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Abstract

We investigate a potentially large CP violating asymmetry in the decay of a

neutral scalar or pseudoscalar Higgs boson into the tt̄ pair. The source of the
CP nonconservation is the complex mixing in the stop t̃L,R sector. One of the

interesting consequence is the different rates of the Higgs boson decays into CP
conjugate polarized states.
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1 Introduction

The standard model (SM) of particle interactions contains one CP violating parameter,
which is a complex phase in the quark sector of the SM. This phase appearing in the
quark mixing matrix of the charged current is expected to account for the observed CP
violations in the K-K mixing, in the K decays, as well as in the potential CP violation
in the B-B system.

However, it is generally believed that new physics beyond the SM must exists. One
of the major motivations for this is to understand the seemingly unnaturalness of the
Higgs mass at the electroweak scale in the SM, the so-called gauge hierarchy problem. In
addition, due to the difficulties of the SM to account for the baryon asymmetry of the
universe as well as to resolve the strong CP problem, it is widely accepted that new sources
of CP violation are needed. The most popular extension of the SM that addresses the
hierarchy problem is the supersymmetric standard model[1, 2]. The extension has many
more new (super-)particles and parameters compared to the SM. With all these new
parameters, there are many possible new sources for CP violation. The phenomenology
of CP violation caused by these new sources is rich and diverse. The effect of these new
sources of CP violation may surface in the data before any super-particle is discovered.

Even in the minimal supersymmetric standard model (MSSM), which only augments
superpartners of known particles in SM, the Higgs sector contains new sources of CP
violation in its couplings to super-particles. When the µ term in the Higgs superpotential
and the soft-SUSY-breaking A terms are complex, the tri-boson-couplings between the
Higgs bosons and the squarks can contain CP violation. In MSSM with the simplest
universal soft supersymmetry breaking[3], there are two new CP violating couplings which
can be defined to be the phases of µ and A terms in a convention that makes the others
new couplings real. Therefore, these new sources of CP violation are generic of any
supersymmetric theories. In addition, they also have been used as one of the leading
sources of CP violation in a scheme to use MSSM to generate baryon number asymmetry
of the Universe in electroweak phase transition [4]. Therefore, it should be important
to look for collider phenomenology that can check these mechanism. For example, these
complex couplings lead to a complex phase in the mixing[5] of stop states. It is the purpose
of this paper to investigate one consequence of this CP violating source in colliders.

It is expected that the future colliders are able to produce CP violation signals[6, 7,
10, 9] in the sectors of heavy particles. In this article we study the CP asymmetry in the
Higgs decay into top pairs because the large top or stop coupling to the Higgs particles
can produce largest effect.

In MSSM, even with soft breaking terms and R symmetry breaking terms, there is
no tree level mixing between the scalar and the pseudoscalar bosons. Therefore their
couplings can be discussed separately. However, the scalar and the pseudoscalar bosons
mix at one loop, and their effect has to be taken into account as we will show later.

2 Stop Mixing

The source of CP violation that we investigate here is due to the mixing in the stop mass
matrix. We use the convention adopted in Ref.[8]. The mass matrix for the stop quarks
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in the left-right basis is given as

M2
t̃ =

(
m2
Q +m2

t + ∆t̃L
m2
Z cos 2β −mt(µ cot β +A∗t )

−mt(µ
∗ cotβ +At) m2

U +m2
t + ∆t̃R

m2
Z cos 2β

)
, (1)

where ∆t̃L
= 1

2
− 2

3
sin2 θW , and ∆t̃R

= −2
3

sin2 θW . The complex phase δ of the off-diagonal
elements is the source of CP violation.

