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Abstract
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I. Introduction

The standard Friedmann-Robertson-Walker the metric[1] in spherical-like coordi-

nates r, θ and φ is given by

c2dτ 2 = c2dt2 − R2(t)

(

dr2

(1 − kr2)
+ r2dθ2 + r2sin2θdφ2

)

. (1.1)

where R(t) is the cosmic scale factor at time t, τ is proper time, and k determines

whether three-space is a sphere (k = +1), a flat space (k = 0), or a hyperbolic sphere

(k = −1).[2, 3, 4, 5]

The metric in Eq.(1.1) is a specific case of

c2dτ 2 = c2dt2 − R2(t)
(

gij(x)dxidxj
)

, (1.2)

where gij is a function of the spatial coordinates only. In going from time t to a

slightly later time t′, each region of space stretches by the same factor R(t′)/R(t).

Due to this stretching, faraway objects are carried away from any particular observer

moving with recessional speeds vr that increase with the distance:[6]

vr = Hr + . . . , (1.3)

where r is the distance to the object. The corrections to Eq.(1.3) vanish as Hr/c → 0.

Hence for Hr/c ≪ 1, the linear Hubble law

vr ≈ Hr , (1.4)

is an excellent approximation. Hubble’s constant is H(t) = Ṙ(t)/R(t).

In obtaining Eq.(1.4), it is assumed that the observer and the nearby objects do

not have perculiar velocities. Throughout our work, we shall make use of a system of

comoving observers. These comovers have values of the coordinates x that are fixed

in time so that, according to the metric in Eq.(1.2), the distance between two nearby

comovers increases by a factor of R(t2)/R(t1) between times t1 and t2.

There are several commonly used distances to specify the spatial separation of a

faraway object from Earth: the proper distance dprop, the luminosity distance dlum

determined by apparent brightness, the parallax distance dparallax, the angular size
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distance das obtained by measuring apparent width, and the time-of-flight distance

dtof given by c(tobs− tem) where tem is the time at which a distant object emits a light

ray and tobs is the time at which it is observed on Earth. These distances agree with

one another with increasing accuracy as the object approaches the Earth, but differ

significantly when the object is very faraway.

Some of the above versions of distant violate the principle that instantaneous non-

local measurements cannot be made. An example is proper distant. Speeds computed

on the basis of proper distant are therefore unphysical.

Proper distant is an instantaneous measure of spatial separation that can be

achieved only by engaging in a “conspiracy” of multiple observers. Let dprop(t) be the

proper distance between an object (e.g., a luminous source) and an observer (e.g., an

astronomer). Arrange in advance for a series of comoving observers to be positioned

between the two and instruct them to measure at the common time t the distance

to the next neighbor. See Figure 1. Let ∆xi+1,i be the measured distance between

observers i and i + 1. Then arrange for the observers to get together later to sum

their measurements:

dprop(t) =
∑

i

∆xi+1,i . (1.5)

Since, at a latter time t′, the distances ∆xi+1,i all increase to R(t′)/R(t)∆xi+1,i,

dprop(t
′) =

R(t′)

R(t)
dprop(t) , (1.6)

so that proper distance scales exactly with the cosmic scale factor.

Define vprop(t) to be the rate of change of proper distance with respect to time:

vprop(t) ≡ ∂dprop(t)/∂t. Then using dprop as the definition of distance and assuming

vprop is the appropriate measure of speed, one would conclude that the Hubble law is

exactly linear:

vprop(t) =
∂dprop(t)

∂t
=

Ṙ(t)

R(t)
dprop(t) = H(t)dprop(t) . (1.7)

Indeed, any definition of distance that scales exactly with R(t) as in Eq.(1.6) obeys

such a linear Hubble law. Since dprop(t) can be made arbitrarily large, one finds, with

these definitions of speed and distance, that distant objects travel faster than the
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speed of light c. An interesting result in ref.[7] states that the proper distance for

which H(t)dprop(t) = c can actually occur within the particle horizon, that is, within

the observable universe. It is sometimes stated that the Hubble law is exactly linear

and that faraway objects can move away from Earth at a rate exceeding c.[2, 7, 8]

However, the use of dprop as the definition of distance is not physical as emphasized

above in that it is impossible for an observer to make an instanteous measurement of

it.

However, for metrics of the form in Eq.(1.2), there are definitions of distant that

are physical and causal for which recessional speeds never exceed that of light. The

basic idea is to use a dense network of comoving observers throughout the universe,

who are allowed to make local measurements, that is, measurements in a small re-

gion centered about their positions. Non-local measurements are then achieved by

communicating the local results to one another and by using relativistic dynamics.

