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Abstract

Analytical solution for self-consistent particle equilibrium distribution in RF field with
transverse focusing is found. Solution is attained in approximation of high brightness beam.
Distribution function in phase space is determined as a stationary function of the energy integral.
Equipartitioning for beam distribution between degrees of freedom follows directly from the choice
of stationary distribution function. Analytical expressions for r-z equilibrium beam profile and

maximum beam current in RF field are obtained.
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1 INTRODUCTION

Emittance conservation and prevention of halo formation in a high brightness particle beam in
RF accelerator are issues for existing and future high intensity accelerator projects. If the beam is
matched with external focusing and accelerating field, its distribution function as well as beam
emittance are conserved. Matched stationary beam does not exhibit halo formation. Finding
matched conditions for the beam requires solutions of the self-consistent problem for beam
distribution function in 6-dimensional phase space, which is typically possible only by numerical
methods. In this paper we present analytical self-consistent solution for stationary bright bunched
beam in RF field.

The problem of stationary self-consistent particle distribution in RF field was considered in
several books and papers. Typical approximation to the solution of the problem is a uniformly-
charged ellipsoid. Concept of ellipsoid gives the most simple way to estimate the maximum beam
current in RF field. Meanwhile in general case ellipsoid is not a self-consistent solution for bunched
beam in RF field. In Ref. [1] solution of one-dimensional problem in longitudinal phase space was
found. Space charge density of a cylindrical bunch was found to be constant in every cross section
of the bunch, but dependent on longitudinal coordinate. In Ref. [2] spatial particle distribution in 3-
dimensional configuration space was calculated numerically. In this paper an analytical approximate

solution for 3-D self-consistent particle equilibrium is attained.

2 SELF-CONSISTENT PROBLEM

Consider intense bunched beam of particles with charge q and mass m, propagating in a
continuos focusing channel with applied accelerating RF field. Beam is supposed to be bunched at
the frequency @ =2mc/A, where c is the velocity of light and A is a wavelength. Average longitudinal

particle velocity of the beam is s = v, /c, therefore distance between bunches is BsA. Particle

motion is governed by single-particle Hamiltonian [1]:
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where px and py are transverse particle momentum, p; =p - ps is a deviation from longitudinal
momentum of synchronous particle, y = (1 - v3/c2)~ 12 is an average beam energy, { =z -z5is a
deviation from position of synchronous particle, Uy, is a potential of external field, Uy, is a space
charge potential of the beam, E is an amplitude of accelerating field, @g is a synchronous phase,
k, = 2n/(BsA) is a wave number, Gy is a gradient of focusing field, and r is a particle radius.

Space charge density distribution of a moving bunched beam has the form of
p =p (X,y, Z -vst). Moving bunch creates an electromagnetic field with scalar potential

Up = Uy (x,y, Z -vst) and vector potential Kb = Kb (x,y, z -vgt), which obey wave equations [3]:
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where ] = P Vs is a current density of the beam. Current density has only longitudinal component
x=3y=0, jz=vsp (X, ¥,2-Vsl) , (2.5)

and, therefore, vector potential has only longitudinal component A;. In a moving coordinate system,
where particles are static, the vector potential of the beam is zero, A=0. According to Lorentz
transformation, longitudinal component of vector potential in laboratory system is A, = s Uy / c.
Therefore, for solution of the problem of self field of the bunch it is enough to solve only equation
for scalar potential (2.3). Substitution of the value A, into wave equation (2.4) gives the equation

for scalar potential:
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Equation (2.6) has to be solved together with Vlasov's equation for beam distribution function:
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where U = Ugy + 72Uy is a total potential of the structure. Eqs (2.6), (2.7) define self-consistent

distribution of a stationary beam which acts on itself in such a way, that this distribution is

conserved.

