. 

4. SPACE CHARGE FIELD OF THE BUNCH 

Space charge density of the beam is obtained as an integral of beam distribution function over 

particle momentum: 

P (XYYL) = 9 f4%Jpydpz=po exp(-q 
uext + uby -2 H >, (4.1) 

0 

where p. is the space charge density in the center of the bunch. The value of p. is unknown at this 

point due to unknown space charge potential of the beam, ub. For further analysis let us introduce 

an average value of space charge density, 6, which is equal to the density of an equivalent 

uniformly-charged cylindrical bunch with the same beam radius, R, and the same half-bunch length, 

1, as that of unknown stationary bunch. Space charge density of the cylindrical bunch is 

p-Q- Ih 
v 2n;R21c . 

(4.2) 

where Q = Ihlc is a charge of the bunch, V = 7tR22Z is a volume of the bunch and I is a beam 

current. Compare the value of p, Eq. (4.2) with that for another distributions. Space charge density 

of a uniformly populated spheroid with semi-axises R and 2 is 



ps= 3Ih =3- 
47cR21c 2p. 

Bunch with Gaussian distribution 

(4.3) 

P= Ih exp(-LsPeP Y2 
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has a space charge density in its center 

(4.4) 

(4.5) 

Since different distributions give similar expressions for space charge density in the bunch center 

within the factor of k = 1...3 , one can assume that unknown value of space charge density p. in 

bunch center, Eq. (4.1), also differs from the average value of space charge density p within the 

same factor: 
po=kp. (4.6) 

For further derivations introduce dimensionless variables: 

9 uext v yy-, ext 
0 

v,,d!-$ C$;, ,,,=;, 

where a is a channel radius. The Poisson’s equation (2.6) in cylindrical polar coordinates becomes 

1 avb+a2vb +s=- Poa2 Vb -- -exP-(Ve,t+-). 
5 ag ac2 a$y2 ’ E, Ho Y2 

(4.8) 

Let us introduce the values of a bunching factor, B = 21 l(Bh), and dimensionless beam brightness, 

b = 21R2/(fiyI,$) (see Appendix 1) where I, = 4n;&,mc3/q is a characteristic value of beam current. 

Parameter b is a ratio of “space charge term” to “emittance term” in KV envelope equation and is a 

measure of influence of space charge forces on beam dynamics. Regime with b>>l corresponds to 

space charge dominated beam transport while regime with b<<l corresponds to emittance 

dominated beam transport. Substitution of po, Eq. (4.6), and H,, Eq. (3.9, with introduced values 

of B and b into Eq. (4.8) gives: 



(4.9) 1 avb+a2vb + a2vb _ 8kb -- -----,(Y~)zexp-(V,,t+~). 
5 at ac2 a++ Y2 

Equation (4.9) is a nonlinear differential equation for unknown beam space charge potential, Vb, 

which appears in the left and right side of equation. In general case it can be solved only 

numerically. Below consider approximate analytical solution for high brightness beam following 

the method suggested in Ref. [5]. 

Unknown space charge potential of the beam can be represented as Fourier-Bessel series: 

Vb = V. + 2 2 JoWom c>[ An, ~0s (k,nqa) + Bnm sin (kznv)17 
n=o m=l 

(4.10) 

where Jo(<) is a Bessel function, 2),, is a m-th root of the equation Jo(c) = 0. Expansion (4.10) 

obeys Dirichlet boundary condition Vb(1, r) = V. at the perfect conductive surface of the channel 

and takes into account periodic function of potential due to train of the bunches. 

To find the first approximation to solution of Poisson’s equation, let us take only the first term 

in expansion of exponential function 

eXp(-vext -vby -2) = 1 -Vext -Vby -2. (4.11) 

Poisson’s equation (4.9) then becomes: 

03 

5% l+ 
U&n + (k,na)? -2 

8kb J$$121 Jo (UornQ F&m ~0s (k,nw) + Bnm sin b-w)1 
n=O m=l 

= (1 -Vext)y2-Vo. (4.12) 

Space charge potential, Eq. (4.10), is mostly represented by several low-order terms. For example, 

for the train of uniformly populated cylindrical bunches (see Appendix 2), the values of Fourie 

Bessel coefficients drop quickly with numbers m, n: 

A 1 nm - (4.1 
n uorn [UZrn + (kzd? -21 ’ 

:r- 

3) 



For a space charge dominated beam, b >> 1, Eq. (4.12) can be simplified. Expression in square 

brackets in Eq. (4.12) is 

1+ 
U&i + (k,na)2 y -2 

8kb 
B (;)2 = 1 + 6, 

where introduced parameter 6 is: 

6= 
u:, + (kzna)2 y -2 

8kb 
B (R)” a . 