One needs to use relativistic dynamics because sizeable speeds enter for very distant

objects. Any definition of distant that uses only local measurements and respects the

principles of special relativity cannot lead to speeds of objects exceeding the speed of

light.

In the process of carrying out our analysis, we also uncover an angle effect not

previously noted in general relativity. The angle between two rays as measured by

an observer in the vicinity of the rays but far from the source is not the same as the

angle between the rays as emitted by the source. It is obvious that such an effect

should exist: In special relativity, there is the “tail light” effect: The light from a

receding source is observed to spread out. Since distant objects are moving away from

one another in an expanding universe, the “tail light” effect should be present and,

indeed, it is. This leads to a small correction to the standard formula for parallax

distance.

One way to illustrate how angles can change with time is as follows: Consider

two nearby comoving observers. The two agree to send out light rays in a direction

perpendicular to the line between them. See Figure 2. Then since space is expanding,

the angle between the light rays will initially be slightly greater than zero and seen

to increase with time by any local observer.
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The uncovering of the “tail light” effect was actually the main motivation for the

current work. Recent redshift data of distant type Ia supernovae suggest that the ex-

pansion of the universe is accelerating.[9]. This is contrary to what most cosmologists

had expected. Physically, distant supernovae appear to be dimmer than expected.

The “tail light” effect could be the explanation if it has not been previously properly

taken into account. However, using local comoving observer measurements, we ob-

tain the standard formula for the luminosity distance of a light source. Hence, the

“tail light” effect is not the origin of the unexpected faintness of distant supernovae.

To account for an accelerating universe, a cosmological constant or some other dark

energy contribution does need to be invoked.

II. An Exact (Differential) Hubble Law Equation

This section derives a new form of Hubble’s law by determining the corrections to

Eq.(1.3). It is straightforward to obtain an exact equation for the recessional velocity

v as a function of distance r from the Earth. First establish a network of comoving

observers. Each observer sees the comovers in its vicinity moving away according to

the Hubble law in Eq.(1.4). See Figure 3.

Suppose that the recessional speed v(r) at r has been determined using local

measurements by comoving observers. Two speeds are involved in determining v(r +

∆r) at a slightly farther distance: (1) The comover at r observes that a comover ∆r

further out moves with a speed of H∆r and (2) the comover at r is moving away

from Earth with a speed of v(r). Using the relativistic formula for the addition of

velocities, one finds that that the comover’s speed at r + ∆r is

v(r + ∆r) =
v(r) + H∆r

1 + v(r)H∆r
c2

≈ v(r) + H(1 −
v2(r)

c2
)∆r ,

or
dv(r)

dr
= H(1 −

v2(r)

c2
) . (2.1)

Eq.(2.1) is a fundamental equation which can be integrated to obtain the exact reces-

sional speed as a function of distance. For r small, the v2(r)/c2 term can be neglected

and one recovers the linear Hubble law.

The formula for v implicitly defines a distance r by dr/dt = v(t), which can be
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integrated out to determine r if r(t0) is known for some early time t0 and if the history

of the universe is provided, that is, an exact formula for H(t).

If H is constant, which is the case when the expansion is exponential (R(t) =

exp(Ht)) and which might have happened in the early universe during inflation[10],

one finds

v(r) = c tanh(Hr/c) = c
exp(Hr/c) − exp(−Hr/c)

exp(Hr/c) + exp(−Hr/c)
, (2.2)

which yields a result for v(r) that is always less than c and approaches c only for

r → ∞. It is sometimes misstated that, in an inflationary universe, superliminary

speeds are achieved. For r small, one recovers v(r) = Hr + . . . from Eq.(2.2).

In a Friedmann-Robertson-Walker universe, H is not constant and one must inte-

grate Eq.(2.1) taking into account the variation of H with time. An example of how

the integration is performed is provided below.

Because only local measurements are made that respect the principles of special

relativity in deriving Eq.(2.1), no object is viewed as having a recessional speed greater

that c. Indeed, as v(r) approaches c, the factor (1 − v2(r)/c2) in Eq.(2.1) reduces

the incremental increase in speed. In support of Eq.(2.1), we have been able to show

that a number of results pertinent to an expanding universe are obtainable from the

differential Hubble law. Here, we restrict ourselves to only one example: a derivation

of the redshift as a Doppler effect.

