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Abstract

We study the quantum dynamics of a spinless charged-particle propagating through

a magnetic lattice in a transport line or storage ring. Starting from the Klein-
Gordon equation and by applying the paraxial approximation, we derive a Schr�odinger-
like equation for the betatron motion. A suitable unitary transformation reduces

the problem to that of a simple harmonic oscillator. As a result we are able to
�nd an explicit expression for the particle wavefunction.
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1 Introduction

Continuing progress in beam cooling techniques could lead in the future to regimes in which

quantum e�ects will start to become important. At that point a fully quantum mechanical

description of the beam dynamics will be required[1]. As a contribution to that description,

in this paper we lay out a framework to compute the wavefunction for a single charged

particle con�ned in a magnetic lattice transport line or storage ring. The expression we

�nd may be useful as a basis to calculate transition rates in processes like synchrotron

radiation emission[2] or intrabeam scattering as well as to assess the limitations to a machine

performance caused by di�raction phenomena[3].

In our analysis we neglect spin e�ects so that the particle wavefunction is properly de-

scribed by the Klein-Gordon (KG) equation. The KG equation can be solved in the paraxial

approximation by exploiting the fact that in an accelerator the particle momentum is mostly

longitudinal. The problem amounts to studying a non-relativistic quantum harmonic oscil-

lator with a time-dependent restoring force � `time' in this context is the location of the
particle along the lattice. The solution can be found in the literature[4] and has already
been applied in the �eld of quantum optics and ion traps. Here we present a method of

solving the problem that involves a language more familiar to the accelerator physicist and
emphasizes the correspondence with the classical motion. Previous work in this area using
di�erent methods includes that of Jagannathan and Kahn[5]. The methods employed here

are more similar to those introduced by Fedele et al.[6] in their `quantum-like' beam models.
In Sec. 2,3,4 we treat a particle dynamics in a straight channel. In Sec. 5, we discuss the

coherent-state solutions and �nally in Sec. 6,7 we extend the results to circular machines.

2 The Reduced Klein-Gordon Equation for a Particle

in a Straight Transport Line

Neglecting spin e�ects a relativistic quantum particle can be described using a wavefunction
that satis�es the KG equation. In general, if the charged particle is coupled to an external

static magnetic �eld B = r�A the KG equation reads

[Ê2=c2 �m2c2 � (p̂� eA)2] (t;x) = 0; (1)

with the operators Ê and p̂ de�ned as usual as Ê = i�h@t and p̂ = �i�hr.
In a straight transport line consisting of quads and drifts with the particle traveling

along z one can choose a gauge for which the vector potential has the form Ax = Ay = 0
and Az = �(p0=e)k(z)(x2� y2)=2 with p0 being the design particle momentum and k(z) the
focusing function. Such a vector potential is consistent with Maxwell's equations through

second order terms. In the absence of external focusing a solution of (1) representing a
particle propagating along the z�axis with the design energy E0 and momentum p0 is given

by the wavefunction

 =  0e
i(p0z�E0t)=�h; (2)
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where  0 is a normalization constant. As the interaction with the con�ning magnetic �eld

is turned on it is natural to look for solutions of (1) in the form

 = ~ (x; y; z)ei(p0z�E0t)=�h: (3)

We can expect that the z�dependence in ~ (x; y; z) results in variations taking place over

distances of the order of the betatron wavelength ��. This de�nes the long-length scale of

our problem, which should be compared with the short-length scale given by the De Broglie

wavelength �p = h=p0. After substituting (3) into (1), we use the fact �� � �p to neglect

@2z
~ compared to @z ~ =�p and (x2 � y2)@z ~ compared to (x2 � y2) ~ =�p. Moreover, we can

neglect the term containing @zk(z) because the distance over which k(z) varies substantially

{ the magnet fringe �eld region { is also much longer than the De Broglie wavelength.