(4.14) 

(4.15) 

Low-order roots of the Bessel function are 2),t =2.408, ~11 =3.832, 2),2 = 5.52. Product of k,a is 

usually close to unity: 
(4.16) 

Taking into account, that B 5 1, R / a = 0.5, it is easy to see that the value of 6, Eq. (4.15), is much 

smaller than unity for a high brightness beam. It can be written as 

6 =- <<I, 
b;k 

where b, is a dimensionless beam brightness of bunched beam: 

b,= b (a)2,21(&)2=&?!+)2 
BR py I,B et py Ic Et ’ 

(4.17) 

(4.18) 

and Ipe~ = I/B is a peak value of bunched beam current. Therefore, expression, Eq. (4.14), can be 

taken out of the sum in Eq. (4.12). With this approximation, Eq. (4.12) becomes: 

(l+ 8)(Vb - Vo) = (1 - Vexi)y2 - Vo . (4.19) 

Let us define constant V. in such a way that the total potential of the structure vanishes at the 

bunch center: 

Vext (0,O) + vb (O, O) = 0 . 
Y2 

(4.20) 

External potential is equal to zero at beam center V ext (0,O) = 0, see Eq. (2.2), therefore condition 

(4.20) gives Vb (0,O) = 0. Substitution of Vext (0, 0), Vb (0,O) into Eq. (4.19) defines constant 

V. = - y 2/6. Then, from Eq. (4.19) the self-consistent space charge dominated beam potential is: 



1+6 
(4.21) 

Equation (4.21) indicates that the particle distribution of the bright beam has such a shape that 

the space charge potential is opposite to the external potential. This fact is well known for a 

stationary distribution of a transported beam in a linear focusing channel [I], [2]. Equation (4.21) 

generalizes this statement for a 3-dimensional beam distribution. Space charge field of a stationary 

bunch always compensates for external field in the beam interior. This phenomenon is known from 

plasma physics as Debye shielding for nonneutral plasmas. 

Lorentz force, $ = E + [T x 61, created by the beam is connected with space charge potential 

of the beam by equation [ 1, Eq. (2.43)]: 
i!b = - 1 grad ub . 

Y2 
(4.22) 

Substitution of Eq. (4.22) into Eq. (4.21) gives relationship between Lorentz force of the beam and 

that of external field: 
(4.23) 

Second approximation to the self-consistent potential is given by holding one more term in the 

expansion of exponential function as exp(-Vext-Vby-2) = 1 - Vext-Vby -2 + 0.5(V,xt+Vby -2)2, SO that 

we have (see Ref. [5]) 

Vb = y 2 [ 1 + 6 -Vext- ( 1+6 -Vext)2-V&V,xt -2) 1. (4.24) 

With increasing of beam brightness, 6 + 0, solution of Eq. (4.24) becomes close to that of 

Eq.(4.21). 

In more general case Eq. (4.9) for a high brightness beam, 6 <<I, can be solved only 

numerically. Substitution of potential expansion, Eq. (4.10), into Eq. (4.9) together with parameter 

6, Eq. (4.15), gives for Poisson’s equation: 

s(vb - vo) = y2 exp (-vext - b, . 
Y2 

(4.25) 



Again, taking into account that in the beam center V ext (0,O) = 0, Vb (0,O) = 0, the unknown 

constant in Eq. (4.25) is V, = - y 2/6. Using the value of Vo, Poisson’s equation for a high brightness 

beam is as follows: 

l+6vb=exp(-vext-Vb). 
Y2 Y2 

(4 ..26) 

In Fig. 1 results of numerical solution of Poisson’s equation for different values of beam brightness 

are presented. As seen, with increasing beam brightness, an exact numerical solution becomes close 

to linear relationship between space charge potential and external potential, Eq. (4.21). 

