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1 Introduction

If the length of two colliding bunches is su�ciently small compared to the values ��
x
and ��

y

of the betatron functions at the interaction point (IP), the luminosity per bunch crossing is

given by:

L� = N1N2

2���
x
��
y

; (1)

where N1 and N2 are the number of particles in the two colliding bunches, and ��
x
, ��

y
are,

respectively, the convoluted horizontal and vertical bunch size at the IP.

However, if the bunch lengths are comparable to or larger than ��
x
and ��

y
, the luminosity

is a more complicated function because of the variation of the transverse beam size along the

length of each bunch. This is due to the increase of the betatron functions away from the

IP. As a result, the actual luminosity is smaller than the nominal value (1): this is known in

the literature as the `hourglass e�ect'. A formula for the reduction factor between the actual

and the nominal luminosity can be found in [1, 2].

Because the dependence of the luminosity on the sizes and relative positions of the

colliding bunches is calculable, one can extract IP beam-size information from luminosity

measurements carried out as a function of the relative transverse separation of the two beams

at the collision point. The subject of this paper is the derivation of the correct relationship

between the actually produced luminosity and the apparent transverse sizes extracted from

luminosity scans, with the hourglass e�ect properly taken into account.

2 Luminosity Formula

Consider two beam distributions in space and time �1(x; y; z; t) and �2(x; y; z; t). The general

formula for the luminosity associated with the collision of the two beams is given by

L =

Z
dxdt�1�2

�
(v1 � v2)

2 � v1 � v2

c2

� 1

2

; (2)

where v1 and v2 are the two beam velocities [3]. Now let us specialize to the case of ultra-

relativistic beams moving along the z axis, experiencing head-on collisions (i.e. the two

velocities are parallel and jv1j = jv2j ' c), and having a rigid gaussian distribution in all

three space dimensions with a transverse o�set (i=1,2):

�i(x; y; z � ct) =
Niq

(2�)3�xi�yi�zi
exp

"
�(x� xi)

2

2�2xi
� (y � yi)

2

2�2yi
� (z � ct)2

2�2zi

#
: (3)

Assume that the coordinate frame is set in such a way that z = 0 corresponds to the IP.

The transverse rms sizes of the two beams close to the IP varies with z according to

�2
xi

= ��2
xi

 
1 +

z2

��2xi

!
;

�2
yi

= ��2
yi

 
1 +

z2

��2yi

!
;
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where ��
xi
, ��

yi
, and ��

xi
, ��

xi
are, respectively, the betatron functions and the rms transverse

sizes of the two beams at the IP.

Having introduced the de�nitions of the convoluted beam sizes �x(z) =
q
�2x1(z) + �2x2(z),

�y(z) =
q
�2y1(z) + �2y2(z), and �z =

q
�2z1 + �2z2, we can carry out the integration in the

transverse variables in (2) with �i de�ned by (3) and obtain

L = 2c

Z
dzdt�1�2

=
2N1N2q
(2�)3�z

Z
1

�1

dz
exp

�
�2z2

�z

� x
2

2�x

� y
2

2�y

�
�x�y

:

In the above expression x = x1�x2 and y = y1�y2 indicate the relative displacement of the

centroids of the two colliding bunches in the tranverse plane. After changing the integration

variable to u =
p
2z=�z and having de�ned ux and uy as

1

u2
x

=
�2
z

2��2
x

 
��2
x1

��2x1
+

��2
x2

��2x2

!
; (4)

1

u2
y

=
�2
z

2��2
y

 
��2
y1

��2y1
+

��2
y2

��2y2

!
; (5)

we can rewrite

L(x; y) = N1N2

2���
x
��
y

Z
1

�1

dup
�

uxuyq
u2
x
+ u2

q
u2
y
+ u2

exp

 
�u2 � 1

2

x2

��2
x

u2
x

u2
x
+ u2

� 1

2

y2

��2
y

u2
y

u2
y
+ u2

!
;

where we have emphasized the dependence of luminosity on the relative transverse o�sets