The expansion of the universe causes the light from a distance source to be shifted

to the red because the wavelength λ of light is stretched:

λ(tobs) =
R(tobs)

R(tem)
λ(tem) , (2.3)

where λ(tobs) is the wavelength of the light at the time that it is observed and λ(tem)

is the wavelength at the time that it is emitted. Eq.(2.3) holds for any metric of the

form in (1.2).

Let us show how to obtain the redshift as a Doppler effect due to the recessional

velocity. If a luminous source is receding from an observer at a speed vobs then in

special relativity

λ(tobs) =

√

c + vobs

c − vobs
λ(tem) . (2.4)
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To determine vobs, one integrates Eq.(2.1) for the process in which light is emitted

from a distant object and received by an observer on Earth. As the light propagates,

the change in distance dr that it travels in dt is given by dr = −cdt. Using this in

Eq.(2.1) gives

dv = −

(

1 −
v2

c2

)

cH(t)dt . (2.5)

Separating variables and integrating from the initial time tem to the final time tobs,

one obtains
√

c + vobs

c − vobs
= exp(

∫ tobs

tem

H(t)dt) =
R(tobs)

R(tem)
, (2.6)

where the last equality holds because H = dlog(R)/dt. Substituting this result into

Eq.(2.4) yields the result in Eq.(2.3). The derivation supports the validity of the

differential Hubble law in Eq.(2.1) and illustrates how it is necessary to take into

consideration the variation of the Hubble constant in integrating the equation.

It is sometimes stated that the redshift cannot be computed as a Doppler effect.

The argument goes as follows. Suppose that one can vary the expansion factor R(t)

at will. Around the time of emission, adjust R(t) so that it is constant. After

emission, let R(t) increase so that the universe expands and produces a redshift.

Before observation, adjust R(t) so that it is constant again. Then one might argue

that, since the universe is not expanding during emission and observation, there is no

relative velocity between emitter and observer during these processes, and hence no

Doppler effect. There are several difficulties with this reasoning. First, it assumes that

the relative speed between two distant objects can be instantaneously measured and

hence is zero at the times of emission and observation. Second, the above derivation

leading to Eq.(2.6) demonstrates unequivocally that the red shift can be computed

as a Doppler effect for arbitrarily varying R(t). It is clear from this computation that

the recessional speed is “built up” during the entire period of light propagation and

is not instantaneously produced. Third, changing R(t) from a constant to a non-zero

value creates an acceleration between the light and the observer (and also with the

emitter). This acceleration generates a redshift as can can see as follows. Consider

the line of comovers positioned between the source and final observer on Earth. Let

each of these intermediate comovers absorb the light and instantly re-emit it. This
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has no effect on the light. During the periods for which R(t) is unchanging, no

redshift is generated. However, as soon as R(t) increases, two nearby intermediate

comovers achieve a relative velocity and the next one observes a redshift compared to

the previous one that can be attributed to the acceleration of space or as a Doppler

effect.

It is incorrect to incorporate both the Doppler effect and the stretching of space in

determining λ(tobs)/λ(tem): The redshift in general relativity in an expanding universe

is due to the stretching of waves of light; Observers, however, have the option of

viewing the the redshift as due a Doppler effect arising from the relative motion of

sources and observers.

If a distant source has a peculiar velocity, then in general relativity there is both

a cosmological redshift and a moving-source Doppler effect. It is easily checked that

the use of (2.5) correctly produces the total wavelength shift as a single Doppler effect

by using vpeculiar for the initial speed and noting that the velocity addition formula

in special relativity v3 = (v1 + v2)/(1 + v1v2/c
2) can be written as

√

c + v3

c − v3
=

√

c + v1

c − v1

√

c + v2

c − v2
, (2.7)

as can easily be checked.

III. The “Tail-Light” Effect

In this section, we compute the luminosity distance using a network of comoving

observers because, among things, it allows us to uncover a “tail-light angle effect.” In

addition, since the luminosity distance is used in analyzing type Ia supernova data, a

careful, detailed derivation of the formula is worth performing given that the tail-light

effect has previously been overlooked.

If the absolute luminosity of an astrophysical object is known, then its apparent

luminosity LA can be used to determine a distance dlum to the object[4]:

LA ∝
R2(tem)

R2(tobs)

1

d2
eff

, (3.1)

where deff , the effective distance, is defined as

bobs ≡ deffφs , (3.2)
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and bobs is the impact parameter or distance measured by the observer of two nearby

light rays emitted from the source with an angular separation at the source of φs. See

Figure 4. The definition of luminosity distance dlum is

dlum ≡
R(tobs)

R(tem)
deff . (3.3)

It remains to determine deff . Arrange for a set of equally spaced, intermediate

comoving observers to be between the source and the receiver. Because the angle φs

is typically extremely small, terms of order φ2
s may be neglected.

