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Abstract

The emittance dilution of a relativistic beam in a long linear ac-

celerator caused by quadrupole misalignments is studied. First, an

analytical formula is derived for the emittance dilution due random

uncorrelated o�sets of the quadrupoles in a FODO lattice for a beam

of constant energy. It is shown that there is a critical length of the

linac below which the emittance growth scales as N3 with the number

of quadrupoles. For linacs longer than the critical, the emittance di-

lution scales linearly with N . Analytical results are obtained for the

residual emittance growth after lattice alignment as a function of the

resolution of the beam position monitors and mover steps. The re-

sults are also generalized for a FODO lattice and a beam with slowly

varying parameters. They are compared with computer simulations

for the NLC.

1 Introduction

In this paper we study the emittance dilution of a beam caused by quadrupole
misalignments in a long linac. To suppress the beam break-up instability by
means of BNS damping [1] an energy spread is usually introduced in the
beam. For the Next Linear Collider (NLC) [2], the energy spread within the
bunch will be of order of 1%. Due to the lattice chromaticity, the de
ection
of the beam by displaced quadrupoles results in the dilution of the phase
space and the growth of the projected emittance.

The e�ect of lattice misalignments has been previously studied in many
papers. A qualitative analysis and main scalings were obtained in Ref. [3],
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and detailed studies with intensive computer simulations are described in
Ref. [4]. Lattice misalignments caused by the ground motion were analyzed
in [5, 6].

The purpose of this paper is to develop a simple model based on a FODO
lattice approximation for the linac which allows an analytic calculation of
the emittance dilution. With a simple generalization, we also include in
the model a slow variation of the lattice parameters, as well as variation of
both beam energy and the energy spread. We hope that this analysis can
be a useful addition to the standard computer simulations that are typically
utilized for the study of the misalignments and orbit correction.

Throughout this paper we assume that the number of quadrupoles in the
linac is large, N � 1, and neglect terms of the relative order of N�1 in the
calculations. For future linear colliders with the center of mass energy in the
range of 1 TeV, typically N � 103, and this is a very good approximation.

The paper is organized as follows. In Section 2 we introduce notation for
the parameters of a FODO lattice, and in Section 3 we study the beam orbit
in a lattice with randomly misaligned quadrupoles. In Section 4 we �nd the
chromatic emittance growth, and in the next Section we show that, for a
given energy spread in the beam, the result is limited to not very long linacs.
In Section 6 we study the beam based alignment with account of BPM errors
and �nite step of the quadrupoles movers. In Section 7 we generalize our
results for the case of slow variation of lattice and beam parameters, and in
Section 8 we compare the theoretical predictions with computer simulations
for the NLC lattice. The last section summarizes the main results of the
paper.

2 Beam Orbit in Misaligned Lattice

1 2 N-13

min max min max min

4

max

N

Figure 1: FODO lattice of a linac. Beam positions are measured at the center
of each quadrupole.
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Let us consider a FODO lattice with a cell length l and a phase advance
� per cell, consisting of N thin quadrupoles as shown in Fig. 1. The focal
length of the quadrupoles is equal to �F where the positive and negative
values of F refer to the focusing and defocusing quadrupoles respectively.
We assume that the beam is injected in the linac at the center of the �rst
quadrupole, at s = 0, with the zero o�set and angle. It propagates through
the lattice and the beam emittance is measured at the center of the last, Nth
quadrupole. For the beam position (horizontal or vertical) at the locations
of the quadrupoles we will use the notation x1; x2; : : : ; xN�1; xN , and the
orbit angle at the center of the kth quadrupole is denoted by x0k. The initial
conditions for the orbit are x1 = x01 = 0.

Note that due to our choice of positions, the derivative of the beta func-
tion, and hence the Twiss parameter �, at all locations 1 through N , are
equal to zero.

