
SLAC-PUB-8718

SLAC Parallel Tracking Code Development and Applications

Work supported by Department of Energy contract DE–AC03–76SF00515.

January 2001

Presented at the 20th International Linac Conference (Linac 2000),
8/21/2000—8/25/2000, Monterey, CA, USA

Brian McCandless, Tor Raubenheimer, Ross Richardson, Kwok Ko

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

SLAC PARALLEL TRACKING CODE DEVELOPMENT AND
APPLICATIONS

Brian McCandless, Tor Raubenheimer, Ross Richardson, Kwok Ko
SLAC, Stanford University, Stanford, CA94309, USA

Abstract

The increase in single processor speed based on
Moore’s law alone will not be able to deliver the dramatic
speedup needed in many beam tracking simulations to
uncover very slowly evolving effects in a reasonable time.
SLAC has embarked on an effort to bring the power of
parallel computing to bear on such computations with the
goal to reduce the turnaround time by orders of magnitude
so that the results may impact present facilities and future
machine designs. This poster will describe the approaches
adopted for parallelizing the LIAR code and the
ION_MAD code. The scalability of these tracking codes
and their further improvement will be discussed.

1 PIPELINE MODEL FOR
PARALLELISM

Beam tracking applications model a beam (composed
of many bunches of particles) travelling through an
accelerator (defined as a lattice of optical elements). Each
bunch travels past each optical element in order, and after
all the preceding bunches. The nature of these applications
imposes an order on the calculations. This limits the
possible approaches to parallelism, which seeks to exploit
independent calculations that can occur simultaneously.
One successful approach to parallelism for these codes is
the pipeline model.

The key observation is that bunch bi can be processed
by element ei, and at the same time bunch bi+1 can be
processed by element ei-1. The strategy for pipeline
parallelism can be summarised as follows:

• Bunches are grouped into P groups of equal size,
where P is the number of processes.

• Each process stores and computes with one bunch
group and one or more optical elements at a time.

• When process p is done working on its bunch group,
it sends it to process p+1, and simultaneously
receives a bunch group from process p-1.

• When a process is done working on the last bunch
group in the train, it shifts to the next unvisited
optical element

This strategy can also be modified to communicate the
optical elements instead of the beam data. It makes no
difference to the pipeline model. The decision is made for
the approach that reduces the overall communication cost.

For simplicity, we will assume for the rest of this paper
that that the beam data is communicated instead of the
optical element data.

As a small example, assume there are three processors
and nine lattice elements. The beam is evenly divided into
three bunch groups. Bunches within a grouping are
communicated together. The lattice elements are
distributed cyclically among the three processors. Figure
1 graphically illustrates the pipeline process.

During the first pipeline step, process 1 computes the
effect of optical element 1 on bunch group 1. The other
processors are idle. During the second pipeline step,
bunch group 2 enters the simulation at process 1, and
bunch group 1 is sent to process 2. Two processors are
now computing. The third bunch group enters the
simulation at step 3. Now all the processors are working,
and the pipeline is full. The pipeline remains full until the
first bunch group reaches the last optical element. The
bunch groups then begin to leave the simulation, and
processors become idle again.

The pipeline model can not provide perfect linear
speedup due in part to the filling and emptying steps.
However, the pipeline speedup can approach the number
of processors when the number of stages is large. In the
example, it takes 11 pipeline steps to push three bunch
groups through nine lattice elements. In serial, this
would have taken 27 steps. The speedup due to the
pipeline is therefore 27/11 = 2.455. If there were one
thousand optical elements instead of nine, the pipeline
speedup would be 3000/1002 = 2.994.

Pi
pe

lin
e

St
ep

Element (Pipeline Stage)

 Bunch group 1
 Bunch group 2
 Bunch group 3

Process 1
Process 2
Process 3

1
2
3
4
5
6
7
8
9
10
11

1 2 3 4 5 6 7 8 9

Figure 1: Pipeline example

2 OBJECT-ORIENTED FRAMEWORK
Beam tracking codes share the same basic

computational patterns. The parallelism of these codes
using the pipeline model follows the same basic
principles. This observation motivated the development
of an object-oriented framework to aid in the development
of parallel beam tracking applications. FALCO, the
Framework for Assembly Line Code Optimisation,
provides the pipeline functionality through a general,
application independent, object-oriented interface.