Taking the first approximation to the space charge potential of the beam, Eq. (4.21), the 

Hamiltonian corresponding to the self-consistent bunch distribution is as follows: 

H = px2 + p; + P,2 
2mY 2 my3 

+ 9 CL) Uext . 
1+6 

(4.27) 

Equation (4.25) indicates that in the presence of intense, bright bunched beam (6 << 1) the 

stationary longitudinal phase space of the beam becomes narrow in momentum spread, remaining, 

in the first approximation, the same in coordinate (see Fig. 2). This is in qualitative agreement with 

the study of Ref. [l], where the self-consistent problem for stationary bunched beam was solved 

numerically for longitudinal phase - space particle distribution. The resulting bunch was 

approximated by a hard-edged cylinder. Particle density was constant in every cross section of a 

cylinder, but depended on longitudinal position. Numerical results of the Ref. [1] indicated that in 

space-charge-dominated regime, separatrix of longitudinal phase space was substantially reduced in 

momentum, remaining almost unchanged in phase width, which is in good agreement with Eq. 

(4.25). 

5 STATIONARY BUNCH PROFILE 

Self consistent space charge density distribution of matched beam can be found from the 

Poisson’s equation: 

(5.1) 



Substitution of Eq. (4.24) into Eq. (5.1) gives the stationary particle density distribution inside the 

bunch: 

PO-,0 = 2y2G, 8, { 1 - s 

4 (l+s>2 - 2sv,,t 
> - 

(5.2) 

For a high brightness beam parameter S << 1, therefore, space charge density is close to constant 

within the bunch: 

p(r,c)=2LGtEo . 
1+6 

(5.3) 

From Eq. (4.21) it follows, that, in the first approximation, space charge potential of the beam 

is the same function of coordinates, as the external potential, with opposite sign. Therefore, equation 

Uext (r, c)= const gives the family of equipotential lines of space charge field of the beam: 

Gk I,(y)sin(q,-k,<) - sincp,+ kzccos(P, + -$$ r2 = const . (5.4) 

In general case, bunch boundary does not create an equipotential surface, therefore Eq. (5.4) does 

not coincide with bunch profile. To treat the problem, consider uniformly populated bunch with 

boundary R(c), defined by nonlinear equation 

I,(y)sin(p,-k,c) - sincp,+kzccoscp,+C(kzR)2= const . (5.5) 

Equation (5.5) differs from Eq. (5.4) by inserted parameter C, which will be used to adjust bunch 

shape in such a way, that self field of the bunch is approximately opposite to external field. The 

value of constant in right side of Eq. (5.5) can be determined from the condition, that longitudinal 

bunch size is, in the first approximation, the same as for zero - current mode. Therefore, at R(c) = 0 

one of the bunch boundary is k,c = 2q, and the value of constant is 

const = 2q, cos(p, - 2 sincp, . (5.6) 

Substitution of Eq. (5.6) into Eq. (5.5) gives expression for expected bunch profile: 

Io(~)sin(p,-k,~)+sin~~-(2(p~-kZ<)cos(p~+C(kzR)2= 0 . (5.7) 



Fig. 3 illustrates uniformly populated bunch with boundary, Eq. (5.7). Bunch profile in real 

space reminds separatrix shape in longitudinal phase space. Space charge field of the bunch in 

longitudinal direction is essentially nonlinear and repeats (with negative sign) the RF field inside 

the bunch. In transverse direction the space charge forces are close to linear function of coordinate 

and compensate external focusing forces. Shape and space charge forces of the bunch depend on 

parameter C. Consider that dependencies in more details. 

For a long bunch, Bh >> R,,,, the Bessel function can be approximated as I(x) = 1 + x2/4, and 

equation (5.7) for bunch boundary becomes: 

R(c) = k 
27L 

(2q~, - kJ,) cos(p, - sincp, - sin(cp,-k,<) 

c+l 
4 Y2 

sin(cp&C) * 
(5.8) 

Transverse bunch size, Rmax, is determined from equation aR(CJ ~ = 0, which has an approximate 
ac 

solution c(R,,) = 0. Substitution of this value into Eq. (5.8) gives for maximum beam size: 

(5.9) 

Exact value of c(R,,) is slightly positive and maximum value of bunch profile is shifted to the 

head of the bunch. The phase length of a separatrix is approximately 3q, and full bunch length is 

lb = Bh3(p,/(2rc). The ratio of transverse to longitudinal bunch sizes for a given value of 

synchronous phase is therefore: 

yddT. (5.10) 

Let us compare space charge potential of the bunch with that of external RF filed. Consider for 

simplicity a non-relativistic case. Potential of arbitrary charged distribution at the point &, at the 

axis is: 



(5.11 

Introduce RF phase \I, = - k,c instead of longitudinal coordinate {. After integration in Eq. (5.11) 

over radius and azimuth angle, the beam potential is: 

I Wmax 
ub (h 0) = uo P&R2W + (w -wd2 - -1 dv - 

yhin 

For typical values of parameter C = l.... 5, bunch profile, Eq. (5.8), can be approximated as follow: 

(kzW2 = 6 [(w + 2Q cos(p, - sin& - sin (v + cp,)] . 