3. BEAM EQUIPARTITIONING IN RF FIELD

General approach to find a stationary self-consistent beam distribution function is to represent
it as a function of Hamiltonian f = f(H) and then to solve Poisson's equation. Because Hamiltonian
is a constant of motion for stationary process, any function of Hamiltonian is also a constant of
motion which automatically obeys Vlasov's equation. Convenient way is to use an exponential

function f =f, exp (- H/ Hy):
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Consider important consequence which follows immediately from Eq. (3.1). Let us rewrite

distribution function (3.1) as
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where p = 2 +/<p%> = 2 +/<p2> and p; = 2 ¥ <p2> are double root-mean-square (rms) beam sizes in

phase space. Transverse, €;, and longitudinal, €;, rms beam emittances are:
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Taking together Egs. (3.1) - (3.4), the value of Hy can be expressed as a function of beam

parameters:
m c2 E% m c2 8% mc?2 8%
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Equation (3.5) can be rewritten as
=& (3.6)

where R = 2V<x2> is a beam radius and [ = 2 <C2> is a half-size of the bunch length. Equation
(3.6) expresses the equipartitioning condition for the beam in RF field [4]. From the above
derivations it is clear, that equipartitioning is a consequence of stationarity of the collisionless beam
distribution function, Eq. (3.1). If distribution function is stationary (time independent),
equipartitioning is fulfilled. Opposite statement is not valid in general case: there are infinitely large
number of distribution functions which obeys condition (3.6), but are not necessarily stationary. To
find the stationary distribution function it is necessary to solve nonlinear Poisson's equation for

unknown space-charge potential of the beam.

4. SPACE CHARGE FIELD OF THE BUNCH
Space charge density of the beam is obtained as an integral of beam distribution function over
particle momentum:
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where p,, is the space charge density in the center of the bunch. The value of p, is unknown at this

point due to unknown space charge potential of the beam, Uy, For further analysis let us introduce

an average value of space charge density, p, which is equal to the density of an equivalent
uniformly-charged cylindrical bunch with the same beam radius, R, and the same half-bunch length,

I, as that of unknown stationary bunch. Space charge density of the cylindrical bunch is
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where Q = IM/c is a charge of the bunch, V = TR?2! is a volume of the bunch and I is a beam

current. Compare the value of p, Eq. (4.2), with that for another distributions. Space charge density

of a uniformly populated spheroid with semi-axises R and [ is
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Since different distributions give similar expressions for space charge density in the bunch center
within the factor of k = 1...3 , one can assume that unknown value of space charge density p, in
bunch center, Eq. (4.1), also differs from the average value of space charge density p within the

same factor: B
Po=kp. (4.6)

For further derivations introduce dimensionless variables:
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where a is a channel radius. The Poisson's equation (2.6) in cylindrical polar coordinates becomes
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Let us introduce the values of a bunching factor, B = 2/ /(BA), and dimensionless beam brightness,
b= 21R2/(ByIc£%) (see Appendix 1) where I. = 4ne,mc3/q is a characteristic value of beam current.
Parameter b is a ratio of "space charge term” to "emittance term" in KV envelope equation and is a
measure of influence of space charge forces on beam dynamics. Regime with b>>1 corresponds to
space charge dominated beam transport while regime with b<<l corresponds to emittance

dominated beam transport. Substitution of p,, Eq. (4.6), and H,, Eq. (3.5), with introduced values

of B and b into Eq. (4.8) gives:
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Equation (4.9) is a nonlinear differential equation for unknown beam space charge potential, Vy,
which appears in the left and right side of equation. In general case it can be solved only
numerically. Below consider approximate analytical solution for high brightness beam following
the method suggested in Ref. [5].

Unknown space charge potential of the beam can be represented as Fourier-Bessel series:
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where Jo({) is a Bessel function, Vo, is a m-th root of the equation Jo(C) = 0. Expansion (4.10)

obeys Dirichlet boundary condition Vy(1, 1) = V,, at the perfect conductive surface of the channel

and takes into account periodic function of potential due to train of the bunches.
To find the first approximation to solution of Poisson's equation, let us take only the first term

in expansion of exponential function

exp(-Vext -VbY ?) = 1-Vext -Voy 2. (4.11)

Poisson's equation (4.9) then becomes:
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Space charge potential, Eq. (4.10), is mostly represented by several low-order terms. For example,
for the train of uniformly populated cylindrical bunches (see Appendix 2), the values of Fourier-