Figure 5(a) shows the initial emission of the two rays. Angles are display much

larger than the actual case for clarity. Not surprisingly, observers disagree on what

transpires as the rays move from the source to the intermediate comoving observer

1. According to observer 1, the light is emitted at a distance ∆x at an angle φ1, and

it travels to the region of 1 while the source moves away at a recessional speed of

v1s. As the rays pass 1 at time t1, the distance between the source and 1 becomes

R(t1)/R(tem)∆x because space is expanding. The angle φ1 is greater than φs because

for a source that is moving away, one has the “tail light” effect of special relativity.

See Figure 5(b). Using the standard formula for the relation between angles in special

relativity for references frames moving with respect to one another,

φ1 =

√

c + v1s

c − v1s

φs =
R(t1)

R(tem)
φs , (3.4)

where the last equality follows from Eq.(2.6). The distance between the two rays b1

as the light passes 1 is, according to observer 1,

b1 = ∆xφ1 =
R(t1)

R(tem)
∆xφs . (3.5)

According to the comoving observer at the source, the rays are emitted with

an angular separation of φs, but, as the rays move from the source to 1, observer

1 moves away. The distance the light travels is R(t1)/R(tem)∆x and thus greater.

Using this distance and angle, an observer at the source arrives at Eq.(3.5) for the

impact parameter at 1, in accord with special relativity that moving observers agree

on distances perpendicular to their relative motion. See Figure 5(c).
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Now consider the process in which the rays travel from the region of intermediate

comover 1 to the region of intermediate comover 2. It is convenient to consider

a comoving observer at 1′ where the upper ray passes near 1 and a corresponding

comoving observer at 2′ as in Figure 6(a). Because the observer at 1′ is moving away

from 1, the angle that the upper ray makes with a horizontal line perpendicular to

the line running between 1 and 1′ is less than φ1. In fact, 1′ is moving away with

just the right speed to observe the angle as φs to order ∆x2. The situation for 1′ and

2′ in Figure 6 is thus similar to that of 1 and the source in Figure 5 except that the

distance between 1′ and 2′ is R(t1)/R(tem)∆x instead of ∆x. Let ∆b2 be the impact

parameter seen by 2′. Then

∆b2 =
R(t2)

R(t1)

R(t1)

R(tem)
∆xφs =

R(t2)

R(tem)
∆xφs . (3.6)

Since the primed comoving observers 1′ and 2′ are moving away from the unprimed

observers 1 and 2 due to the expansion of the universe, the distance between them

increases as the rays move from 1 to 2. Hence, the distance between primed and

unprimed observers is R(t2)/R(t1)b1 when the rays arrive in region 2 and the impact

parameter b2 at 2 is

b2 =
R(t2)

R(t1)
b1 +

R(t2)

R(tem)
∆xφs =

R(t2)

R(tem)
2∆xφs . (3.7)

As in the case of Figure 5, 1′ and 2′ disagree on what happens as the rays move from

region 1 to 2 but agree on the value of b2. See Figures 6(b) and 6(c).

The process in which rays go from comoving observer i to i + 1 is similar to that

of Figure 6 except the distance between i to i+1 is initially R(ti)/R(tem)∆x and the

angle for the upper ray at i′ is larger and equal to φi as seen by i. The comoving

observer at i′, however, sees the angle as φs. In place of Eq.(3.7), one has

bi+1 =
R(ti+1)

R(ti)
bi +

R(ti+1)

R(tem)
∆xφs =

R(ti+1)

R(tem)
(i + 1)∆xφs . (3.8)

Equation (3.8) can be evaluated at the position of the receiver by setting i = N−1

for N − 1 intermediate observers:

bobs =
R(tobs)

R(tem)

∑

i

∆xφs . (3.9)
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Since
∑

i ∆x = N∆x = dprop(tem), one concludes that

deff =
R(tobs)

R(tem)
dprop(tem) = dprop(tobs) , (3.10)

so that the luminosity distance in Eq.(3.3) is

dlum =
R(tobs)

R(tem)
dprop(tobs) , (3.11)

which agrees with the standard result.[2, 4, 11] Although there is a “tail light” effect,

it is not the reason why distant type Ia supernovae appear dimmer than expected.