L = L(x; y). Notice that the quantities ux and uy are a measure of the betatron functions

at the IP in units of the bunch length. The expression L0 for the actual luminosity at

x = y = 0,

L0 =
N1N2

2���
x
��
y

Z
1

�1

dup
�

e�u
2q

1 + u2=u2
x

q
1 + u2=u2

y

; (6)

is identical to that reported by Furman in [1, 2]. Simple inspection of integral (6) shows that

L0 = L� in the limit ux; uy !1, as expected.

3 Beam Size from Luminosity Scans

Beam size measurements using luminosity scans [4, 5] exploit the dependence of luminosity

on the transverse distance between the centroids of the two colliding bunches. For �xed y

(ideally y = 0) one can measure the luminosity as a function of the distance x separating

the two bunches in the horizontal plane. The rms of the resulting gaussian is an estimate

of the horizontal convoluted beam size. Similarly, one can keep x �xed and determine the

vertical convoluted size by varying y. We will refer to the bunch sizes measured in this way
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as the `apparent' �app
x

and �app
y

. As we shall see in a moment these quantities coincide with

��
x
and ��

y
only in the limit of vanishing bunch lengths. Formally we have:

(�app
x

)2 =

R
1

�1
dxL(x; 0)x2R

1

�1
dxL(x; 0) ; (7)

(�app
y

)2 =

R
1

�1
dyL(0; y)y2R

1

�1
dyL(0; y) : (8)

In evaluating (7) and (8) one needs to carry out the following integrals:

Z
1

�1

e�u
2q

1 + u2=a2
du = jajea2=2K0

 
a2

2

!
; (9)

Z
1

�1

u2e�u
2q

1 + u2=a2
du =

jaj3
2

ea
2
=2

"
K1

 
a2

2

!
�K0

 
a2

2

!#
; (10)

where K0 and K1 are the modi�ed Bessel functions. We obtain

(�app
x

)2 = ��2
x

 
1 +

F (uy)

u2
x

!
; (11)

(�app
y

)2 = ��2
y

 
1 +

F (ux)

u2
y

!
: (12)

Here we have de�ned the auxiliary function

F (u) =
u2

2

 
K1(u

2=2)

K0(u2=2)
� 1

!
: (13)

The function F (u), plotted in Fig. 1, increases monotonically from F (0) = 0 to F (1) = 1=2.

As expected, �app
x

and �app
y

are always larger than and become identical to ��
x
and ��

y
in

the limit ux; uy !1.

4 Application to PEP-II

The betatron functions at the IP and typical values for the longitudinal sizes for the electron

(script `�') and positron (script `+') bunches in PEP-II are

��
x+ = ��

x�
= ��

x
= 50 cm;

��
y+ = ��

y�
= ��

y
= 1:25 cm;

�z+ = 1:23 cm;

�z� = 1:35 cm:
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5 Conclusions

In this paper we introduced three distinct quantities: the actual luminosity L0, [Eq. (6)],
which is the luminosity produced when the bunches collide with no transverse o�set; the

nominal luminosity L�, [Eq. (1)], which depends only on the nominal transverse beam sizes

at the IP; and �nally the apparent luminosity Lapp, [Eq. (20)], which is de�ned in terms of the

`apparent' beam sizes as measured by luminosity scans. If the hourglass e�ect is negligible

these three quantities are all equal. However, if the betatron functions at the IP are smaller

than, or of the same order as, the convoluted bunch length, the hourglass e�ect becomes

important, and the actual luminosity L0 turns out to be smaller than the nominal L�, but
larger than the apparent luminosity Lapp. The ratio L0=L�, called the hourglass reduction

factor, is already known from the literature. The focus of this paper was to evaluate the

ratio L0=Lapp, which was shown to be always larger than unity.
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