Bessel coefficients drop quickly with numbers m, n:
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For a space charge dominated beam, b >> 1, Eq. (4.12) can be simplified. Expression in square

brackets in Eq. (4.12) is
V3m + (kona)® y 2
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where introduced parameter 9 is:
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Low-order roots of the Bessel function are v,; =2.408, v; =3.832, Vo2 = 5.52. Product of k;a is
usually close to unity:
k,a=2n(2)=1. (4.16)
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Taking into account, that B<1,R /a = 0.5, it is easy to see that the value of 9, Eq. (4.15), is much

smaller than unity for a high brightness beam. It can be written as
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where by is a dimensionless beam brightness of bunched beam:

7 1
b.=b@ayz_-2 1 (ay_ 2 Tpeak , 4.18)
=B @ =5 B @ = BY Ty (
and Ipeax = I/B is a peak value of bunched beam current. Therefore, expression, Eq. (4.14), can be

taken out of the sum in Eq. (4.12). With this approximation, Eq. (4.12) becomes:
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Let us define constant V in such a way that the total potential of the structure vanishes at the

bunch center:
Vb(0,0) _

Vext (0,0) + ~2=
Y

(4.20)
External potential is equal to zero at beam center Vey (0, 0) = 0, see Eq. (2.2), therefore condition

(4.20) gives Vp (0, 0) =0. Substitution of Vex; (0, 0), Vp (0, 0) into Eq. (4.19) defines constant

Vo, = -y %/8. Then, from Eq. (4.19) the self-consistent space charge dominated beam potential is:
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Equation (4.21) indicates that the particle distribution of the bright beam has such a shape that
the space charge potential is opposite to the external potential. This fact is well known for a
stationary distribution of a transported beam in a linear focusing channel [1], [2]. Equation (4.21)
generalizes this statement for a 3-dimensional beam distribution. Space charge field of a stationary
bunch always compensates for external field in the beam interior. This phenomenon is known from
plasma physics as Debye shielding for nonneutral plasmas.

Lorentz force, F=E+ [V x ﬁ], created by the beam is connected with space charge potential

of the beam by equation [1, Eq. (2.43)]:

Fp=- Lz grad Uy, . (4.22)
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Substitution of Eq. (4.22) into Eq. (4.21) gives relationship between Lorentz force of the beam and

that of external field:
Fp=--—1 Fg . (4.23)
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Second approximation to the self-consistent potential is given by holding one more term in the

expansion of exponential function as exp(-Vexi-VbY 2) = 1 - Vexe-Viy 2 + 0.5(Vex+Viy 2% so that

we have (see Ref. [5])

Vo =121 + 8 -Vexr- V (148 -Vex) - Vext(Vext -2) | (4.24)

With increasing of beam brightness, d — 0, solution of Eq. (4.24) becomes close to that of
Eq.(4.21).
In more general case Eq. (4.9) for a high brightness beam, & <<1, can be solved only

numerically. Substitution of potential expansion, Eq. (4.10), into Eq. (4.9) together with parameter

9, Eq. (4.15), gives for Poisson's equation:

8(Vp - Vo) =¥ exp (-Vex, - %) . (4.25)



Again, taking into account that in the beam center Ve (0,0) =0, Vi (0,0) =0, the unknown
constant in Eq. (4.25) is V, = - Y 2/8. Using the value of V,, Poisson's equation for a high brightness

beam is as follows:
1+ V= exp (-Vex - Y2 . (4.26)
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In Fig. 1 results of numerical solution of Poisson's equation for different values of beam brightness
are presented. As seen, with increasing beam brightness, an exact numerical solution becomes close
to linear relationship between space charge potential and external potential, Eq. (4.21).

Taking the first approximation to the space charge potential of the beam, Eq. (4.21), the

Hamiltonian corresponding to the self-consistent bunch distribution is as follows:

L Sl R + g8 YUy . (4.27)
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Equation (4.25) indicates that in the presence of intense, bright bunched beam (6 << 1) the
stationary longitudinal phase space of the beam becomes narrow in momentum spread, remaining,
in the first approximation, the same in coordinate (see Fig. 2). This is in qualitative agreement with
the study of Ref. [1], where the self-consistent problem for stationary bunched beam was solved
numerically for longitudinal phase - space particle distribution. The resulting bunch was
approximated by a hard-edged cylinder. Particle density was constant in every cross section of a
cylinder, but depended on longitudinal position. Numerical results of the Ref. [1] indicated that in
space-charge-dominated regime, separatrix of longitudinal phase space was substantially reduced in
momentum, remaining almost unchanged in phase width, which is in good agreement with Eq.
(4.25).