µ∗ cotβ +At = |µ∗ cotβ +At|eiδ. (2)

The stop mass eigenstates, t̃1, t̃2, are related to the left and right stop states by an unitary
mixing matrix

(
t̃L
t̃R

)
=

(
1 0
0 eiδ

)(
cos θ sin θ
− sin θ cos θ

)(
t̃1
t̃2

)
= U

(
t̃1
t̃2

)
(3)

The masses of these eigenstates are given by

m2
1,2 = 1

2
(m2

Q +m2
U + 2m2

t + (1
2
− 4

3
sin2 θW )m2

Z cos 2β ∓
√
R) , (4)

R =
(
m2
Q −m2

U +
1

2
m2
Z cos 2β

)2

+ 4m2
t |µ cotβ +A∗t |2 . (5)

Here we denote t̃1 as the lighter state. The mixing angle is given as

tan θ = − [m2
Q −m2

U + 1
2
m2
z cos 2β +

√
R]

2mt|µ cot β +A∗t |
. (6)

Strong gluino couplings to stops and tops in the left-right basis is given by

Lg̃ = −
√

2gstRg̃t̃R −
√

2gstLg̃t̃L . (7)

In terms of mass eigenstates,

Lg̃ = −
√

2gst(PR cos θ − PL sin θeiδ)t̃1g̃ −
√

2gst(PR sin θ + PL cos θeiδ)t̃2g̃, (8)

where PL is the left projection 1
2
(1 − γ5), and PR is the right projection 1

2
(1 + γ5). We

also need the stop-stop coupling to Z,

LZ = − g

cos θW

[
(1

2
− 2

3
sin2 θW )t̃†L

↔
i∂µ t̃L − 2

3
sin2 θW t̃

†
R

↔
i∂µ t̃R

]
Zµ . (9)

After mixing, the Lagrangian for the Z coupling in the t̃1, t̃2 basis is

LZ = − g

cos θW

[(
1
2

cos2 θ − 2
3

sin2 θW
)
t̃†1
↔
i∂µ t̃1 +

(
1
2

sin2 θ − 2
3

sin2 θW
)
t̃†2
↔
i∂µ t̃2 (10)

+1
4

sin(2θ)
(
t̃†1
↔
i∂µ t̃2 + t̃†2

↔
i∂µ t̃1

)]
Zµ .

Note that the last term is real in this phase convention.
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3 The Higgs couplings to stops

In MSSM, there is only one pseudoscalar boson., A0. The pseudoscalar Higgs coupling to
the stop squarks is given by the Lagrangian

LA =
(
t̃†1 t̃
†
2

)
TA

(
t̃1
t̃2

)
.A0 (11)

The matrix TA is given as

TA =
mt

v2

(
2 sin θ cos θ Im(Â) −i(cos2 θÂ∗ + sin2 θÂ)

i(cos2 θÂ+ sin2 θÂ∗) −2 sin θ cos θ Im(Â)

)
, (12)

and Â is defined as Â = (At cosβ−µ∗ sinβ)e−iδ. Note that the nonvanishing of TA11 or TA22

is a sure sign of CP violation already (similar to KL → 2π). However, if for some reason
µ and At happen to have the same phase, TA11 and TA22 will vanish because in this very
special case the phase in the stop mass matrix and that in the pseudoscalar couplings can
be removed simultaneously.

The pseudoscalar Higgs coupling to the top quark is given by the following Lagrangian,

LYA =
gmt

2mW
cot β tiγ5tA0. (13)

The neutral scalar Higgs sector is made up two scalar eigenstates, H0 and h0. There
masses are given as

m2
H,h = 1

2

[
m2
A +m2

Z ±
√

(m2
A +m2

Z)2 − 4m2
Am

2
Z cos 2β

]
. (14)

Since in MSSM the constraint on the lightest scalar, h, is such that it is too light to decay
into the top pair, we shall concentrate on the decay of the heavy Higgs boson, H, which
can decay into the top pair. Our general framework can also be used for the decay of the
lighter boson, h, of course, if for any reason that it should be heavy enough. The heavy
Higgs coupling to the stops in the left-right basis is given as

TH
0 =


 −

gmZ
cos θW

∆t̃L
cos(α + β)− gm2

t sinα

mW sin β
gmt

2 sinβ
(A∗t sinα+ µ cos α)

gmt
2 sinβ

(At sinα + µ∗ cosα) − gmZ
cos θW

∆t̃R
cos(α+ β)− gm2

t sinα

mW sinβ


 , (15)

where the mixing angle α is given in Ref. [2]. This matrix must then be transformed into
the stop mass eigenstates. This is accomplished by using the stop mixing matrix,

TH = U†TH
0 U. (16)