Finally, we disregard terms more than quadratic in x and y because we are only interested

in the linear approximation of the transverse dynamics. As a result we obtain the following

Schr�odinger-like equation for the amplitude ~ (x; y; z):

i�h
@ ~ 

@z
=

 
� �h2

2p0

@2

@x2
� �h2

2p0

@2

@y2
+ p0

k(z)

2
(x2 � y2)

!
~ ; (4)

where z is now interpreted as the independent `time-like' variable. From Eq. (4) we can
write o� the e�ective Hamiltonian Ĥ for the system

Ĥ =
p̂2x
2p0

+
p̂2y
2p0

+ p0
k(z)

2
(x2 � y2): (5)

3 The Classical Motion

The classical HamiltonianH corresponding to (5) leads to the Hill equations x00+k(z)x = 0,

and y00 � k(z)y = 0, y the solutions of which, i.e. x =
q
�x�x(z) cos['x(z) + 'xo] and

y =
q
�y�y(z) cos['y(z) + 'yo], can be written in terms of the Courant-Snyder betatron

functions �x;y(z) and phase functions 'x;y(z) de�ned by '0
x;y = 1=�x;y. In turn, the betatron

functions �x;y are solutions of

� 00
x;y �

�
0
2

x;y

2�x;y
� 2k(z)�x;y �

2

�x;y
= 0; (6)

where the + sign in front of the focusing function applies to �x and the � sign to �y. The

solutions are determined upon speci�cation of the appropriate initial or boundary conditions.

We know from the accelerator theory literature [7] that the betatron functions can be used

to de�ne canonical transformations that cast the original Hamiltonian into a simpler form.

We also know that canonical transformations correspond in quantum mechanics to unitary
transformations [8]. Therefore, we can use such a correspondence to build a suitable unitary

operator that turns the quantum Hamiltonian into a simpler form as well. We desire a

y
The prime

0
means di�erentiation with respect to z.
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Hamiltonian that has the z�dependence fully factored in order to simplify the solution of

the corresponding KG equation.

Consider the classical case �rst. For simplicity we will focus only on the horizontal motion;

extension to the vertical plane is trivial. The canonical transformation[7] that produces

the desired Hamiltonian can be decomposed into a linear momentum kick that leaves x

unchanged followed by a scaling. In particular the �rst transformation (x; px)! (x1; px1) is

given by x1 = x, and px1 = px�p0x� 0
x(z)=2�x(z), and has generating function F2(x; px1; z) =

xpx1 + p0x
2� 0

x(z)=4�x(z). The transformed Hamiltonian H1 in the new variables is

H1 = H +
@F2

@z
=
p2x1
2p0

+
� 0
x

2�x
px1x1 +

p0

2�2x
x2
1
: (7)

The scaling x2 = x1=
p
�x and px2 = px1

p
�x, then removes the cross term and factors out

the z�dependence in the Hamiltonian at same time. Such a transformation has generating

function F2(x1; px2) = x1px2=
p
�x: The resulting Hamiltonian reads

H2 = H1 +
@F2

@z
=

1

�x(z)

 
p2x2
2p0

+
p0

2
x2
2

!
: (8)

4 The Quantum Motion

First, let us recall how the quantum Hamiltonian transforms under unitary transformations.

If the abstract vector j i satis�es the Schr�odinger equation i�h@zj i = Hj i the ket j 0i =
U�1j i transformed under unitary operator U�1 satis�es the Schr�odinger equation i�h@zj 0i =
H0j 0i; with the Hamiltonian H0 given by

H0 = U�1HU � i�hU�1
@U

@z
: (9)

We are now ready to write the quantum equivalent of the canonical transformation in-

troduced in the previous Section. The unitary operator U1 generating the momentum kick
is de�ned by U�1

1 x̂U1 = x̂ and U�1

1 p̂xU1 = p̂x + p0�
0
xx̂=(2�x), where we have used^to denote

the quantum observables. Provided that �x(z) obeys Eq. (6), as in the classical case, it can

be easily veri�ed that

U1 = exp

 
i
p0

�h

� 0
x

4�x
x̂2
!
; (10)

leads to the intermediate Hamiltonian

Ĥ1 =
p̂2x
2p0

+
� 0
x

4�x
(p̂xx̂+ x̂p̂x) +

p0

2�2x
x̂2: (11)

In turn, the scaling U�1

2 x̂U2 = x̂
p
�x and U

�1

2 p̂xU2 = p̂x=
p
�x de�nes the unitary operator

U2 = exp

�
� i

4�h
log(�x)(x̂p̂x + p̂xx̂)

�
: (12)
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The transformed Hamiltonian Ĥ2 is the quantum correspondent of H2:

Ĥ2 =
1

�x(z)

 
p̂2x
2p0

+
p0

2
x̂2
!
: (13)

Ĥ2 has the form of a Hamiltonian for a simple oscillator times a pure function of z. If we

denote with

�n(x) =

�
p0

��h

� 1

4 1p
2nn!