Substitution of Eq. (5.13) into Eq. (5.12) gives the potential at the axis point w. : 

2(p,coscp,-sincp,-sin(cp,+W) 
C +\lr: - ~ldw. (5.14) 

Because the value of synchronous phase in RF filed is negative cps < 0, integration in (5.14) has to 

be performed in the limits of (cp,, - 2~~). In Fig. 4 results of space charge potential of the bunch, Eq. 

(5.14) are presented. Also, an inverse autophasing potential is given: 

VW> = - Uext W, 0) = - F [ sin (w + cps) - \I, coscp,] . 
Z 

As seen, the values of both potentials are close to each other. Therefore, uniformly populated bunch 

with boundary, Eq. (5.7) compensates for “restoring” autophasing force inside the bunch, which 

indicates good approximation of the bunch boundary by Eq. (5.7). 

Parameter C can be expressed as a function of ratio of transverse, G!‘, and longitudinal, G$, 

gradients of space charge forces inside the bunch 

(5.16) 

(5 

Figs. 5, 6 illustrate dependencies, Eq. (5.16), for different values of synchronous phase and beam 

energies. Components of electric field of a relativistic bunch in moving frame, Ei, El, EL, were 



calculated via numerical solution of the Poisson’s equation and then the Lorentz transform was 

applied to get components of electric field, Ex, E,, EZ, in laboratory system: 

Ex = yEi, Ez = YE’,, E,=E; . (5.17) 

In laboratory system transverse field was reduced by the factor of l/y2 due to self magnetic field of 

the beam: 

F, =Ex-vzBy =g, Ey 
Y2 

Fy=Ey+vZB,=-. 
Y2 

(5.18) 

Gradients of space charge field were calculated as derivatives of space charge forces in the vicinity 

of synchronous phase: 

X GF-“,“x 1 aEx 
--=yax 

Y 
G; _ aFz - aEz . 

ac 35 (5.19) 

According to Eq. (4.21) space charge field of a stationary bunch compensates for external 

accelerating and focusing field within the bunch. Therefore, if space charge forces are known, the 

opposite field defines required external filed. Gradients of external field are calculated from Eq. 

(2.2) in the vicinity of synchronous phase utilizing expansion 

sin(cp, - k,Q = sincp, - (k,&oscp, - -$k,<)‘sincp, , k,c CC 1 , (5.20) 

1 (k,r)= l+‘(!q2 
O Y 4Y. 

Substitution of Eqs. (5.20) (5.21) into Eq. (2.2) gives for external potential: 

U c2 G sin@-k,<) ext =Gz2+Gt$[ 1 -A c2 

2 r2G sincp, l=GzT+GL,er$ 7 

where G, is a longitudinal gradient of external field 

(5.21) 

(5.22) 

and Gr, efr is an effective transverse gradient of external field, depressed due to RF defocusing: 



Gi,erf=G,(l -L) . 
2 y2G 

(5.24) 

Taking into account Eq. (4.21), the relationships between gradients of space charge field and that of 

external field are 

G;=-(l)[G,- n: E Isin cpsll 

* 1+6 Y2 m 

(5.25) 

(5.26) 

Eqs. (5.25), (5.26) together with dependencies, presented in Figs. 5,6, uniquely define the shape of 

the stationary bunch for given values of accelerating field, E, focusing gradient, Gr, synchronous 

phase, (pS, wavelength, h, and beam energy, y. 

6. MAXIMUM BEAM CURRENT 

Performed study allows us to determine the maximum beam current of bunched beam. The 

volume of the bunch is determined by 

I Zmax 

v=n; R2(c) d< = !!&- 
2 

&ill 
(6.1) 

For a long bunch (ph >> Rmax), an approximate bunch boundary, R2(w), is determined by Eq. 

(5.13). Integration in Eq. (6.1) gives for the bunch volume: 

v _ (PV3 
-&3% sincp, - ; cp$ cos(p, + cos(p, - cos2cp,) . 