Its Yukawa coupling is

LYH =
gmt sinα

2mW sinβ
ttH0. (17)
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4 Helicity calculation of the matrix element

To get non-zero CP asymmetry in Higgs decays, in addition to CP violating couplings, it
is necessary to get the absorptive parts from the decay amplitudes in order to overcome
the constraint from the CPT theorem. We labeled SI and P I as the absorptive form
factors of the Higgs or pseudo-Higgs couplings to the top quark. They begin to appear at
the 1-loop level, unlike their dispersive parts S and P , which can exist at the tree level,

M = u(p)
[
(S + iSI)1 + i(P + iP I)γ5

]
v(p′) . (18)

In the Weyl representation, the γ matrices are given by

γ5 =

(
−1 0
0 1

)
γ0 =

(
0 1
1 0

)
.

The free spinors of momenta p, p′ and helicities λ, λ′ are given by

u(p, λ) =

(
ω−λχ+λ

ω+λχ+λ

)
, v(p′, λ) =

(
−λ′ω+λ′χ−λ′
λ′ω−λ′χ−λ′

)
,

where the χ’s are two component spinor eigenfunctions ~σ · p̂ χλ(p) = λ χλ. The ω± are

functions of the energy and momentum of the particles, ω± =
√
E ± |p|. Notice that the

helicities of tt̄ must match λ′ = λ because of conservation of angular momentum. Our
normalization of the spinor is u†λuλ = v†λvλ = 2E. The asymmetry between the left and
right matrix elements is given by

A =
|MLL|2 − |MRR|2
|MLL|2 + |MRR|2

. (19)

The matrix elements are given by

MLL =
√
s[−βt(S + iSI)− i(P + iP I)] , (20)

MRR =
√
s[−βt(S + iSI) + i(P + iP I)] , (21)

with βt = (1 − 4mt/s)
1
2 and s = m2

H. The asymmetry can finally be obtained using the
definition from Eq. (19),

A =
2βt(PS

I − P IS)

P I2 + P 2 + β2
t S

2 + β2
t S

I2
. (22)

Since we assume the Higgs boson has definite CP parity at the tree level, the final state
interactions due to exchanging gluons or gauge bosons in Ref. [6] are not able to produce
this CP asymmetry at the one-loop level. However, the rich CP phases in the sector
of SUSY partners, especially the gluino and the stop, can give rise to large A. For
scalar boson decay, the second term P IS in A gives the leading contribution; while for
pseudoscalar boson decay, the first term, PSI is the leading contribution.

The polarization asymmetry is Eq.(22) can be translated into the lepton energy
asymmetry[6, 11, 12] in the final semileptonic channel t → b`+ν. The energy E0(`+)
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p→

p′ →

t

t

k, t̃i

k′, t̃j

g̃
H,A

Figure 1: Triangle diagram via gluino exchange

distribution of a static t quark decay t → `+νb is very simple in the narrow width ΓW
approximation when mb is negligible.

f(x0) =

{
x0(1− x0)/D if m2

W/m
2
t < x < 1,

0 otherwise.
(23)

Here we denote the scaling variable x0 = 2E0(`+)/mt and the normalization factor D =
1
6
− 1

2
(mW/mt)

4 + 1
3
(mW/mt)

6. When the t quark is not static, but moves at a speed βt
with helicity L or R, the distribution expression becomes a convolution,

fR,L(x, βt) =
∫ x/(1−βt)

x/(1+βt)
f(x0)

βtx0 ± (x− x0)

2x2
0β

2
t

dx0 . (24)

Here x = 2E(`+)/Et. The kernel above is related to the (1±cosψ) polar angular distribu-
tion. Similar distributions for the t̄ decay is related by CP conjugation at the tree–level.
Using the polarization asymmetry formula in Eq.(22), we can derive expressions for the
energy distributions of `− and `+:

N−1dN/dx(l±) = 1
2
(1 ±A)fL(x, βt) + 1

2
(1∓A)fR(x, βt) . (25)

Here distributions are compared at the same energy for the lepton and the anti–lepton at
the rest frame of the Higgs boson, x(`−) = x(`+) = x = 4E(`±)/MH . To prepare a large
sample for analysis, we only require that each event has at least one prompt anti–lepton
`+ from the t decay or one prompt lepton `− from the t̄ decay.