5 STATIONARY BUNCH PROFILE

Self consistent space charge density distribution of matched beam can be found from the

Poisson's equation:
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Substitution of Eq. (4.24) into Eq. (5.1) gives the stationary particle density distribution inside the

bunch:
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For a high brightness beam parameter 8 << 1, therefore, space charge density is close to constant

within the bunch:
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From Eq. (4.21) it follows, that, in the first approximation, space charge potential of the beam
is the same function of coordinates, as the external potential, with opposite sign. Therefore, equation

Uex: (1, {)= const gives the family of equipotential lines of space charge field of the beam:

L2 )sin(puk,0) - singst kieosgs + S 12 = const. (5:4)

In general case, bunch boundary does not create an equipotential surface, therefore Eq. (5.4) does
not coincide with bunch profile. To treat the problem, consider uniformly populated bunch with
boundary R(£), defined by nonlinear equation
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Equation (5.5) differs from Eq. (5.4) by inserted parameter C, which will be used to adjust bunch
shape in such a way, that self field of the bunch is approximately opposite to external field. The
value of constant in right side of Eq. (5.5) can be determined from the condition, that longitudinal
bunch size is, in the first approximation, the same as for zero - current mode. Therefore, at R({) =0

one of the bunch boundary is k,{ = 2@, and the value of constant is

const = 2@ cosQs - 2 sinQy . (5.6)

Substitution of Eq. (5.6) into Eq. (5.5) gives expression for expected bunch profile:
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Fig. 3 illustrates uniformly populated bunch with boundary, Eq. (5.7). Bunch profile in real
space reminds separatrix shape in longitudinal phase space. Space charge field of the bunch in
longitudinal direction is essentially nonlinear and repeats (with negative sign) the RF field inside
the bunch. In transverse direction the space charge forces are close to linear function of coordinate
and compensate external focusing forces. Shape and space charge forces of the bunch depend on
parameter C. Consider that dependencies in more details.

For a long bunch, A >> Rpx, the Bessel function can be approximated as I(y) = 1 + x2/4, and

equation (5.7) for bunch boundary becomes:
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Transverse bunch size, Rpax, 1s determined from equation RE) =0, which has an approximate
g
solution {(Rpax) = 0. Substitution of this value into Eq. (5.8) gives for maximum beam size:
3 —
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Exact value of {(Rpax) is slightly positive and maximum value of bunch profile is shifted to the
head of the bunch. The phase length of a separatrix is approximately 3¢, and full bunch length is
I = BA3@s/(2m). The ratio of transverse to longitudinal bunch sizes for a given value of
synchronous phase is therefore:

Rpax _ _1 2 (@5 cosQs - sinQs) . (5.10)
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Let us compare space charge potential of the bunch with that of external RF filed. Consider for
simplicity a non-relativistic case. Potential of arbitrary charged distribution at the point {, at the

axis is:
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Introduce RF phase y = - k,{ instead of longitudinal coordinate {. After integration in Eq. (5.11)

over radius and azimuth angle, the beam potential is:
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For typical values of parameter C = 1....5, bunch profile, Eq. (5.8), can be approximated as follow:
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Substitution of Eq. (5.13) into Eq. (5.12) gives the potential at the axis point Yo :
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Because the value of synchronous phase in RF filed is negative ¢s < 0, integration in (5.14) has to
be performed in the limits of (s, - 2¢s). In Fig. 4 results of space charge potential of the bunch, Eq.

(5.14) are presented. Also, an inverse autophasing potential is given:

V() = - Uy (W, 0) = - £ [ sin (¢ + @) - ¥ cospg]
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As seen, the values of both potentials are close to each other. Therefore, uniformly populated bunch
with boundary, Eq. (5.7), compensates for "restoring" autophasing force inside the bunch, which
indicates good approximation of the bunch boundary by Eq. (5.7).

