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INTRODUCTION

The design of modern free-electron lasers based on self-ampli�ed spontaneous
emission (SASE) calls for intense short electron beams with a small relative energy
spread [1,2]. For example, in the Linear Coherent Light Source (LCLS) at SLAC
the peak current is 3.4 kA, the rms bunch length is 20 microns, and the energy
spread is less than 0.1 %. A combination of a high current and a short bunch

length raises a concern that the induced wake�elds may increase the energy spread
beyond the tolerable level. It has been pointed out in [3,4] that a major source
of wake�elds might be the roughness of the surface of the beam pipe in the FEL
undulator.

In the �rst model of wake�elds [3] the roughness was simulated by a collection of
bumps of a given shape randomly distributed over a smooth surface. If the bump
dimensions are small compared to the bunch length, the impedance in this model

is purely inductive. For such simple shapes of the bumps as hemispheres or cubes,
the model predicts relatively large impedance and results in severe tolerances on
the level of roughness.

A more realistic model of roughness e�ects was developed in Ref. [5]. In this
model, the rough surface is considered as a terrain with a slowly varying slope.
As was shown in direct measurements of the surface roughness with Atomic Force
Microscope [6], this representation of the roughness is adequate to the real surface

of the prototype pipe for the LCLS undulator. In the limit when the bunch length
is larger than the correlation length of the roughness, the impedance in this model
is also inductive, however the tolerance on the rms height of the surface roughness
are much looser than predicted in [3].



In yet another approach [4], the roughness wake�eld was associated with the

excitation of a resonant mode whose phase velocity is equal to the speed of light.
The existence of such modes in a round pipe with periodically corrugated walls
was studied theoretically in Ref. [7]. In the case when the typical depth of the
wall perturbations is comparable to the period, it was shown the the loss factor

of such modes reaches the theoretically maximal value for the resonant wake�eld.
However, as was shown in [8], when the height of the periodic wall corrugations
becomes smaller than the period, the loss factor for the mode rapidly decreases.
We believe that the latter model is more appropriate for the real roughness of a
well �nished metal surface.

In this paper we will try to present the results of the latest studies of the roughness

impedance, with the emphasis on the realistic modeling of the roughness surfaces.

HOW DOES A ROUGH SURFACE LOOK LIKE?

A naive idea of a rough surface as a microscopic mountain country with sharp

peaks and deep canyons does not correspond to reality. A metal surface with a
good �nish more resembles the water surface of a swimming pool in quiet weather.
Pictures of scanned surfaces for di�erent type of machining can be found in surface
metrology books [9,10]. Most of them are characterized by that the typical peak-to-
valley height h of the roughness is much smaller than the spacing between the crests
g. The aspect ratio g=h can easily exceed a hundred for smooth surfaces. Of course,
this ratio is only one of the many statistical characteristics of the surface, but as
it turns out, it is the most essential feature for understanding the electromagnetic
interaction of the electron beam with the surface.

FIGURE 1. A sample surface pro�le measured with Atomic Force Microscope in Ref. [6]. Note

the di�erent scales in the vertical and horizontal directions.



For illustration, we show in Fig. 1 the pro�le of a surface of a metal pipe measured

in Ref. [6]. This pipe is considered as a possible prototype for the vacuum chamber
of the LCLS undulator. The rms height of the roughness for this surface is about
100 nm, and the transverse size g, as is seen from the picture, exceeds tens or even
a hundred of microns.

SMALL-ANGLE APPROXIMATION IN THE THEORY

OF IMPEDANCE

The small ratio h=g implies a small angle � between the tangent to the surface
and the horizontal plane. Using the smallness of this parameter it is possible
to develop a perturbation theory of electromagnetic interaction of the beam with
the surface based on the so called small-angle approximation [5]. This approach

extends the earlier treatments [11,12] of an axisymmetric periodic perturbation of
the boundary. It also agrees with the more general results of Ref. [13] valid for
nonperiodic axisymmetric boundary perturbations.

As follows from Refs. [11,12], for a periodically corrugated wall with the wave-
length �0 much smaller than the pipe radius b, there exist synchronous modes in the
pipe which propagate with the phase velocity equal to the speed of light. The wave-

length of these modes is below 2�0, so that only a short bunch of length �z <� 2�0
can eÆciently excite these modes. If, on the other hand, the bunch length is larger
than �0, the excitation of these modes will be exponentially weak. In the roughness
problem the parameter g plays the rope of �0, and we expect two di�erent regimes

depending on whether �z is larger or smaller than g.

