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Abstract

With the appropriate choice of parameters and su�cient cooling, charged par-

ticles in a circular accelerator are believed to undergo a transition to a highly-

ordered crystalline state[1]. The simplest possible crystalline con�guration is a

one-dimensional chain of particles. In this paper, we write down the quantized

version of its dynamics. We show that in a low-density limit, the dynamics is

that of a theory of interacting phonons. There is an in�nite sequence of n-phonon

interaction terms, we write down the �rst orders, which involve phonon scatter-

ing and decay processes. The quantum formulation developed here can serve

as a �rst step towards a quantum-mechanical treatment of the system at �nite

temperatures.
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1 Higher-Order Dynamics of the Coulomb Chain

We consider an ensemble of charged point particles forced into an one-dimensional setup by

an external focusing �eld. In equilibrium, the particles will be equidistant longitudinally.

We treat the limit of an in�nite, but periodic, chain. The problem will be treated in the rest

frame of an orbiting particle, curvature and retardation e�ects will be neglected.

The kinetic, potential and Coulomb interaction Lagrangian are, respectively
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where we have introduced local coordinates around each particle's equilibrium position. The

sums run over all lattice sites. � is the lattice vector, we use a coordinate system where

� = (0; 0; �): The particle has mass m, and the external focusing strengths are given by

!2
ext;x; !

2
ext;y and are assumed to be constant along the ring. We are using natural units with

~ = c = 1.

We expand (1) in x�, that is, we write
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i = 0, as the coördinates are expanded around

their equilibrium. For the �rst interesting orders, we get
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where we used the shorthand notation �i = (Æ�im � Æ�in).
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Doing the summation over m;n, we get
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tions of a set of indices.

The sums over �k0 give
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for odd n and vanish for even n. (�(3) � 1:202; �(5) � 1:037).

As the interaction is translationally invariant, we proceed by Fourier transformation:
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We write down the interaction Lagrangian in this basis. For convenience, we introduce

vertex functions
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Note that momentum conservation is only up to integer multiples of 2�. After some Fourier
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gymnastics, we have
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2 Quantization

The quadratic terms of the total Lagrangian describe an ensemble of harmonic oscilla-

tors with coördinate variables �i(k); �
�
i (k) = �i(�k). We introduce momenta variables

�i(k); �
�
i (k) = �i(�k) obeying the usual commutation relations.

Quantization is straightforwardly done by de�ning creation and annihilation operators

ai(k); a
+
i (k) by p

2
(k)aj(k) = 
(k)�j(k) + i�j(�k) , (9)

with oscillator frequencies 
(k) de�ned below. These oscillator eigenmodes describe phononic

(particle displacement waves) excitations of our system.

We write the full Lagrangian (8) in terms of the operators ai(k); a
+
i (k). The momentum-

independent terms in (8) are disposed of by absorbing them into the Fourier transform of

the potential: ~�(k)! ~�(k)� ~�(0).

Inspecting (8), one notices that the terms can be interpreted diagrammatically:

1. F
(2)

1 gives the one-particle propagator, i. e., it gives the dispersion relation 
2(k) for

the phonons (Fig. 1)

2. F
(3)

1 describes a decay process: one incoming phonon decays into two outgoing ones

(Fig. 2)

3. F
(4)

123 describes a decay process: one incoming phonon decays into three outgoing ones

(Fig. 3)

4. F
(4)

12 describes a scattering: two incoming phonons exchange momentum (Fig. 4)

Note that our diagrams are in terms of the spatial coördinates �; ��. If we want to draw

the diagrams in terms of phononic eigenmodes, we have to use �; �� / a+ � a and draw all

8 possible three-point and 32 possible four-point diagrams: Each leg in any of the diagrams

can be �ipped over to make an outgoing particle an ingoing one while changing the sign of

its momentum.
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k1 k1
~�(3)(k1)

Figure 1: Free two-point function

Also, we have to multiply each diagram by the polarization tensors, i. e. the totally sym-

metric ii dependent terms in (8). With an obvious notation for transverse and longitudinal

polarizations, these are given in Table 1; contributions with index con�gurations not given

in the table vanish.

Index Structure Weight

(?;?) �1

(k; k) +2

(k; k; k) �6

(k;?;?) �2

(?;?;?;?) +9

(?;?;?0;?0) +3

(?;?; k; k) �12
(k; k; k; k) +24

Table 1: Weight factors of di�erent polarizations

Looking at the coe�cient of the two-particle diagram, we can write down the oscillator

frequencies due to the internal degrees of freedom:


2
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The explicit form of this dispersion relation involves generalized Zeta functions and is

not too enlightening. However, we can write down the energy of the � mode, which is easily

seen to be the highest energy mode (see Fig. 6):
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Figure 2: Decay diagram
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Figure 3: Decay diagram
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Figure 4: Scattering diagram
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Figure 5: Momentum insertion by the external lattice
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Figure 6: Spectrum and interaction strength of the in�nite coulomb chain
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One reads o� that 
2
?;k = �


2
k and 
2

k;k = 2
2
k, that is, in the absence of external forces

the transverse motion is unstable. This has to be counteracted by an external focusing �eld

with a �eld gradient greater than 
2
�. In real-world situations, this �eld will be position-

dependent, i.e., our Lagrangian ceases to be diagonal in the Fourier basis. Instead, we have

a convolution with the Fourier decomposition of the lattice focusing. Diagrammatically, this

means that the two-point functions can get injected momentum from the magnetic lattice

(Fig. 5), the Kext(0) contribution just being the average focusing strength.

Also, 
(k) determines the validity of our quantization procedure. Instead of quantizing

the fermionic particles, we have quantized their collective phononic excitations, which we

obtained by expanding the classical Lagrangian around the classical equilibrium (cf. [2, 3]).

Obviously, the particles have to be localized even in the quantum-mechanical domain for

this procedure to be valid.

We have seen the particles behave oscillator-like to lowest nontrivial order. Thus, we

can estimate their wave functions' longitudinal extension; the ground state of an harmonic

oscillator has

�2 =
1

m!
(12)

as its extension. For a point-particle expansion to be valid, we have to require

1

m
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or, with (11)
1
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(which is the one-dimensional version of the rs � 1 condition known from Wigner crystal

theory[4, 5]), so the quantization procedure is valid for low particle densities. As the condition

is expressed in the rest frame (so � = �Lab), the condition can easily be ful�lled in realistic

setups.
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