5 Absorptive parts of 3-point vertices

We first study the triangle diagram via gluino exchange in Fig. 1..

5.1 The M11 stop loop

When the intermediate state is t̃1t̃1, the Feynman rule gives

iM11 = (−i
√

2gs)
2
∫
N11

i

k2 −m2
1

i

k′2 −m2
1

d4q

(2π)4
iT11CF , (26)

where N11 is defined as

N11 = u(p)(PR cos θ − PL sin θeiδ)
i(6q +mg̃)

q2 −m2
g̃

(PL cos θ − PR sin θe−iδ)v(p′). (27)
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The color factor CF is 4
3
. The absorptive part of the amplitude which is needed for CP

violation is obtained by cutting across the momentums k and k ′. The discontinuity[13]
of the matrix element is

Disc(iM11) =
g2
sT11

8π
β1CF

×
∫
u(p)
6q(1− γ5 cos 2θ) +mg̃ sin(2θ)(− cos δ + iγ5 sin δ)

q2 −m2
g̃

v(p′)
dΩk

4π
. (28)

The phase space integration involves the following forms,

Jij ≡ s
∫

1

q2 −m2
g̃

dΩk

4π
. =

1

βtβij
ln

(
β2
t + β2

ij − 2βtβij + 4m2
g̃/s

β2
t + β2

ij + 2βtβij + 4m2
g̃/s

)
, (29)

s
∫

qµ

q2 −m2
g̃

dΩk

4π
= −Hij(p − p′)µ +Kij(p+ p′)µ. (30)

Multiplying both sides by (p− p′)µ the Hij function can be isolated out because (p+ p′) ·
(p − p′) is zero. The Hij function for any intermediate mass mi and mj is

β2
tHij = 1 + 1

4
(β2

ij − β2
t + 4m2

g̃/s)Jij . (31)

The βij function is given by

βij =
√

1 − 2(m2
i +m2

j)/s+ (m2
i −m2

j)
2/s2. (32)

Notice that when i = j, βij reduces to βi =
√

1 − 4m2
i /s. The function Kij is obtained

by contracting Eq. (30) with p+ p′.

Kij = −1
2
Jij(m

2
i −m2

j )/s . (33)

Notice that for matrix elements with both the stop and the anti-stop of the same type,
the term proportional to (p+ p′) in Eq. (30) does not contribute.

After this, the imaginary part of the matrix element is needed. The imaginary parts
are obtained by using the relation

Disc(M) = 2iu(p)
[
SI1 + P Iiγ5

]
v(p′) . (34)

SI11 =
g2
sT11β1

16πs
CF (+mg̃J11 sin(2θ) cos δ + 2mtH11) ,

P I
11 =

g2
sT11β1

16πs
CF (−mg̃J11 sin(2θ) sin δ) . (35)

5.2 The M22 stop loop

Similarly, we obtain results for the intermediate state t̃2t̃2. The matrix element is given
by

iM22 = (−i
√

2gs)
2
∫
N22

i

k2 −m2
2

i

k′2 −m2
2

d4q

(2π)4
iT22CF , (36)
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where N22 is given by

N22 = u(p)(PR sin θ + PL cos θeiδ)
i(6q+mg̃)

q2 −m2
g̃

(PL sin θ + PR cos θe−iδ)v(p′). (37)

After integrating the phase space of the intermediate state in the cut diagram, the form
factors are

SI22 =
g2
sT22β2

16πs
CF (−mg̃J22 sin(2θ) cos δ + 2mtH22) , (38)

P I
22 =

g2
sT22β2

16πs
CF (+mg̃J22 sin(2θ) sin δ) .