Parameter C can be expressed as a function of ratio of transverse, Gb, and longitudinal, Gtz’,

gradients of space charge forces inside the bunch
b
c=c®y. (5.16)
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Figs. 5, 6 illustrate dependencies, Eq. (5.16), for different values of synchronous phase and beam

energies. Components of electric field of a relativistic bunch in moving frame, Ex, E'y, E,, were



calculated via numerical solution of the Poisson's equation and then the Lorentz transform was

applied to get components of electric field, Ex, Ey, E,, in laboratory system:

Ex = YEIX’ E, = YE'Z’ E,= E'z . (5.17)

In laboratory system transverse field was reduced by the factor of 1/y2 due to self magnetic field of

the beam:

, Fy=Ey+szx=E—2y. (5.18)
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Gradients of space charge field were calculated as derivatives of space charge forces in the vicinity

of synchronous phase:
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According to Eq. (4.21), space charge field of a stationary bunch compensates for external
accelerating and focusing field within the bunch. Therefore, if space charge forces are known, the
opposite field defines required external filed. Gradients of external field are calculated from Eq.

(2.2) in the vicinity of synchronous phase utilizing expansion
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Substitution of Egs. (5.20), (5.21) into Eq. (2.2) gives for external potential:
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where G, is a longitudinal gradient of external field

- E[sin @ ,
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and Gy ¢t is an effective transverse gradient of external field, depressed due to RF defocusing:



G,

Gt, eff = Gt(l -
272G

) . (5.24)

Taking into account Eq. (4.21), the relationships between gradients of space charge field and that of

external field are

Gp = - (1 ) 2REbing (5.25)
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Eqgs. (5.25), (5.26) together with dependencies, presented in Figs. 5, 6, uniquely define the shape of
the stationary bunch for given values of accelerating field, E, focusing gradient, G¢, synchronous

phase, @5, wavelength, A, and beam energy, Y.

6. MAXIMUM BEAM CURRENT

Performed study allows us to determine the maximum beam current of bunched beam. The

volume of the bunch is determined by
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A
V=mn j R2({) dC = B—z—f R2(y) dy . (6.1
z ¢

min s

For a long bunch (BA >> Rpax), an approximate bunch boundary, R%(y), is determined by Eq.
(5.13). Integration in Eq. (6.1) gives for the bunch volume:
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where I,y is a maximum beam current for infinitely high brightness beam. The expression in
square brackets in Eq. (6.4) is close to the cubic function of the synchronous phase, @3, (see Fig. 7),
which exhibits that the maximum beam current is proportional to the cube of the synchronous
phase. It is in qualitative agreement with analysis, based on well-known ellipsoidal approximation
to bunched beam [1, 2, 6], see Section 7.

Substitution of Eq. (4.18), into Eq. (6.3) gives explicit expression for beam current:

I = I (1-21), (6.5)

where o defines normalized acceptance of the channel in presence of transverse focusing and RF

field:
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Eq. (6.4) gives a unique expression for the beam current limit (without separate transverse and
longitudinal limits) for every combination of the values of E, Gy, @5 and A.

Fig. 8 illustrates dynamics of proton bunched beam with maximum possible current of I, =
0.2A in the field with E = 20 kV/cm, @5 = - 57.3°, G, = 280 kV/cm?, § =0, = 0.01788, A = 85.7
cm. Gradients of space charge forces of the beam obtained from Egs. (5.25), (5.26) are
GY =- 69 kV/cm?, GP = - 245 kV/cm?. The ratio of gradient is G®/ G? = 3.6, which corresponds to
the bunch with parameter C = 3.5 (see Fig. 6a). The value of beam current is defined from Eq. (6.4).
Beam dynamics simulations show that bunch shape is approximately kept constant, while

appearance of halo around bunch indicates that attained solution is approximate.

7 APPLICABILITY OF ELLIPSOID MODEL

Let us discuss applicability of the well known approximation of the bunch by uniformly
populated ellipsoid. In derivations of self-consistent solution of beam distribution resulted in Eq.
(4.21), there were no constraints on external potential, therefore Eq. (4.21) is valid for arbitrary

external field. In the vicinity of synchronous particle, where external forces are approximately linear



functions of coordinates, external potential is given by Eq. (5.22). Substitution of Eq. (5.22) into Eq.