Q Total charge of the bunch is Q = p*V and beam current, I = 2n CO, is 

&mL 
1+6’ 

I max =IcGg~(G;~c~ ) [39, sincp, - ; cpz cos(p, + cos(p, - cos2cpJ , 

(6.2) 

(6.3) 

(6.4) 



where I,,, is a maximum beam current for infinitely high brightness beam. The expression in 

square brackets in Eq. (6.4) is close to the cubic function of the synchronous phase, cpi, (see Fig. 7) 

which exhibits that the maximum beam current is proportional to the cube of the synchronous 

phase. It is in qualitative agreement with analysis, based on well-known ellipsoidal approximation 

to bunched beam [ 1,2,6], see Section 7. 

Substitution of Eq. (4.18), into Eq. (6.3) gives explicit expression for beam current: 

1=1,,,,(1-$), (6.5) 

where a defines normalized acceptance of the channel in presence of transverse focusing and RF 

field: 

a=a P2 Y (Gt qh2 
8rc3BC mc2 

> [3% sin% - t cp$ cos(ps + COS(P, - COS~C~,] . (6.6) 

Eq. (6.4) gives a unique expression for the beam current limit (without separate transverse and 

longitudinal limits) for every combination of the values of E, Gt, cps and h. 

Fig. 8 illustrates dynamics of proton bunched beam with maximum possible current of I,, = 

0.2A in the field with E = 20 kV/cm, cps = - 57.3O, Gt = 280 kV/cm2, 6 =O, p = 0.01788, 5 = 85.7 

cm. Gradients of space charge forces of the beam obtained from Eqs. (5.25), (5.26) are 

Gi = - 69 kV/cm2, GF = - 245 kV/cm2. The ratio of gradient is GF/ Gp = 3.6, which corresponds to 

the bunch with parameter C = 3.5 (see Fig. 6a). The value of beam current is defined from Eq. (6.4). 

Beam dynamics simulations show that bunch shape is approximately kept constant, while 

appearance of halo around bunch indicates that attained solution is approximate. 

7 APPLICABILITY OF ELLIPSOID MODEL 

Let us discuss applicability of the well known approximation of the bunch by uniformly 

populated ellipsoid. In derivations of self-consistent solution of beam distribution resulted in Eq. 

(4.21), there were no constraints on external potential, therefore Eq. (4.21) is valid for arbitrary 

external field. In the vicinity of synchronous particle, where external forces are approximately linear 



functions of coordinates, external potential is given by Eq. (5.22). Substitution of Eq. (5.22) into Eq. 

(4.21) gives for potential of stationary bunch: 

ub=- r2 G -&(Gzy+y r2), (7.1) 
0 t 

where p is given by Eq. (5.3). Potential, Eq. (7.1) corresponds to uniformly populated ellipsoid. In a 

moving system of coordinates, potential of ellipsoid, Ui, with space charge density p’ = p/y is written 

as 

II;=-&-- (Mc2+ yr2), (7.2) 
0 

where 5 = c y is a longitudinal deviation from the center of ellipsoid and M is a function of ratio of 

ellipsoid semi-axes: 

R2yl 
WR, y0 = 2 ds 

(R2 + s) (y2E2 + s)~‘~ 

After transformation to laboratory system, the beam potential, Ub = yU& is 

ub=-&[Mf<2+ 2 l -“r2]. 
0 

(7.3) 

(7.4) 

Comparison of Eq. (7.1) and Eq. (7.4) gives for coefficient M 

M(R, yZ) = G, 
2y2Gt * 

(7.5) 

Coefficient M, Eq. (7.5), and space charge density p, Eq. (5.3), define family of ellipsoidal bunches 

with the same ratio of semi-axes R/Z, which are in equilibrium with external field. Taking into 

account, that volume of ellipsoid is V= (4/3)n R2Z, the maximum bunched beam current, 

I,, = pV0/(2rc), which can be carried by an ellipsoid is 

I max = I, 2y2(R21\ (G’ q h2) 
3 h3 mc2 * 

(7.6) 



Since bunch with current, Eq. (7.6), completely cancels external field, expression (7.6) gives 

both transverse and longitudinal current limit. Let us substitute gradient of focusing field, Gt, by the 

value of zero-current phase advance, oO, of betatron oscillations per period S = Nflh of a pure 

focusing structure (without RF field): 

(Jo= ~- 
c 

9% s 
my DC . 

