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Abstract

The formulae relating the luminosity to the transverse beam sizes as determined
by luminosity scans, are derived with the hourglass effect properly taken into
account.
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1 Introduction

If the length of two colliding bunches is sufficiently small compared to the values (; and

of the betatron functions at the interaction point (IP), the luminosity per bunch crossing is

given by: NN
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where N; and N, are the number of particles in the two colliding bunches, and Y7, 37 are,

respectively, the convoluted horizontal and vertical bunch size at the IP.

However, if the bunch lengths are comparable to or larger than 5} and 3y, the luminosity
is a more complicated function because of the variation of the transverse beam size along the
length of each bunch. This is due to the increase of the betatron functions away from the
IP. As a result, the actual luminosity is smaller than the nominal value (1): this is known in
the literature as the ‘hourglass effect’. A formula for the reduction factor between the actual
and the nominal luminosity can be found in [1, 2].

Because the dependence of the luminosity on the sizes and relative positions of the
colliding bunches is calculable, one can extract IP beam-size information from luminosity
measurements carried out as a function of the relative transverse separation of the two beams
at the collision point. The subject of this paper is the derivation of the correct relationship
between the actually produced luminosity and the apparent transverse sizes extracted from
luminosity scans, with the hourglass effect properly taken into account.
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2 Luminosity Formula

Consider two beam distributions in space and time p(x,y, z,t) and py(x,y, z,t). The general
formula for the luminosity associated with the collision of the two beams is given by
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where v; and v, are the two beam velocities [3]. Now let us specialize to the case of ultra-
relativistic beams moving along the z axis, experiencing head-on collisions (i.e. the two

2

velocities are parallel and |v1| = |v3] =~ ¢), and having a rigid gaussian distribution in all
three space dimensions with a transverse offset (i=1,2):
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Assume that the coordinate frame is set in such a way that z = 0 corresponds to the IP.
The transverse rms sizes of the two beams close to the IP varies with z according to
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where 3;;, 3;;, and o}, o3, are, respectively, the betatron functions and the rms transverse
sizes of the two beams at the IP.
Havmg introduced the definitions of the convoluted beam sizes X, ( \/%1 )+ 025(2),

\/ayl +0725(2), and ¥, = (/02 + 02, We can carry out the integration in the
transverse variables in (2) with p; defined by (3) and obtain

L = 20/dzdtp1p2
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In the above expression T = 71 — T2 and §¥ = 7J; — 7, indicate the relative displacement of the
centroids of the two colliding bunches in the tranverse plane. After changing the integration
variable to u = ﬂz/Ez and having defined u, and u, as
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we can rewrite
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where we have emphasized the dependence of luminosity on the relative transverse offsets
L = L(Z,7). Notice that the quantities u, and u, are a measure of the betatron functions
at the IP in units of the bunch length. The expression £, for the actual luminosity at
T=7y=0,

o N1 Ny /OO du €—u2
27?2*2* \/%\/1+u2/u§\/1+u2/u§,

is identical to that reported by Furman in [1, 2]. Simple inspection of integral (6) shows that
Ly = L* in the limit u,, u, — oo, as expected.

(6)
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3 Beam Size from Luminosity Scans

Beam size measurements using luminosity scans [4, 5] exploit the dependence of luminosity
on the transverse distance between the centroids of the two colliding bunches. For fixed ¥
(ideally 7 = 0) one can measure the luminosity as a function of the distance T separating
the two bunches in the horizontal plane. The rms of the resulting gaussian is an estimate
of the horizontal convoluted beam size. Similarly, one can keep T fixed and determine the
vertical convoluted size by varying 3. We will refer to the bunch sizes measured in this way



as the ‘apparent’ 3PP and 3PP, As we shall see in a moment these quantities coincide with
35 and X7 only in the limit of vanishing bunch lengths. Formally we have:
[ dzL(zT,0)7>

(Z57)° = E%Odfﬁ(f,()) ! 9

a 2 _
(Eypp) - 00

In evaluating (7) and (8) one needs to carry out the following integrals:
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where Ky and K; are the modified Bessel functions. We obtain

o= s (14 T (1)
(D2PP)2 = 32 (1 + Fi?) . (12)

Here we have defined the auxiliary function

The function F'(u), plotted in Fig. 1, increases monotonically from F'(0) = 0 to F'(c0) = 1/2.
As expected, X3PP and XIPP are always larger than and become identical to 37 and ¥} in
the limit ug, u, — oo.