(4.21) gives for potential of stationary bunch:
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where p is given by Eq. (5.3). Potential, Eq. (7.1), corresponds to uniformly populated ellipsoid. In a
moving system of coordinates, potential of ellipsoid, U'b, with space charge density p' = p/y is written
as

_ P 2. 1-Ma
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b 280( ¢+ > ), (7.2)

where C' = { vy is a longitudinal deviation from the center of ellipsoid and M is a function of ratio of

ellipsoid semi-axes:

R2yl
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After transformation to laboratory system, the beam potential, Up = yU'b, is
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b=-3g L V¢ 5] (7.4)
Comparison of Eq. (7.1) and Eq. (7.4) gives for coefficient M
M, yl) = -9z . (1.5)
2Y*Gy

Coefficient M, Eq. (7.5), and space charge density p, Eq. (5.3), define family of ellipsoidal bunches
with the same ratio of semi-axes R/, which are in equilibrium with external field. Taking into
account, that volume of ellipsoid is V=(4/3)n R2[, the maximum bunched beam current,
Imax = pV/(2m), which can be carried by an ellipsoid is

th}\.z

m c2

_12.2R%
Imax—Ic3Y (}\3)( ). (7.6)



Since bunch with current, Eq. (7.6), completely cancels external field, expression (7.6) gives
both transverse and longitudinal current limit. Let us substitute gradient of focusing field, G, by the

value of zero-current phase advance, G,, of betatron oscillations per period S = NBA of a pure

Go=4/ 35t S (7.7)
my BC

In presence of RF field effective focusing gradient is G ¢r = G¢(1 - M), see Egs. (5.24), (7.5).

focusing structure (without RF field):

Therefore, zero-current phase advance per period, Oy, including both the focusing and RF

defocusing term is defined by:

0%y =03 (1-M). (7.8)

Phase width of bunch, which contains most of the particles, can be approximately taken as 2¢g and,

therefore, half of bunch length is
[ =BAoy/(2m) . (7.9)

Substitution of expressions (7.7) - (7.9) into Eq. (7.6) gives for the current limit

Imax

o2
_4 mc? By3 Ps Oot (&)2 (7.10)
32,9 (1-M)N? ),

where Z, = (cg,)! = 376.73Q is the impedance of the free space. Expression (7.10) is the well
known transverse current limit [6, Eq. (9.55)]. Let us show that Eq. (7.6) gives also longitudinal
current limit. Substitution of parameter M, Eq. (7.5), and amplitude of accelerating field E, Eq.

(5.23), into Eq. (7.6) gives for current limit:
_ 81E2 E sin(ps Rzl
max — 320 BM )\‘2 ’

(7.11)

which is well-known expression for longitudinal current limit in RF filed [6, Eq(9.52)]. Usually

parameter M can be approximated as M = R/(3yl). For that approximation the current limit, Eq.

(7.11), 1s:

2 .
Lo = % E ¢? [singg R . (7.12)
0



For small absolute values of synchronous phase one can assume [sin@4 = |@4, and the current limit,
Eq. (7.12), is proportional to the cube of synchronous phase [1, 2, 6], which is consistent with
derivations of Section 6.

Performed analysis shows that approximation of bunched beam by uniformly populated
ellipsoid is valid for small bunches, R << BsA, I << BsA, while more general analysis results in bunch

shape, described by Eq. (5.7).

8 SUPPRESSION OF BEAM EMITTANCE GROWTH IN RF LINAC DUE TO RF
DEFOCUSING

In RF linac bunched beam is formed from injected continuous beam as a result of longitudinal
particle oscillations around synchronous particle. This process is accompanied with emittance growth
and halo formation which was a subject of detailed study of many papers (see Refs. [1], [2], [4], [6]
- [10] and cited references there).

One of the main reason for beam emittance growth is a dependence of transverse oscillation
frequency on phase of particle in RF field (RF defocusing). From Hamiltonian, Eq. (4.27), the

equation of transverse particle motion is

2 1
T2

Qz sinQ

d2_x+ 0 (© sinQ
S

yx =0, (8.1)
dt?  1+8

where € is a transverse oscillation frequency without RF field

Q2 =46t (8.2)
my
and Q is a longitudinal oscillation frequency:
Q? = 2 GEA SN Qs (83)
me? 2nfy?