Hn

�
x

r
p0

�h

�
e�p0x

2=2�h (14)

the eigenfunctions of the harmonic oscillator part we can easily verify that we can write the

solutions of the Schr�odinger equation i�h@zj ~ (2)i = Ĥ2j ~ (2)i corresponding to the n�excited
level of the betatron oscillations, as

~ (2)

n (x; z) = �n(x)e
�i(n+1=2)'x(z): (15)

We recall that 'x(z) =
R
dz=�x(z).

By applying in sequence the transformations U2 and U1, we then recover the wavefunc-
tions relative to the intermediate Hamiltonian Ĥ1 and original Hamiltonian Ĥ. In particular,
we have j (1)

n i = U2j (2)

n i or:

~ (1)

n (x; z) = �
� 1

4
x  (2)

n (x=
q
�x; z); (16)

i.e.

~ (1)

n (x; z) =

 
p0

��h�x(z)

! 1

4 1p
2nn!

Hn

 
x

s
p0

�h�x(z)

!
�

exp
�
�p0x2=[2�h�x(z)]

�
exp (�i(n + 1=2)'x(z)) : (17)

Finally, the solutions of the original Schr�odinger equation (4) are (j ni = U2j (1)

n i)

~ n(x; z) = exp

 
i
p0

�h

� 0
x(z)

4�x(z)
x2
!
~ (1)

n (x; z): (18)

One can verify that indeed this is a solution of (4) by direct substitution.

5 Coherent-States

The wavefunctions (18) can be combined linearly to obtain localized wavepackets both longi-

tudinally and transversally. For simplicity we will focus only on localization in the transverse

plane, i.e. we consider only eigenstates of p0. Of particular interest are those linear superpo-

sitions leading to coherent states. One way to introduce coherent states for a simple harmonic

oscillator is to de�ne them as eigenfunctions of the creation operator.[8] Here we can proceed
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in a similar way by using the creation operator a de�ned in terms of the observables x̂ and

p̂x relative to Hamiltonian Ĥ2:

a =
1p
2

 r
p0

�h
x̂+ i

1p
p0�h

p̂x

!
: (19)

The coherent states for the original system Ĥ are then recovered by applying the unitary

operators U1 and U2 introduced in Sec. 4. Equivalently, one can introduce coherent states

by means of the displacement operator

D(�) = e�i'x(z)=2e�a
y���a: (20)

where � is the function �(z) = �0 exp[�i'x(z)], with �0 being a complex constant number.

One can show that the coherent states j�0i result from applying D(�) to the harmonic

oscillator ground state j�0i = D(�)j�0i. Use of the displacement operator allows one to

quickly obtain the wavefunction representation  (2)

�0
(x; z) = hxj�0i:

 (2)

�0
(x) = e�i'x(z)=2e(�

�2��2)=4e
p

p0=2�h(����
)x�0

 
x�

s
�h

2p0
(�+ ��)

!
; (21)

where �0(x) = hxj�0i = (p0=��h)
1

4 exp(�p0x2=2�h) is the wavefunction of the harmonic oscil-
lator ground state. If we then act with U2 and U1 on  

(2)

�0
(x) we �nd the coherent states in

the original variables

 �0(x) = exp

 
i
p0

�h

� 0
x(z)

4�x(z)
x2
!
�
� 1

4
x  (2)

�0
(x=

q
�x; z): (22)

The function � is related to the expectation values x = hx̂i�0 and px = hp̂xi�0 for the coherent
state: s

�h

2p0
(� + ��) =

xp
�x
; (23)

s
�hp0

2
(�� ��) = i

q
�xpx � ip0

� 0
x

2
p
�x
x: (24)

It can be shown that two above equations indicate that x and px evolve according to the
classical trajectory, as expected from Ehrenfest's Theorem [8].