The angle φi measured by the ith observer at time ti is

φi ≈

(

φs +
H(ti)bi

c

)

= φs

(

1 + H(ti)R(ti)
∫ ti

tem

ds

R(s)

)

. (3.12)

This is the “tail light” effect: φi > φi−1 > φs. Since the “tail light” effect can be

quite significant for very distant astronomical luminous objects, one might wonder

why it has not been detected experimentally. The reason is that, although φobs can

differ by φs by a sizeable factor, both φobs and φs are miniscule and hence not directly

measurable in practice. For example, suppose the mirror of a telescope is 1 meter so

that bobs ∼ 1 meter and that a supernova is observed with a redshift of z ≈ 0.5. Then

φobs/φs ≈ 1.5 but the order of magnitude of either angle is 10−26 radians.

It only takes a “small factor” within the framework of an Ω = 1 Friedmann-

Robertson-Walker universe to obtain agreement with the type Ia supernova obser-

vations. If the ith primed observer would have observed the angle of the upper

ray as R(ti)/R(ti−1) times the angle observed by the (i − 1)th primed observer (in-

stead of an angle of φs), then one would have found a somewhat larger value of

deff of R(tobs)
R(tem)

dtof and dlum would become R2(tobs)
R2(tem)

dtof , which turns out to fit the su-

pernova data[9] perfectly for a flat-space universe. More specifically, in a k = 0

matter-dominated universe, deff = dprop = 2c(1 − 1/
√

1 + z)/H0, whereas dphen
eff =

R2(tobs)
R2(tem)

dtof = 3c(1 + z − 1/
√

1 + z)/(2H0). Since the use of dphen
eff fits the supernova

data so well, it can be used as a phenomenological parametrization in current and

future studes of the acceleration of the universe.
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IV. A Correction to the Formula for Parallax Distance

The definition of parallax distance is

dparallax =
bobs

φobs
, (4.1)

where φobs and bobs are respectively the observed angle and distance between two

rays. See Figure 4. Because of the “tail light” effect, φobs is greater than φs, and the

location of the source appears closer than otherwise would be the case.

Using the results for bobs and φobs in Eqs.(3.9) and (3.12) of the last subsection,

one finds

dparallax =
dprop(tobs)(1 − kdprop(tobs)

2/R(tobs)
2)−1/2

1 + H(tobs)dprop(tobs)/c
, (4.2)

which differs from the standard result[4] by the factor in the denominator. It is im-

portant to note that since parallax measurements in astronomy are made at positions

fixed to the center of the solar system, non-comoving observers are used. This is

the reason why φobs should be used and not φs (compare unprimed and primed ob-

servers of the last subsection). Since parallax is currently only used for relatively

nearby astrophysical objects, the denominator correction factor numerically does not

significantly affect parallax distant measurements.

V. Conclusions

In this research, we clarified several issues concerning the physics of a Friedmann-

Robertson-Walker cosmology and derived several new results. In particular, with the

use of reasonable definitions, recessional speeds no longer exceed the speed of light.

More importantly, we obtained a new, fundamental equation governing Hubble’s law.

There are statements in the literature that recessional speeds can exceed c and that

the Hubble law is exactly linear, but they are based on definitions requiring non-local

instantaneous measurements. We found a correction factor for parallax distance that

had previously been overlooked. Another new result is that the light rays from a

distant source spread out. This “tail light” effect, however, does not explain why

recent distant type Ia supernovae appear dimmer than expected and therefore does

not provide a way of avoiding the conclusion that the supernova data supports an
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accelerating expanding universe. Finally, we have uncovered a nice phenomenological

fit for the type Ia supernova data.
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Figure Captions

Figure 1. Arrangement of Intermediate Comoving Observers to Compute the Proper

Distance Between a Source and an Observer

Figure 2. The Spreading Out of Rays Emitted in the x-Direction by Separated Co-

moving Sources

Figure 3. The Recessional Velocity Vectors in a Region of a Comoving Observer

Figure 4. Rays Emitted at Small Angles by a Source and Measured by a Faraway

Observer

The angle between the rays seen by the observer is larger than the angle at emission

so that when the rays are projected back, they converge on a distance dparallax, which

is closer than one would obtain if the “tail light” angular effect were to be neglected.

Figure 5. The Computation of the Impact Parameter b1 at the First Intermediate

Observer; (a) The Initial Situation at Time tem as Viewed by Observer 1; (b) The

Process from the Viewpoint of Observer 1; (c) The Process from the Viewpoint of an

Observer at the Source.

Figure 6. The Computation of the Impact Parameter at the Second Intermediate

Observer; (a) The Situation When the Ray Passes 1 at Time t1; (b) The Process

from the Viewpoint of Observer 2′; (c) The Process from the Viewpoint of Observer

1′.
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