(7.7) 

In presence of RF field effective focusing gradient is G,,,fr = Gt(l - M), see Eqs. (5.24), (7.5). 

Therefore, zero-current phase advance per period, oo,t, including both the focusing and RF 

defocusing term is defined by: 

c& = 02, (1 -M) . (7.8) 

Phase width of bunch, which contains most of the particles, can be approximately taken as 2~p, and, 

therefore, half of bunch length is 
I = BhCp,l(271) . (7.9) 

Substitution of expressions (7.7) - (7.9) into Eq. (7.6) gives for the current limit 

where Z, = (CEO)-* = 376.73&2 is the impedance of the free space. Expression (7.10) is the well 

known transverse current limit [6, Eq. (9.55)]. Let us show that Eq. (7.6) gives also longitudinal 

current limit. Substitution of parameter M, Eq. (7.5), and amplitude of accelerating field E, Eq. 

(5.23), into Eq. (7.6) gives for current limit: 

I 89 E SW, R21 
max=32, PM ~2 ’ 

(7.11) 

which is well-known expression for longitudinal current limit in RF filed [6, Eq(9.52)]. Usually 

parameter M can be approximated as M = Rl(3yZ). For that approximation the current limit, Eq. 

(7.1 l), is: 

I 2 PY max = r E d Isin% R . (7.12) 
0 



For small absolute values of synchronous phase one can assume Isimp,] = 1~~1, and the current limit, 

Eq. (7.12), is proportional to the cube of synchronous phase [l, 2, 61, which is consistent with 

derivations of Section 6. 

Performed analysis shows that approximation of bunched beam by uniformly populated 

ellipsoid is valid for small bunches, R CC P,h, I << P,h, while more general analysis results in bunch 

shape, described by Eq. (5.7). 

8 SUPPRESSION OF BEAM EMITTANCE GROWTH IN RF LINAC DUE TO RF 

DEFOCUSING 

In RF linac bunched beam is formed from injected continuous beam as a result of longitudinal 

particle oscillations around synchronous particle. This process is accompanied with emittance growth 

and halo formation which was a subject of detailed study of many papers (see Refs. [l], [2], [4], [6] 

- [lo] and cited references there). 

One of the main reason for beam emittance growth is a dependence of transverse oscillation 

frequency on phase of particle in RF field (RF defocusing). From Hamiltonian, Eq. (4.27) the 

equation of transverse particle motion is 

&X+6 
dt2 

(Q2 -IQ2 yn(qx =() 
1+6 r 2 

, 
w-h 

where Q is a transverse oscillation frequency without RF field 

gL@ 
r- my ’ 

(8.1) 

(8.2) 

and Q is a longitudinal oscillation frequency: 

Q2 =m24Eh sin% . 

n-c2 27@y3 
(8.3) 

During formation of bunches from continues beam, particles perform longitudinal oscillations 

with large amplitude, which affect transverse oscillations. In Fig. 9 the phase space trajectory of the 



particle in RF accelerating field is presented. It is clear, that phase space ellipse in phase space is 

deformed due to RF defocusing. The effective emittance of the beam after many particle oscillations 

in RF field can be significantly larger than the initial beam emittance. Qualitative analysis of beam 

emittance growth for zero-current mode was done in Ref. [l]: 

E=l+ @  cwPs 
Eo 

4 4s ’ -- 1 
Q2 

(8.5) 

where Q, is an amplitude of phase oscillations and Q, is a transverse oscillation frequency of 

synchronous particle: 

From Eq. (8.5) it follows that emittance growth due to RF defocusing is most essential at the stage of 

beam bunching, where amplitude of phase oscillations is large, and for small values of ratio Q,/Q. 

According to Eq. (4.27), in space-charge -dominated regime, transverse and longitudinal oscillation 

frequencies are depressed in the same proportion, therefore dependence of emittance growth on ratio 

!&JJz has to be qualitatively the same as for zero-current mode. 

This effect was studied numerically for drift tube linear accelerator with solenoid focusing. 

Radial oscillation frequency in absence of RF and space charge forces is a the Larmor frequency, 

ci)~ = qBl(2my), where B is the magnetic field of solenoid. The lower value of magnetic field is 

limited by transverse stability constraint ct>~>sZ [l]. With increasing of the ratio of q/L& the 

dependence of transverse oscillation frequency on RF filed is damped and emittance growth is 

expected to be suppressed. 