For a simple harmonic oscillator the coherent states have the property that the wavepacket

spread in both position and momentum is constant and has the minimum value consistent

with the Heisenberg uncertainty principle. This is not true in our case because of the de-

pendence of the betatron function on z and only where � 0
x(z) = 0 the wavepacket spread is

minimum. In particular, we have [with (�x)2 � h(x̂� x)2i�0 , etc.], (�x)2 = �h�x(z)=2p0 and

(�px)
2 = [�hp0=2�x(z)](1 + �

02

x =4) and therefore �x�px = (�h=2)
q
1 + �

02
x =4. On the other

hand the quantum quantity corresponding to the unnormalized rms emittance evaluated on

these states has the constant value

"x �
"
(�x)2

(�px)
2

p20
� 1

4
h(p̂x � px)

p0
(x̂� x) + (x̂� x)

(p̂x � px)

p0
i2�0

# 1

2

=
��c


; (25)

where �c = h=mc is the Compton wavelength and  the relativistic factor.
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6 Charged particle in uniform bending and periodic

focusing

The calculation carried out in the previous Sections can be extended to include the dynamics

of a charged particle in a storage ring. We assume a simpli�ed model of storage ring for which

in addition to a periodic focusing we now impose a bending provided by a uniform magnetic

�eld of strength B0. We assume that the magnetic �eld is pointing in the y�direction so

that the classical equilibrium orbit for a charged particle is a circle of radius �0 in the x� z

plane. We select the (classical) reference orbit to be centered at x = z = 0. In cylindrical

coordinatesz a vector potential A = (A�; A�; Ay) associated with the magnetic �eld that

provides the desired con�nement and focusing is given, through second order in terms of the

deviations from the equilibrium orbit, by A� = Ay = 0 and

A� =
B0

2
� + b2(�)

�0

2�
[(�� �0)

2 � y2]: (26)

Our starting point is the KG equation, which now is expressed best in terms of cylindrical
coordinates. Because the energy E of a particle does not depend on time we can still write

the solution of the KG equation as

	 = e�iEt=�h	̂(�; �; y) (27)

as in Sec. 1 . To avoid possible confusion from now on we will use the capitalized letter 	
to denote the quantum wavefunction for the system with bending. With this ansatz the KG
equation becomes 2

4��h2 1
�

@

@�
�
@

@�
+

 
�h

i�

@

@�
� eA�

!2

� �h2
@2

@y2

3
5 	̂ = p2	̂; (28)

where p is the particle mechanical momentum. We alert the reader that we will allow the
possibility for the particle energy and momentum to be di�erent from the design values E0

and p0. In analogy with Eq. (3) we make the following ansatz

	̂ = ei`� ~	(�; �; y); (29)

which spells out a decomposition of the wavefunction into fast (�rst term on the RHS) and

slow (second term on the RHS) �-varying component. That is, we are assuming `� 1 and
@� ~	� `~	: On the basis of the exact solution of the problem (28) for the case with vanishing

focusing (b2 = 0), we expect that the particle mechanical momentum to be related to the
quantum number ` by[8] p2 = 2�hjejB0(`+ 1=2) ' 2�hjejB0`.

We can now proceed as in Sec. 1 and neglect the second order derivatives @2�
~	 compared

to `@� ~	 and the term @�A� compared to `A�. As a result the KG equation then reads

i�h

 
�h`

�
� eA�

!
2

�

@ ~	

@�
=

 
��h2 @

2

@�2
� �h2

@2

@y2
+ V (�; y)� p2

!
~	; (30)

z
de�ned by x = � cos�; z = � sin�; y.
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where V (�; y) is an e�ective potential that has the form

V (�; y) = � �h2

4�2
+

1

�2
(�h`� eA��)

2 ' 1

�2
(�h`� eA��)

2: (31)

The last equality holds because we are assuming `� 1. At this point we expand the e�ective

potential V around its point of minimum, � = �min =
q
2�h`=jejB0: By requiring �min = �0

(i.e. we want the expansion of V to be centered on the classical reference orbit) the equation

above identi�es `0 = [�2
0
jejB0=2�h]

1

2 = p0�0=2�h, as the quantum number relative to the state

of an on-momentum particle. We write � = �0 + � and in the expansion for V we keep only

terms quadratic in the variables �; y, and � = (`� `0)=2`0 = �p=p0. After some algebra we

then obtain the reduced KG equation in the form of the following Schr�odinger-like equation

i�h
@ ~	

@s
=

�
� �h2

2p0

@2

@x2
� �h2

2p0

@2

@y2
+
p0

2

 
1

�20
+ k(s)