We now assume that each quadrupole in the lattice is misaligned in the
transverse direction relative to the axis of the linac by �i, (1 � i � N), where
�i are random, uncorrelated numbers. Due to the de
ection by misaligned
quadrupoles, the original straight orbit will be perturbed. The o�set xi can
be found as

xi =
X
k<i

Rk!i
12 �k; (1)

where Rk!i
12 is the (1; 2) element of the transfer matrix R and �i is the de-


ection angle resulting from the o�set of the ith quadrupole, �i = ��i=F , for
the focusing and defocusing quadrupoles. For brevity, below we will use the
notation Rik instead of Rk!i

12 . For Rik we have

Rik =
q
�i�k sin� ik; (2)

where the betatron phase advance � ik between kth and ith quadrupoles
(k < i) is � ik = (1=2)(i� k)�.

In what follows, we will also need the orbit angles x0i where the prime
denotes the derivative with respect to the longitudinal coordinate s. For x0i
we have

x0i =
X
k�i

Gik�k; (3)

where again, for convenience, we use the notation Gik � Rk!i
22 , for the (2; 2)
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element of the transfer matrix,

Gik =

s
�k

�i
cos� ik; (4)

(note that, due to our choice, �i = 0).
It is convenient to rewrite Rik and Gik in complex notation,

Rik =

p
�i�k

2i
(ei� ik � e�i� ik); Gik =

1

2

s
�k

�i
(ei� ik + e�i� ik): (5)

3 RMS value for the beam o�set

To characterize the deviation of the orbit from the linac axis, we will calculate
the average value hx2Ni, where the angular brackets denote averaging over all
possible values of �. We assume that the average o�set h�ii vanishes, hence
hxNi = 0.

For the lattice shown in Fig. 1 the de
ection angle �k due to the mis-
aligned kth quadrupole is given by the following equation

�k = (�1)k �k
F
; (6)

and the beam o�set at the end of the linac is

xN =
N�1X
k=1

RNk(�1)k �k
F
: (7)

For the variance of xN we have

hx2Ni =
1

F 2

N�1X
k;l=1

RNkRNl(�1)k+lh�k�li: (8)

Since �i are assumed uncorrelated, h�k�li = h�2iÆkl, where h�2i denotes the
variance of the random variables �i. Then Eq. (8) reduces to

hx2N i =
h�2i
F 2

N�1X
l=1

R2
Nl: (9)
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To calculate the sum in Eq. (9), we use the complex representation of Eq.
(5),

N�1X
l=1

R2
Nl = �1

4
�N

N�1X
l=1

�l
�
e
1

2
i�(N�l) � e�

1

2
i�(N�l)

�2
: (10)

In the limit N � 1, the leading term in the sum will be given by the
cross term in the brackets that does not contain the oscillating exponent
exp[�1

2
i�(N � l)],

�
N�1X
l=1

�l(e
1

2
i�(N�l) � e�

1

2
i�(N�l))2 �

NX
l=1

2�l � N(�max + �min): (11)

Hence,

hx2Ni
�N

=
Nh�2i
4F 2

(�max + �min) =
Nlh�2i
2F 2 sin�

= 4N
h�2i
l

tan
�

2
: (12)

We see that the rms value hx2Ni1=2 scales as N1=2, which is a characteristic
feature of the random walk motion.

As an illustration of the presented derivation, Fig. 2 shows a compari-
son of the result of a computer simulation with the analytical formula Eq.
(12) for three lattices with di�erent phase advance �. In the simulation, the
quadrupoles in the lattice were randomly misaligned and the orbit was calcu-
lated using Eq. (7). The simulated orbits where averaged over 100 random
seeds.

In a similar fashion, one can �nd the rms angular spread orbits hx02Ni1=2
at the end of the linac. Starting from the general expression

x0N =
NX
k=1

GNk(�1)k�1 �k
F
; (13)

and performing the same averaging as for derivation of Eq. (12), one �nds

hx02Ni =
hx2N i
�2N

; (14)

where hx2Ni is given by Eq. (12).
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denote a double averaging: �rst, averaging over the random misalignment of
the quadrupoles and then averaging over the particles with di�erent energy
in the beam. In this section, we will assume that the energy spread in the
beam Æ is so small, that one can use a linear approximation for calculation
of �x and �x0, �x = Æ � @xN=@Æ and �x0 = Æ � @x0N=@Æ. Since we assume
that the average misalignment of the quadrupoles is equal to zero, h�ii = 0,
hence h�xi = h�x0i = 0. In this approximation Eq. (15) reduces to