FALCO is based on a factory assembly line abstraction.
There are five main abstractions: Components, Trays,
Tools, Toolboxes, and AssemblyLine. Groups of
Components travel along the assembly line in Trays,
encountering Tools along the way. Tools are grouped
together into Toolboxes. The AssemblyLine co-ordinates
the activities of the tools and components. It is also
responsible for inter-process communication.

The beam tracking application is parallelized by writing
or re-writing portions in C++ to make use of the
abstraction in FALCO. A bunch derives from the FALCO
Component base class, and an optical element derives
from the FALCO Tool base class. The framework
handles the grouping of Tools and Components, the
distribution of the Trays and Toolboxes, inter-process
communication, and the state of the pipeline. The
parallelism is hidden from most of the application.

3 BEAM TRACKING APPLICATIONS
In this paper, we discuss two beam tracking applications
that have been parallelized: ION_MAD [1], which is used
to simulate the fast-beam ion instability and LIAR [2],
which is used to model the operation and performance of
high energy linear accelerators.

3.1 Ion-Mad

Ions are recognized as a potential limitation in electron
storage rings where ions generated by beam-gas collisions
can become trapped in the negative potential of the beam.
Future storage rings typically have high beam currents
and small beam emittances, increasing the deleterious
effects of the ions. To avoid ion trapping, most future
electron storage rings are designed to include a “gap'' in
the bunch train. The ions, which are strongly focused by
the closely spaced bunches, are over-focused in the gap.

With a sufficiently large gap, ions are not usually
thought to be a limitation. However, many of the modern
accelerators operate or will operate in a new regime with
high current, long bunch trains, and very small transverse
beam emittances. In this case, ions generated and trapped
within a single bunch train, or, in some cases, within a
single bunch, can have significant effects. This is true in
transport lines and linacs, where typical vacuum pressures
are relatively high, as well as storage rings.

The ions oscillate within the potential of the beam and
can modulate the transverse beam position at the ion
bounce frequency. This modulation then resonantly drives
the trapped ions and quasi-exponential growth results; the
instability, referred to as the fast beam-ion instability
(FBII), is illustrated schematically in Figure 2. The nature
and analytic treatment of the instability closely resemble
the beam break-up instability due to transverse wakefields
and is described in Refs. [1] and [3].

The instability growth rate is sensitive to the spread in
the ion bounce frequency due to variation of lattice
parameters around the ring and the transverse variation of
the beam distribution [1,3,4]. In addition, the growth rate
depends on the variation of the ion distribution as the ions
are trapped along the beam [1] and the tune shift induced
by the ions along the bunch train [5]. Finally, at low
vacuum pressures, the growth rate will be sensitive to the
ion statistics. Thus, to make accurate predictions of the
FBII in storage rings and to compare with experimental
measurements a detailed simulation is required which
includes the relevant effects.

The ION_MAD [1] program represents the beam as
macro-particles and tracks them through a lattice
described as a MAD deck. As each beam slice passes
through each lattice point, ion macro-particles are
generated and tracked in transverse phase space with all
the transverse fields treated self-consistently. To
accurately model the instability a typical run will track
100 turns in a ring consisting of a 1000 elements with
50,000 beam macro-particles and 50,000 ion macro-
particles.

3.2 LIAR

Future linear colliders must accelerate beams with very
small transverse emittances to achieve the luminosity
goals. The LIAR project [2] was started to create a tool to
model these high-energy linear accelerators and provide
an open programming platform for the accelerator physics
community. The code includes many features that are
necessary for simulation of the beam dynamics in future
linear colliders including the effect of the short- and long-
range wakefields, accelerator imperfections, ground
motion, and beam steering and feedback systems.