During formation of bunches from continuos beam, particles perform longitudinal oscillations

with large amplitude, which affect transverse oscillations. In Fig. 9 the phase space trajectory of the



particle in RF accelerating field is presented. It is clear, that phase space ellipse in phase space is
deformed due to RF defocusing. The effective emittance of the beam after many particle oscillations
in RF field can be significantly larger than the initial beam emittance. Qualitative analysis of beam

emittance growth for zero-current mode was done in Ref. [1]:

f:l.}.%
© 4Qr,s

92

: (8.5)
-1

where @ is an amplitude of phase oscillations and €, is a transverse oscillation frequency of
synchronous particle:
2
2 2
rs=Qr -2 (8.6)

Q
2

s =Q

From Eq. (8.5) it follows that emittance growth due to RF defocusing is most essential at the stage of
beam bunching, where amplitude of phase oscillations is large, and for small values of ratio €, ;/€2.
According to Eq. (4.27), in space-charge -dominated regime, transverse and longitudinal oscillation
frequencies are depressed in the same proportion, therefore dependence of emittance growth on ratio
Q; </Q has to be qualitatively the same as for zero-current mode.

This effect was studied numerically for drift tube linear accelerator with solenoid focusing.
Radial oscillation frequency in absence of RF and space charge forces is a the Larmor frequency,
or, = qB/(2my), where B is the magnetic field of solenoid. The lower value of magnetic field is
limited by transverse stability constraint ;> [1]. With increasing of the ratio of wi/€2, the
dependence of transverse oscillation frequency on RF filed is damped and emittance growth is
expected to be suppressed.

In Figs. 10-13 results of beam dynamics study in RF proton linac for energy 3 MeV and beam
current of 250 mA are presented. Drift tube accelerator structure consists of prebuncher, buncher and
acceleration section. Synchronous phase is changing monotonously from 900 to 30°. Accelerating
gradient increased gradually from zero to the final value of 2.5 Mev/m. Initial beam with KV

distribution, injection energy of 150 keV and normalized emittance of 0.12 @ cm mrad was chosen to

be matched with constant solenoid field. Transmission efficiency obtained in simulation was 90% .



From results of simulation it is clear that emittance growth is occurred mainly at the stage of
beam bunching, where amplitude of phase oscillation is large. Emittance growth is saturated after
beam is bunched. For small value of magnetic field, wy/Q= 1.25, close to transverse stability limit,
the strong emittance growth (up to 100%) was observed. With increasing of magnetic field, the
emittance growth was seriously reduced and finally can be made close to zero, see Fig. 10. It is also
accompanied with suppression of halo formation in phase space (see Fig. 11) and in real space (see
Fig. 12). Final beam profile (see Fig. 13) resembles that, obtained in self-consistent analysis of
Section 5. Performed study indicates that emittance growth due to RF defocusing can be controlled

by an appropriate choice of focusing gradient with respect to RF field.

5 CONCLUSIONS

An approximate self-consistent solution for a bunched beam in an uniform focusing channel
with applied RF acceleration field was obtained. Analytical derivations were performed in the limit
of a high brightness beam, when space charge forces are dominated. Nonlinear equation for
stationary beam profile as well as expression for space charge limited beam current are derived.

Applicability of ellipsoidal model to bunched beam in RF field is discussed.
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APPENDIX 1. Dimensionless beam brightness

Consider KV envelope equation for round beam [1]:

2
R"-Et?» k(z)R-—%—I———=0. (A.1)
R I B'y°R

Equation (A.1) contains two defocusing terms: one is proportional to square of beam emittance and
another one is proportional to beam current. Ratio of that two terms gives estimation, which factor is

dominated in beam transport:

b=—2_L1R2_.2 IR’ (A2)

ek ek

Transport with b >> 1 corresponds to space-charge dominated regime, while b<<1 corresponds to
emittance- dominated regime. The value of b is proportional to the ratio of beam brightness, I/ €2, to
normalized value, I. / R2. Therefore, parameter b has a meaning of a dimensionless beam brightness.
Additional factor of 2/ (By) indicates that significance of the space charge forces drops with

increasing of beam energy.



APPENDIX 2. Space charge field of the train of cylindrical bunches.