Long-Bunch Limit, �z > g

In this regime we expect an inductive impedance, because, as explained above,

the beam does not lose energy for excitation of the synchronous modes. However,
the energy exchange between the head and the tail of the bunch can cause the
energy variation along the bunch and may interfere with the lasing.

Let h(x; z) denote the local height of the rough surface as a function of coordinate
x in azimuthal direction, and coordinate z along the axis of the pipe (see Fig. 2).
The requirement h � g can alternatively be expressed as � � jrhj � 1. The

treatment of Ref. [5] was additionally limited by the assumption that the bunch
length is larger than the typical size of the roughness bumps, � � �z � g. It was
found that in this limit the impedance is purely inductive, and the inductance L
per unit length of the pipe is given by the following formula:
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Z0
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FIGURE 2. The pro�le of a rough surface. Shown are the height h(x; z), the typical trans-

verse size of the bumps g, and the pipe radius b. Note that the roughness here is not assumed

axisymmetric.

where Z0 = 4�=c = 377 Ohm, and S(�z; ��) is the spectrum of the surface pro�le as
a function of wavenumbers kz and k� in the longitudinal and azimuthal directions,

respectively. The spectral density S can be de�ned as a square of the absolute
value of Fourier transform of h,

S(�z; ��) =
1

(2�)2A

����
Z
A

h(z; x)e�i�zz�i��x dzdx

����2 ; (2)

where the integration goes over the surface of a sample of area A. It is assumed
that the sample area is large enough so that the characteristic size

p
A is much

smaller than the correlation length g of the roughness.
In Ref. [14] a comparison was done between the small-angle approximation and

a previous model of roughness, developed in [3]. It was shown that in the region of
mutual applicability both models give the results which, within a numerical factor,

agree with each other.

Roughness Measurements

A detailed study of the surface roughness for a prototype of the LCLS undulator
pipe using the Atomic Force Microscope was done in Ref. [6]. A high quality Type

316-L stainless steel tubing from the VALEX Corporation with an outer diameter
of 6.35 mm and a wall thickness of 0.89 mm with the best commercial �nish, A5,
was used for the measurements. The samples to be analyzed were cut from this
tubing, using an electrical discharge wire cutting process, so as to eliminate damage
from mechanical processing. The samples were subsequently cleaned chemically to

remove particles adhering to the surface from the cutting process, which used a
brass wire.
The measured pro�les were Fourier transformed and the inductance L per unit

length of the pipe was calculated using Eq. (1). Because this inductance is inversely

proportional to the pipe radius b, a convenient quantity is the product Lb which
does not depend on the pipe radius and characterizes the intrinsic properties of the
surface. The computed value of this quantity was found to be between 3 � 10�4

pH and 5� 10�4 pH.



Those values should be compared with the impedance budget for the LCLS beam.

For the nominal parameters of LCLS: beam charge 1 nC, �z = 20 �m, undulator
length 112 m, and assuming the �nal beam energy E = 14:3 GeV, one �nds that
the requirement of the relative energy spread ÆErms=E generated by the wake be
less than 0.05% gives the tolerance L < 1:6 pH=m. For the vacuum pipe radius

b = 2:5 mm the tolerance on the product Lb is (Lb)tol = 4� 10�3 pH. We see that
the measured value of the impedance is almost an order of magnitude smaller than
the tolerance.

We have to emphasize here that the above results are based on two assumptions
that are not completely ful�lled for the LCLS. First, a Gaussian beam distribution
was assumed. As detailed simulations show [1], for the LCLS the bunch shape
more resembles a rectangular than a Gaussian shape. Second, Eq. (1) used for the

calculation of the inductance, was derived in the limit �z � g, which, as roughness
measurements indicate, is not satis�ed. We will show however, in the next section,
that using Eq. (1) in the regime of very short bunches, �z < g, overestimates the
impedance, and Eq. (1) can be considered as an upper limit for the real impedance

of the roughness.

Arbitrary Bunch Length �z

Based on the derivation given in Ref. [5] we will calculate here the wake�eld of the
roughness which is valid for arbitrary relation between �z and g. The corresponding
impedance can be used even for large frequencies, when � < g. For simplicity, we
limit our consideration by the case where the pipe wall has a sinusoidal corrugation,
as shown in Fig. 3. The amplitude h0 of the corrugation is assumed much smaller
than the period, h0�� 1, which is a requirement of the small-angle approximation.

Such a corrugation qualitatively simulates a rough surface with parameter g � ��1

and the rms height of the bumps of the order of h0.
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FIGURE 3. A pipe with a sinusoidal corrugation of the wall. The amplitude of the corrugation

is h0, and the period is equal to 2�=�.