A major goal for the Next Linear Collider design [6] is
to be able to simulate one full hour of operation of the real
linac. This time scale is chosen to verify and devise new
alignment algorithms to counter ground motion effects
and understand the interaction of the various nested

Figure 2: Schematic illustration of FBII

feedback loops. This proposed simulation would include
about 360,000 pulses and require about three years of
computer time with the serial code. Parallel processing is
therefore required to finish in a reasonable amount of
time.

4 PERFORMANCE
The performance of parallel beam tracking depends on

a number of parameters such as the number of processors,
the number and size of the bunches, the number of lattice
elements, and the number of optical elements grouped
together into a pipeline stage. These factors contribute to
or detract from either the pipeline efficiency or the
computation / communication ratio.

Performance will ideally increase linearly with the
number of processors. However, adding more processors
decreases the pipeline efficiency and can hurt the
computation/communication ratio. These effect could
reduce the linear speedup, and lead to diminishing returns.

An example of this can be seen in Figure 3. ION-MAD
is used to model the Advanced Photon Source (APS) with
a varying number of bunches. An increase in the number
of bunches increases both the computation and
communication cost, but not equally. As the bunches
increase, the ratio of computation to communication
increases, which improves the parallel speedup.

In the 24 bunch case, the drop in performance on the
last data point is made more sever due to a load
imbalance. It it not possible to divide 24 bunches evenly
among the 16 processors. Performance is also low in this
case due to the reduced computation/communication ratio.

.

Grouping lattice elements together has the effect of
lengthening each pipeline stage, which increases the
computation/communication ratio. The block size is
number of lattice elements grouped together in this way.
Increases to the block size may also decreases the load
imbalances caused if some lattice elements are more
computationally expensige than others. However, the
decrease in the number of pipeline stages hurts the
pipeline efficiency. The following equations illustrate the

tradeoff between communucation cost and pipeline
speedup.

An optimal block size can be found through
experimentation. In one experiment, the LIAR code was
used to simulate the SLC on 16 processors of the Cray
T3E at NERSC. The effect of block size on performance
is illustrated in Figure 4.

In this example, the lattice contained about 2400 optical
elements and 96 bunches. The pipeline speedup is
greatest (15.9) when the block size is one. However, this
is also when the communication costs are greatest (900
bunches per processes). When the block size is 30, the
pipeline speedup is 13.5 and the total number of bunches
sent per process is 30. When using the optimal block size
of five, the speedup is 15.5 and the total bunches
communicated is 180.

5 FUTURE WORK
The parallel ION-MAD code is being used in

production mode on the SLAC PC Linux cluster to study
the Fast Beam-Ion Instability. Longer runs to uncover
very slowly evolving effects in the APS are planned for
the near future. The parallel LIAR code is not yet ready
for production runs. When it is, it will be used in the
study of ground motion effects and alignment algorithm
of the NLC.

REFERENCES
[1] T.O. Raubenheimer and F. Zimmermann, Phys. Rev.
E, 52:5487 (1995).
[2] R. Assmann, et al., Linac 96, Geneva, Switzerland,
(1996) p 464.
[3] G. Stupakov, et al., Phys. Rev. E, 52:5499 (1995).
[4] R. Bosch, Phys. Rev. STAB, 3:034402 (2000).
[5] D. Pestrikov, Phys. Rev. STAB, 2:044403 (1999).
[6] For example T.O. Raubenheimer, these proceedings.

E = # elements
S = block size
B = # bunches
P = processors

S

E
L, Pipeline Stages =

T, Pipeline Speedup =
1−+

×
PL

PL

 ×

2P

BLC, Communication Cost
 (# Bunches sent per process) =

Figure 3: Parallel Speedup of ION-MAD

Sp
ee

du
p

Processors

96 Bunches
48 Bunches
24 Bunches

Figure 4 : The effect of block size on performance

T
im

e
(s

ec
on

ds
)

Block Size