5.3 The M12 stop loop

The amplitude involving the intermediate state t̃1t̃2 is given by

iM12 = 2i6g2
sT12CF

∫
N12

1

k2 −m2
1

1

k′2 −m2
2

d4q

(2π)4

N12 = u(p)(PR cos θ − PL sin θeiδ)
(6q +mg̃)

q2 −m2
g̃

(PL sin θ + PR cos θe−iδ)v(p′). (39)

For t̃2t̃1, it is

iM21 = 2i6g2
sT21CF

∫
N21

1

k2 −m2
2

1

k′2 −m2
1

d4q

(2π)4
, (40)

N21 = u(p)(PR sin θ + PL cos θeiδ)
(6q +mg̃)

q2 −m2
g̃

(PL cos θ − PR sin θe−iδ)v(p′) .

After integrating over the intermediate phase space, we add up the absorptive parts to
give

SI12+21 = −g
2
sβ12

8πs
CFRe

[
mg̃T21(cos2 θeiδ − sin2 θe−iδ)

]
J12 , (41)

P I
12+21 = −g

2
sβ12

8πs
CF Im

[
−mg̃T21(sin

2 θe−iδ + cos2 θeiδ)

+mt sin(2θ)T21(m
2
2 −m2

1)/s
]
J12 . (42)

6 Absorptive parts of 2-point vertices

We study the bubble loops which involve only the t̃t̃ pair.

6.1 Z diagrams

Z diagrams that contain ¯̃t1t̃1 or ¯̃t2t̃2 are identical zero because of the phase space inte-
gration. This point will become obvious from the result of the mixed intermediate states
¯̃t1t̃2 or ¯̃t2t̃1. The M12 matrix element is given below,

iM12 =
g2T12NC

4 cos2 θW
sin(2θ)

∫
NZ

1

l2 −m2
Z

1

k2 −m2
1

1

k′2 −m2
2

d4k

(2π)4
,
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l = p + p′
H → t̃i

t̃j

Z

t, p

t, p′

Figure 2: Z exchange diagram

A0 t̃i

t̃j

H0

t

t

Figure 3: Higgs mixing diagram

where NZ is given as

NZ = u(p)γµ
(

1
4
− 2

3
sin2 θW − 1

4
γ5
)
v(p′)

(
gµν − lµlν/m2

Z

)
(k − k′)ν . (43)

TheM21 matrix element is very similar to the above matrix element, with the substitution
of T12 by T ∗12,

P I
12+21;Z =

g2NC

64π

mtβ12 sin(2θ)

m2
Z cos2 θW

m2
1 −m2

2

s
Im(T12) , (44)

where the color factor NC = 3. This graph will contribute only to CP violation of the
scalar Higgs decay. One may think that without gluino couplings in the graph, one
should be able to rotate away the CP violating phase in scalar coupling TH

12. However,
such rotation will produce a complex phase in t̃†1t̃2Z coupling in Eq.(10).

6.2 A0–H0 Mixing

The stop bubble loop induces A0–H0 Mixing. We study its absorptive part which con-
tributes to the CP violation. In the heavy Higgs mass limit of MSSM, mA0 and mH0 are
quite close to each other based on the tree-level mass relation in Eq.(14). However, it is
known that there is large higher order correction to the tree-level mass relation. Thus
in our following study we allow the masses mA0 and mH0 to vary independently, not re-
stricted by the tree-level formula. The matrix element for the pseudoscalar Higgs turning
into a stop pair, then becoming the heavy Higgs, and finally decaying into a top pair, is
given as

iM =
igmt sinα

2mW sinβ
u(p)v(p′)

∑

ij

∫ TH
0

ji

m2
A0 −m2

H

TA
0

ij

( l
2

+ q)2 −m2
i

id4q/(2π)4

( l
2
− q)2 −m2

j

. (45)

Making the same cut as that in the Z loop digram, we obtain the imaginary part of the
form factor,

SI(A0 → H0 → t̄t) = − gmt

32πmW

sinα

sinβ

∑

ij

βij
TH

0

ji T
A0

ij

m2
A0 −m2

H0

. (46)
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A similar expression is derived for the heavy scalar Higgs decay,

P I (H0 → A0 → t̄t) = − gmt

32πmW
cotβ

∑

ij

βij
TH

0

ji T
A0

ij

m2
H0 −m2

A0

. (47)

7 Physical and Numerical Analyses

Before we plunge into the numerical analysis, it is interesting to check the limit in which
the two stop states are accidentally degenerate. In that case, (M2

t̃
)12 = (M2

t̃
)21 = 0,

(M2
t̃
)11 = (M2

t̃
)22. Therefore µ∗ cotβ + At = 0, and µ∗ and At should have the same

phase which can still serve as the source of CP violation. In that case, θ and δ in U in
Eqs.(3),(12),(16) and in the definition of Â, should be set to zero.