Consider train of uniformly populated cylindrical bunches of length 2/, radius R and space

charge density p, (see Fig. 14). Space charge potential of the beam obeys Poisson's equation:

1 d, dUy 02U, _ 1
T a_r(r or ) Y28C2 T g, p ). (A-3)

Let us expand both space charge density and unknown potential by Fourier-Bessel series:

C T 2

P@ 0= D pom Joom I cos ( ’E‘C), (A4)
n=0 m=]
o r 2nn{

Up(t, §)= Y, Y, Unm Jo(om &) cos (). (A.S5)

n=0 m=1

Expansions, Egs. (A.4), (A.5) obey Dirichlet boundary condition at the ideal cylindrical surface of

the tube r = a and periodic condition in longitudinal direction Uy(r, {) = Up(r, { + L). Coefficients
27tn'
L

Pnm are obtained by multiplying of Eq. (A.4) by Jo(Vom' i)cos ( ) r dr d€ and integration in

the limits of (0, a), (-L/2, L/2):

Ji(0om Ry sin (2201
pam = Po —A— R)H [y [ L. (A6)
Yom 2"'L"" P2vom) (2mnl,
L

In derivation of Eq. (A.6) the condition of orthogonality of the Bessel function was used:

a 1]
r r 0, m# m
Joon ) Joom Drdr = { . (A7)
o a2 J2(1) ), m=m'
2 1 om/» -

Substitution of Egs. (A.4), (A.5) into Poisson's equation gives the following algebraic relationship

between coefficients series:



Uy = . p;‘mu - (A.8)
& (G + 3™ ]

Therefore, space charge field of the train of the bunches is defined as follow:

11 (Vom R) sin (G201 2mng

L

U 0=Y ¥ il &)@

S 5 D ). (A.9)
=l m=1 € Vom[(ZR0)+(PgR ] Ti(0om) (270l

Jo(Vom g) cos(



Figure captions

Fig. 1. Results of the numerical solution of Eq. (4.26) for a self-consistent potential of a high
brightness beam, y = 1: (a) 8 =0.3; (b) 8 =0.2; (c) 6 =0.1.

Fig. 2. Separatrix of longitudinal particle motion: a) low brightness beam, b<<l1, b) high brightness
beam, b>>1.

Fig. 3. Approximate stationary self-consistent particle distribution in RF field, ¢ = - 60°. C = 3.8: a)
RF field, b) particle distribution, c) space charge field of the beam, d) resulting field.

Fig. 4. Comparison of potential functions of beam and RF filed: (dotted line) space charge potential
of bunched beam distribution at the axis, @5 = - 60°, C = 3.8; (solid line) inverse external
potential at the axis, - Uex (W, 0).

Fig. 5. Coefficient C in bunch shape for @ =-30° as a function of ratio of transverse and

longitudinal gradients of space charge field of the beam: a) y=1,b)y=3,¢c)y=6.

Fig. 6. Coefficient C in bunch shape for ¢;=-60° as a function of ratio of transverse and
longitudinal gradients of space charge field of the beam: a) y=1,b)y=3,¢c)y=6.

Fig. 7. Function f (¢4) = 3@ sing; - 9 @% cos@s + COS s - COS2(P, in maximum beam current.
8 2

Fig. 8. Dynamics of bunched proton beam with current I=0.2 A in the field with parameters E = 20
kV/ecm, Gy = 280 kV/cm2, A = 85.7 cm, @5 = - 609: a) tc/A, b) tc/A =10, ¢) tc/A =30.

Fig. 9. Phase space trajectory of particle in standing wave RF accelerator.

Fig. 10. Beam emittance growth (up) and phase trajectories of particles (bottom) in RF
accelerator: 1) o /Q=1.25,2) o/Q= 1.75,3) op/Q = 2.5,4) o /Q=3.5.

Fig. 11. (Left column) initial beam emittance, (right column) final beam emittance in RF
accelerator: 1) op/Q=1.25,2) o/Q= 1.75,3) o/Q = 2.5,4) 0 /Q=3.5.

Fig. 12. (Left column) initial x-y beam distribution, (right column) final x-y beam distribution
in RF accelerator: 1) op/Q=1.25,2) o/Q= 1.75,3) o/Q = 2.5,4) o/Q =3.5.

Fig. 13. (Left column) initial beam profile, (right column) final beam profile in RF
accelerator: 1) w/Q=1.25,2) o/Q= 1.75,3) o /Q= 2.5,4) 0 /Q=3.5.

Fig. 14. On space charge potential calculation of the train of cylindrical bunches.
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