In Figs. lo-13 results of beam dynamics study in RF proton linac for energy 3 MeV and beam 

current of 250 mA are presented. Drift tube accelerator structure consists of prebuncher, buncher and 

acceleration section. Synchronous phase is changing monotonously from 900 to 300. Accelerating 

gradient increased gradually from zero to the final value of 2.5 Mev/m. Initial beam with KV 

distribution, injection energy of 150 keV and normalized emittance of 0.12 rc cm mrad was chosen to 

be matched with constant solenoid field. Transmission efficiency obtained in simulation was 90% . 



From results of simulation it is clear that emittance growth is occurred mainly at the stage of 

beam bunching, where amplitude of phase oscillation is large. Emittance growth is saturated after 

beam is bunched. For small value of magnetic field, o~/sZ= 1.25, close to transverse stability limit, 

the strong emittance growth (up to 100%) was observed. With increasing of magnetic field, the 

emittance growth was seriously reduced and finally can be made close to zero, see Fig. 10. It is also 

accompanied with suppression of halo formation in phase space (see Fig. 11) and in real space (see 

Fig. 12). Final beam profile (see Fig. 13) resembles that, obtained in self-consistent analysis of 

Section 5. Performed study indicates that emittance growth due to RF defocusing can be controlled 

by an appropriate choice of focusing gradient with respect to RF field. 

5 CONCLUSIONS 

An approximate self-consistent solution for a bunched beam in an uniform focusing channel 

with applied RF acceleration field was obtained. Analytical derivations were performed in the limit 

of a high brightness beam, when space charge forces are dominated. Nonlinear equation for 

stationary beam profile as well as expression for space charge limited beam current are derived. 

Applicability of ellipsoidal model to bunched beam in RF field is discussed. 

REFERENCES 

[l] I.M.Kapchinsky: Theory of Resonance Linear Accelerators, Harwood, 1985. 

[2] M.Reiser: Theory and Design of Charged Particle Beams, Wiley, New York, 1994. 

[3] L.D.Landau and E.M.Lifshitz: Field Theory, Pergamon Press, 1975. 

[4] R.Jameson, IEEE Trans. Nucl. Sci., NS-28,2408 (1981). 

[5] Y.Batygin, Phys. Rev. E, 57,602O (1998). 

[6] T.Wangler: Principles of RF Linear Accelerators, Wiley, 1998. 

[7] J. J. Barnard and S. M. Lund, Proc. of the 1997 Part. Accel. Conf., Editors MComyn, 

M.K.Craddock, M.Reiser, J.Tomson, IEEE, p. 1929 (1998). 

[8] R. C. Davidson, Phys. Rev. Lett. 81,991 (1998) and Phys. Plasmas 5,3459 (1998). 

[9] R.L.Gluckstein, A.V.Fedotov, SKurennoy and R.Ryne, Phys. Rev. E58,4977 (1998). 

[lo] C. Chen and M.Hess, Phys. Plasmas 7,5206 (2000). 



APPENDIX 1. Dimensionless beam brightness 

Consider KV envelope equation for round beam [I]: 

R” - $ + k(z) R - 2 1 =o. 
1, P3y3R 

(A.0 

Equation (A.1) contains two defocusing terms: one is proportional to square of beam emittance and 

another one is proportional to beam current. Ratio of that two terms gives estimation, which factor is 

dominated in beam transport: 

b= 2 IR2- 2 IR2 --_ -_~ 
(ay>3 Ic 3; (BY> Ic Ef * 

64.2) 

Transport with b >> 1 corresponds to space-charge dominated regime, while b<cl corresponds to 

emittance- dominated regime. The value of b is proportional to the ratio of beam brightness, I / a2, to 

normalized value, I, / R2. Therefore, parameter b has a meaning of a dimensionless beam brightness. 

Additional factor of 2 / (Py) indicates that significance of the space charge forces drops with 

increasing of beam energy. 



APPENDIX 2. Space charge field of the train of cylindrical bunches. 