!
x2

� p0

2
k(s)y2 � p0

�

�0
x+

p0

2
�2
�
~	: (32)

In writing (32) we have rescaled the independent variable � according to � = s=�0, written

the focusing function as k(s) = eb2(s=�0)=p0, and �nally re-christen � as x. In conclusion,
the desired solution of the KG equation (28) around the reference orbit is

	̂ = ei`s=�0 ~	(�; y; s)=
q
�0 + � ' ei`s=�0 ~	(�; y; s)=

p
�0: (33)

with ~	 given by the solution of (32).

7 Treatment of Dispersion

The Schr�odinger equation (32) di�ers from (4) because of the coupling term �x. A way
to solve Eq. (32) is to �rst introduce a suitable unitary transformation that remove the
coupling. In complete analogy with the classical case[7] such a transformation consists

of one translation in position and one in momentum. The �rst, U�1

1 x̂U1 = x̂ + �D and

U�1

1 p̂xU1 = p̂x is generated by U1 = exp (�i�p̂xD(s)=�h) : The second transformation is

generated by U2 = exp (i�x̂p0D
0(s)=�h) ; yielding U�1

2 x̂U2 = x̂ and U�1

2 p̂xU2 = p̂x + p0�D
0(z).

In both cases D(s) is the dispersion function de�ned as a solution of the inhomogeneous

equation

D00 + kx(s)D =
1

�0
: (34)

By virtue of (34) the transformed states j~	(2)

n i = U2U1j~	ni obey the Schr�odinger equation

i�h@zj~	(2)

n i = Ĥ2j~	(2)

n i with

Ĥ2 =
1

2p0
p̂2x +

1

2
p0kx(s)x̂

2 +
p0�

2

2

 
kxD

2 �D
02 � 2D

�0

!
: (35)
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This Hamiltonian has the same form as Hamiltonian (5) apart from the last purely s�dependent
term on the RHS. Therefore, a solution of the resulting Schr�odinger equation is given by

~	(2)

n (x; s) = ~ n(x; s) exp

"
� i

�h

p0�
2

2

Z s

0

[1 + kx(t)D
2(t)�D

0
2(t)� 2D(t)

�0
]dt

#
(36)

where ~ n(x; s) is the same as in Eq. (18) with s replacing z. By undoing the transformations

U1 and U2 we can �nally obtain the solutions j~	ni = U1U2j~	(2)

n i of the original Schr�odinger
equation (32):

~	n(x; s) = ei�p0(x��D)D0=�h ~	2;n(x� �D; s): (37)

Next we combine Eq.'s (33) and (37) and upon including the vertical degree of freedom

we �nally recognize that the wavefunction corresponding to the nx and ny transverse levels

of excitation reads

	(x; y; s) =
C
p
�0
ei`s=�0 ~	nx(x; s)

~ ny(y; s); (38)

with ~	nx(x; s) given by Eq. (37) and ~ ny(y; s) by Eq. (18); we have introduced the con-
stant C to guarantee a proper normalization. Enforcing periodicity upon the wavefunction
	(x; y; 0) = 	(x; y; 2��0) yields the following quantization condition on the particle momen-

tum (through �rst order in �p = p0�)

�p =
�h

�0

�
(m� `0) +

�
nx +

1

2

�
�x +

�
ny +

1

2

�
�y

�
; (39)

where �x and �y are the tunes and m;nx; ny are integers.
In conclusion, we have succeeded in deriving an explicit expression for the wavefunction

of a quantum particle con�ned in a storage ring or transport line. We have stressed the
correspondence between classical and quantum motion by showing that they can both be
described in terms of the functions �x;y(z) and D(z), which obey the same equations in both

cases. With the appropriate choice of the boundary conditions these can be identi�ed as the
lattice functions one is familiar with from accelerator theory.

We would like to acknowledge C. Hill, S. De Martino, F. Illuminati for useful discussions
during the Workshop and in particular R. Fedele for pointing out a mistake in one of our
equations. We have also bene�ted from many discussions with A. Kabel. Work supported

by the US Dept. of Energy.
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