4 Application to PEP-1I

The betatron functions at the IP and typical values for the longitudinal sizes for the electron
(script ‘—’) and positron (script ‘+’) bunches in PEP-II are

By = By = B, = 50 cm,
B,y = B, =B, = 1.25 cm,
0,+ = 1.23 cm,

o, = 1.35 cm.
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Figure 1: Function F(u), defined in Eq. (13), vs. u.

From these numbers we obtain 3, = /o2, + 02_ = 1.82 ¢cm, and from Egs. (4) and (5):
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Because u2 > 1 one can evaluate the integral in (6) by taking u?/u2 ~ 0 in the denominator
of the integrand and write [see Eq.(9)]:
~ N1 N, F ul /2 2
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The formula above gives the expression for the actual luminosity, i.e. the nominal (zero
bunch length) luminosity degraded by the hourglass effect. The reduction factor by which
we have to multiply the nominal luminosity £* [see Eq. (1)] to obtain £, is reported in
Fig. 2 as a function of u, (see also [1, 2]). For PEP-II we have Ly/L* ~ 0.85, i.e. the actual
luminosity is smaller than the nominal luminosity by about 15%.

The actual luminosity £y can also be expressed in terms of the ‘apparent’ convoluted
beams sizes determined from beam scans, by using Eqs. (11) and (12)

g2 = sy (17)
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In the expressions above we have made use of F'(u;) ~ 1/2 and F(u,)/u? < 1, which hold
because of (14) and (15). Therefore we can rewrite (16) in terms of the ‘apparent’ convoluted
beam sizes as
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Figure 2: Plot of the hourglass reduction factor Lo/L* = 7~ 2u,e"s/2 Ky (u2/2) vs. u, [see
Eq. (1) and (16)].

Often one uses the ‘apparent’ luminosity defined by

N1 N.

£ = s )
and computed from the measured ¥3PP and XIPP, as an estimate of the actual luminosity.
Eq. (19) shows that because of the hourglass effect this is only an approximation for £y. The
term in the [ ]| brackets in Eq. (19) is the reduction factor of Fig. 2 and is always smaller
than one. On the other hand, the term with the square root in Eq. (19) is larger than one.
It turns out that the latter always prevails so that the overall correction factor one has to
apply to £?PP in order to obtain the actual luminosity L, is larger than one. We call this
the ‘hourglass augmentation factor’. It is plotted in Fig. 3 as a function of wu,.

0.1 0.2 0.5 1 2 5 10
2 2
2 1.5 1.5
]
L
~
o
L
1 1
0.1 0.2 0.5 1 2 5 10

uy=\2p", /3,

Figure 3: Hourglass augmentation factor Lo/L%P = 7=/ 2u,e"/2Ko(u2/2),/1+ 1/(2u2) vs.
u, [see Eq. (19) and (20)].

For the PEP-II parameters reported at the beginning of this Section one obtains:

Lo/ L ~ 1.06. (21)



5 Conclusions

In this paper we introduced three distinct quantities: the actual luminosity Lo, [Eq. (6)],
which is the luminosity produced when the bunches collide with no transverse offset; the
nominal luminosity £*, [Eq. (1)], which depends only on the nominal transverse beam sizes
at the IP; and finally the apparent luminosity £2PP, [Eq. (20)], which is defined in terms of the
‘apparent’ beam sizes as measured by luminosity scans. If the hourglass effect is negligible
these three quantities are all equal. However, if the betatron functions at the IP are smaller
than, or of the same order as, the convoluted bunch length, the hourglass effect becomes
important, and the actual luminosity £y turns out to be smaller than the nominal £*, but
larger than the apparent luminosity £*P. The ratio L£,/L*, called the hourglass reduction
factor, is already known from the literature. The focus of this paper was to evaluate the
ratio Lo/L*P, which was shown to be always larger than unity.
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