Thus in this limit, the stop loops do not contribute toM11 andM22 in the pseudoscalar
case, because TA11 = TA22 = 0. However they still give rise to CP violation in M12, M21

because TA12 = (−imt/v2)(A∗t cos β − µ sin β). One may attempt to absorb this phase by
rotating the phase of, say, the right stop, however such rotation will lead to complex gluino-
top-stop couplings which cannot be rotated away because of the nonvanishing gluino mass.
From this, it is easy to understand why a factor of gluino mass has to appear in Eq.(41)
for SI12+21. Similarly, for the scalar Higgs decay in the degenerate stop limit, the stop
loops still produce no CP violating effect in M11 and M22, because sin θ = 0 and only
the term proportional to the gluino mass in P I

12+21 contributes as reflected in Eq.(42).
It is also straightforward to note that in the degenerate limit, the contributions of both

H0–Z0 and A0–H0 bubble graphs vanish. In theH0–Z0 case, the phase of the scalar Higgs,
H, coupling as well as that of the stop mixing can be rotated away simultaneously (into
the gluino couplings) without affecting the Z coupling and this is reflected in m2

1−m2
2 = 0

factor in Eq.(44). For A0–H0, the phase of pseudoscalar coupling as well as that of the
scalar coupling can be rotated away simultaneously also and this is reflected in

∑

ij

βijT
H0

ji T
A0

ij = β12(T
H0

21 T
A0

12 + TH
0

21 T
A0

12 ) = 0 ,

in this particular limit.
To illustrate our result numerically, in the following, we set the parameters so that

only the lighter stops states t̃1t̃1 are light enough to be on-shell for simplicity. In such
a scenario, only some of the above contributions are available. In Fig. 4, we show the
mass m1 of the lightest stop versus tanβ. The best current limit of the lowest bound on
lightest stop mass from LEP is about 95 GeV [14], and this means that tan β < 3 is not

allowed for the case mQ = mU = 300GeV, µ = 500 GeV, At = 500e
iπ
4 GeV. If one wishes

to study the possibility of a much heavier Higgs which can decay to all channels of stops,
the remaining diagrams can be easily incorporated into the numerical analysis.

7.1 Pseudoscalar-Higgs Decay

In the model of our study, the A0 remains its status as a pseudoscalar boson at the tree
level. CP violation in the pseudoscalar Higgs decay into top pairs occurs starting at the
one-loop level. The leading contribution requires induced scalar form factor SI which,

as we have shown, can be obtained from the absorptive part due to the intermediate t̃t̃
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state. Notice that there is no Z loop contribution to SI in the Higgs decay. Fig. 5 show
the asymmetry for the pseudoscalar Higgs decay as defined by (22). Fig. 6 shows the
branching ratios of the pseudoscalar-Higgs decay to top pairs, bottom pairs, and stop
pairs. For small tan β the decay channel is mostly top pairs.

7.2 Higgs Decay

In the Higgs decay, the CP violation is caused by terms proportional to the P I form
factors. The Z diagrams can contribute in principle if not disallowed by the kinematics.
As stated before it does not contribute in our illustration because we assume a heavy t̃2.
Fig. 7 shows the CP asymmetry of the Higgs decay. The branching ratios for the Higgs
to decay into tops, bottoms, stops, W ’s, and Z’s are given in Fig. 8.

8 Conclusion

The complex mixing among the stop sector can produce CP asymmetry at the level of a
few percent in the final products of polarized tt̄ states from the Higgs boson decay. Such
asymmetry can be measured in the energy spectra of the final leptons. Unlike the usual
two-Higgs-doublet model, the CP violation does not require the mixing among A0 and
H0 states at the tree level.

This work was supported in parts by National Science Council of R.O.C., and by U.S.
Department of Energy (Grant No. DE-FG02-84ER40173).
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