Consider train of uniformly populated cylindrical bunches of length 21, radius R and space 

charge density p. (see Fig. 14). Space charge potential of the beam obeys Poisson’s equation: 

64.3) 

Let us expand both space charge density and unknown potential by Fourier-Bessel series: 

Ptr, 5) = 5 5 Pm-n Jo(‘uom i) cos (F), 
n=o m=l 

(A.41 

ub(r, 4) = 2 i IJnm Jo(uom i) COS (F). 
n=o m=t 

64.5) 

Expansions, Eqs. (A.4), (A.5) obey Dirichlet boundary condition at the ideal cylindrical surface of 

the tube r = a and periodic condition in longitudinal direction Ub(r, c) = Ub(r, < + L). Coefficients 

pnm are obtained by multiplying of Eq. (A.4) by Jo(uom ’ r dr d< and integration in 

the limits of (0, a), (-L/2, L/2): 

Pnm = PO & t~~t~~ [ 
Jl(uom ‘) sin (2iZCd 

al[ L) 
JT (uom> 

I. 
(2xnl 

L) 

64.6) 

In derivation of Eq. (A.6) the condition of orthogonality of the Bessel function was used: 

I 
a 

0, m + m’ 
Jo(Uom 1 i) Jo(Uom f) r dr = (A-7) 

0 $ J:(Vom), m = m’ 

Substitution of Eqs. (A.4), (A.5) into Poisson’s equation gives the following algebraic relationship 

between coefficients series: 



U Pnm 
nm = 

E, [(y + (+)2] 
64.8) 

Therefore, space charge field of the train of the bunches is defined as follow: 

Ub@, 0 = 5 5 
4 PO 

F@~ 
Jl(‘Uom $) sin (y) 

n=l m=l ~~ ~om[(~)2+(!?Q!E)2] a L JT(uom> 
Jo(u 

(2nJl 
L) 

om f> COS(F). (A.9) 

YL a 



Figure captions 

Fig. 1. Results of the numerical solution of Eq. (4.26) for a self-consistent potential of a high 

brightness beam, y = 1: (a) 6 =0.3; (b) 6 =0.2; (c) 6 =O.l. 

Fig. 2. Separatrix of longitudinal particle motion: a) low brightness beam, b<<l, b) high brightness 
beam, b>> 1. 

Fig. 3. Approximate stationary self-consistent particle distribution in RF field, cps = - 60°. C = 3.8: a) 

RF field, b) particle distribution, c) space charge field of the beam, d) resulting field. 

Fig. 4. Comparison of potential functions of beam and RF filed: (dotted line) space charge potential 
of bunched beam distribution at the axis, cps = - 60°, C = 3.8; (solid line) inverse external 
potential at the axis, - Uext (w, 0). 

Fig. 5. Coefficient C in bunch shape for cps = -30’ as a function of ratio of transverse and 
longitudinal gradients of space charge field of the beam: a) y = 1, b) y = 3, c) y = 6. 

Fig. 6. Coefficient C in bunch shape for cps = -60° as a function of ratio of transverse and 
longitudinal gradients of space charge field of the beam: a) y = 1, b) y = 3, c) y = 6. 

Fig. 7. Function f (0,) = 3~, sincp, - ; d cos(p, + cos(p, - cos2(p, in maximum beam current. 

Fig. 8. Dynamics of bunched proton beam with current I = 0.2 A in the field with parameters E = 20 
kV/cm, Gt = 280 kV/cm2, h = 85.7 cm, cps = - 600: a) tc/h, b) tc/h = 10, c) tc/h =30. 

Fig. 9. Phase space trajectory of particle in standing wave RF accelerator. 

Fig. 10. Beam emittance growth (up) and phase trajectories of particles (bottom) in RF 
accelerator: 1) al/Q = 1.25 ,2) wQ= 1.75, 3) @L/S2 = 2.5 ,4) Q/Q = 3.5. 

Fig. 11. (Left column) initial beam emittance, (right column) final beam emittance in RF 
accelerator: 1) or/&2 = 1.25 ,2) oL/sZ = 1.75, 3) o~/sZ = 2.5 ,4) OrjQ = 3.5. 

Fig. 12. (Left column) initial x-y beam distribution, (right column) final x-y beam distribution 
in RF accelerator: 1) or/Q = 1.25 ,2) OCR = 1.75, 3) or/52 = 2.5 ,4) 01/Q = 3.5. 

Fig. 13. (Left column) initial beam profile, (right column) final beam profile in RF 
accelerator: 1) cut&! = 1.25 ,2) tit&! = 1.75,3) o&,-J = 2.5 ,4) oIjQ = 3.5. 

Fig. 14. On space charge potential calculation of the train of cylindrical bunches. 
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