The actual derivation of the wake is presented in the Appendix. For the point
charge, the longitudinal wake is:



w(s) =
h20�
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b
f(�s); (3)

where the function f is

f(�) =
1

2
p
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cos(�=2) + sin(�=2)p
�

: (4)

The plot of the function f is shown in Fig. 4. It has a singularity � ��3=2 when
s! 0.
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FIGURE 4. The function f(�) for the wake of the sinusoidal corrugation.

To �nd the wake W (s) for a bunch we need to convolute Eq. (3) with the bunch
distribution function �(s). For a Gaussian bunch, �(s) = (

p
2��z)

�1 exp(�s2=2�2
z
),

and we have

W (s) =
Z
1

s
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z

G

�
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�z
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�
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where the function G for di�erent values of parameters ��z is shown in Fig. 5.
In the limit of large and small values of ��z the wake W (s) scales as

W (s) �
h20�

b�2
z

; �z�� 1;

�
h20�

3=2

b�
3=2
z

; �z�� 1: (6)

We see from these estimates, that when we use long-bunch approximation (�z��
1) in the regime where ��z < 1, we overestimate the wake by a factor of (�z�)

�1=2 �
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FIGURE 5. The function G for a di�erent values of the parameter ��z (indicated by numbers

on the plot). The dashed curve shows the Gaussian distribution of the beam.

(g=�z)
1=2. For this reason, as pointed out at the end of the previous section, the

result of Ref. [6] should be considered as an upper boundary for the roughness
impedance.

Using Eq. (3) we can also calculate the wake for a rectangular bunch shape,
�(s) = 1=lz for 0 < s < lz. The result of such calculations for the LCLS is

shown in Fig. 6. The parameters used in the calculation are: beam charge 1 nC,
h0 = 0:28 �m (corresponding to the rms roughness of 0.2 �m), g = 2�=� = 100 �m,
L = 112 m, E = 14:3 GeV, b = 2:5 mm. The average energy loss for the distribution
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FIGURE 6. The relative energy loss of the LCLS beam at the end of the undulator as a function

of position within the bunch.

shown in Fig. 6 is 4:5 � 10�3 % and the rms energy spread is 2 � 10�3 %.



SYNCHRONOUS MODE

In addition to the mechanism of the wake generation described in the previous
section involving interaction with short-wavelength waves, � <� g, there is another
contribution to the wake which was �rst pointed out by A. Novokhatski and A.
Mosnier [4]. It comes from a relatively low-frequency synchronous mode with ��
g. At �rst glance, the existence of such mode seems to contradict to the results of

Refs. [11,12] which predict that all synchronous modes in a pipe with periodically
corrugated surface with the period of corrugation 2�=� have wavelengths � < 2=�.
The answer to this apparent contradiction is that this mode arises in the regime
where the perturbation theory of [11,12] is not applicable. As we will show below,

in the limit when the amplitude of the corrugation tends to zero, the frequency of
this mode increases and approaches the value predicted by the perturbation theory.
The contribution of the mode to the wake in this limit becomes negligibly small.

It is interesting to note, that earlier a low-frequency mode in a periodically cor-
rugated waveguide was observed in computer simulations in [15], and also studied
theoretically in [16].

Rectangular Corrugations of the Wall

The properties of the synchronous mode in the case of rectangular corrugation of
the wall were studied in Ref. [7]. In this paper, the wall roughness was modeled by

axisymmetric periodic steps on the surface of height Æ, width g, and period p. All
three parameters were assumed much smaller than the pipe radius b. The model
gives for the frequency !0 of the mode

!0 = c

s
2p

Æbg
; (7)

and for the longitudinal wakefunction of the point charge

w(s) =
Z0c

�b2
cos(!0s=c): (8)

Surprisingly, the amplitude of the wake in this approximation does not depend on
the roughness properties at all. These results however are valid if kp � 1. We

see from Eq. (7) that when Æ becomes very small, the parameter k increases and
eventually kp becomes comparable to unity. Hence, this model becomes invalid in
the limit Æ ! 0.

The results of computer simulations that con�rm the predictions of this model
can be found in Ref. [17,18].



Shallow corrugations

To take into account the e�ect of the shallowness of the roughness a di�erent
model was developed in Ref. [8]. In this model the roughness was treated as a
sinusoidal perturbation of the wall shown in Fig. 3 with h0� � 1. It was found

that, indeed, under certain conditions, a low-frequency synchronous mode with
�� � 1 can propagate in this system. The longitudinal wake generated by this
mode is given by

w(s) =
2Z0c

�b2
U cos(!0s=c): (9)

where the dimensionless factor U and the frequency of the mode !0 depend on the

parameter r � h0
p
b�3=2. The plot of these two functions is shown in Fig. 7. In
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FIGURE 7. Synchronous mode dispersion relation.

the limit h0 ! 0 the frequency !0 tends to �c=2, and U � r4=32. For large values

of r, !0 � 2c=h
p
b� and U approaches 1=2. Interestingly, in this limit we �nd the

amplitude of the wake equal to that in Eq. (7).
Let us estimate the wake for realistic parameters of roughness: h0 = 0:28 �m

(corresponding to the RMS roughness of 0.2 �m), g = 2�=� = 100 �m, and b = 2:5

mm. We �nd r = h0
p
b�3=2 = 0:11. The corresponding loss-factor parameter is

U � 4:5 � 10�6; (10)

which indicates that the e�ect of the wake in this regime will be negligibly small.

CONCLUSIONS

We want to emphasize here that the wake�eld generated by the roughness is very
sensitive to the geometry of the surface pro�le. The previous models did not take



into account that the real roughness is typically characterized by the large aspect

ratio | the ratio of the characteristic size along the surface (correlation length)
and the typical height of the bumps. They overestimated the impedance and lead
to the very tight tolerances for the surface smoothness.

The latest models of the roughness predict much smaller impedance. Typical
numbers that seem safe for the LCLS undulator are: height � 100 nm with g �
100 �m. The surface measurements [6] shows that these parameters are reasonable
for a good surface �nish.

ACKNOWLEDGEMENTS

I would like to thank K. Bane and A. Novokhatsky for useful discussions.

This work was supported by Department of Energy contract DE-AC03-
76SF00515.

APPENDIX

We write the longitudinal impedance due to roughness as a sum of Eqs. (36) and
(43) from Ref. [5]:

Zl(!) = �
8k�i

cb2

X
n;m

"
1 +

n2

(�2
n;m

� n2)

# Z
1

�1

d�
�2jŝn(�)j2

(k + �2)� (kn;m + i0)2
; (A1)

where kn;m =
q
k2 � �2

n;m
=b2, �n;m is the mth root of the derivative of the Bessel

function J 0
n
, and ŝn(�) is the Fourier transform of the roughness pro�le,

ŝn(�) =
1

(2�)2

Z
1

�1

dk
Z

2�

0

d� h(z; �)ei�z+in� : (A2)

In the limit of high frequency, ! � c=b, which was used in the derivation of Eq.
(A1), the indices n;m � 1, and �n;m � �n;m where �n;m is the mth root of the
Bessel function Jn. Furthermore, in this limit �n;m � nf(m=n), where the function
f(x) is de�ned by the equation �x =

p
f 2 � 1�arccos f�1. The summation over m

and n in Eq. (A1) can be substituted for integration. Introducing new integration
variables kx = n=b, kz = �, and f casts the above equation to the following
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8ki
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Z
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fp
f 2 � 1

�
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n�2jŝn(�)j2

(k + �� kn;m � i0)(k + �+ kn;m + i0)
: (A3)

Using the relation



1
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= P

1

x
� i�Æ(x); (A4)

where P stands for the principal part of the integral, we can write the real part of
the impedance as
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where we now use the notation ŝ(kx; kz) for ŝn(�)b. Performing integration over kx
and f gives the following result

ReZl(!) =
4�k

cb2

Z
dkz dkx

k2
z
jŝ(kx; kz)j2q

�2kkz � k2
z
� k2

x

: (A6)

In this integral the integration goes over the negative values of kz such that the
expression under the square root is positive. To �nd the wake�eld we use the

relation

wl(s) =
2

�

Z
1

0

ReZl(!) cos

�
!s

c

�
d! (A7)

which gives the following result

wl(s) =
4
p
�

b2

Z
dkz dkxjkzj3=2jŝ(kx; kz)j2 ~w(kx; kz; s) (A8)

where

~w =
@

@s

1p
s
(cos qs+ sin qs)

=
1

2s3=2
[(2qs� 1) cos qs� (2qs+ 1) sin qs] ; (A9)

with q = (k2
x
+ k2

z
)=2jkzj.

It is easy to show that for a sinusoidal perturbation of the surface pipe h =
h0 cos �z the corresponding spectrum is

jŝ(kx; kz)j2 =
h20Lb

8�
Æ(� + kz)Æ(kx): (A10)

Putting Eq. (A10) into Eq. (A8) and performing integration gives Eq. (3).
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