�� =
1

2
Æ2

2
4 1

�N

* 
@xN

@Æ

!2+
+ �N

* 
@x0N
@Æ

!2+35 : (16)

where Æ2 is the variance of the energy spread within the beam.
To calculate @xN=@Æ and @x

0
N=@Æ we need to take the derivatives of Eqs.

(7) and (13) with respect to Æ. For a long linac, the dominant contribution
to �� comes from the dependence of the phase advance � ik versus energy,
so we need to di�erentiate only sin� ik (or cos� ik) terms in the sum,

@xN

@Æ
�

N�1X
k=1

@RNk

@Æ
(�1)k �k

F

�
N�1X
k=1

q
�N�k(�1)k �k

F

1

2
(N � k)

@�

@Æ
cos

�
1

2
(N � k)�

�
; (17)

where we neglected the energy dependence of �N , �k and F . As is well
known, for the FODO lattice, @�=@Æ = �2 tan(�=2). Using the relation
h�k�li = h�2iÆk;l, for the �rst term in Eq. (16) we �nd* 

@xN

@Æ

!2+
= �N

h�2i
F 2

tan2
�

2

N�1X
k=1

�k(N � k)2 cos2
�
1

2
(N � k)�

�
: (18)

Similar to the derivation of hx2N i in the previous section, using the relation
cos2� Nk = 1

2
+ 1

2
cos 2� Nk, one can show that the oscillating term in

this expression gives a small contribution to the sum, so that e�ectively
we can substitute cos2 1

2
(N � k)� ! 1=2. Then the beta function �k, can

be substituted by its average value in the lattice, �k ! (�max + �min)=2.
Finally, because N is a large numver, the summation of the term N � k can
be approximated by integration,

PN�1
k=1 (N � k)2 ! RN

0 (N � k)2dk = N3=3.
Combining all the terms, one �nds

1

�N

* 
@xN

@Æ

!2+
=

4

3
N3 h�2i

l
tan3

�

2
: (19)
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Similarly, one can �nd the second term in Eq. (16),

�N

* 
@x0N
@Æ

!2+
=

4

3
N3 h�2i

l
tan3

�

2
; (20)

which gives for the emittance growth

�� =
4

3
Æ2N3 h�2i

l
tan3

�

2
: (21)

As we see, the increase in the emittance scales with the number of quadrupoles
as N3. As an illustration of such scaling, Fig. 3 shows a comparison of the
computer simulation with the analytical formula Eq. (21).

0 25 50 75 100
N

0

0.02

0.04

0.06

D
Ε �Ε

Figure 3: The relative emittance growth of a beam as a function of the
length of the linac. The computer simulation (lower curve) were performed
for a FODO lattice with � = 80 degrees phase advance averaged over 100
random seeds, and the beam energy spread Æ = 10�4. The upper curve is the
analytical formula (21).

In the above derivation, to �nd the dispersion of the beam at the end of
the linac, we explicitly di�erentiated Eq. (7) with respect to the energy. One
can use another formula for computing @xN=@Æ,

@xN

@Æ
=

N�1X
k=1

RNk(�1)kxk � �k

F
; (22)
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that takes into account that the dispersion is generated due to the o�set of the
particle relative to the center of the quadrupole, and propagates downstream
with the same matrix element RNk. In Appendix A we prove, that this
expression is equivalent to the approach that uses the direct di�erentiation
of xN . It turns out, that in the case of orbit steering (see below), it is more
convenient to use Eq. (22) rather than Eq. (17).

5 Very long linac

Increasing the length of the linac and the number of quadrupoles N brings
us to the regime where Eq. (21) is not valid any more. The transition
occurs when the phase advance over the length of the linac due to the energy
variation Æ becomes comparable to �=2, NÆ � d�=dÆ � �=2. In this case,
the di�erential approximation �x = Æ � @xN=@Æ that was used in Section 4
becomes invalid, and the scaling �� / N3 breaks down.

A new scaling of the emittance dilution with the number of quadrupoles
in the linac is illustrated by Fig. 4 which shows comparison of the computer
simulated emittance growth as a function of N with the analytical formula
(21). As is seen, after an initial growth / N3, the emittance starts to grow
linearly with the distance. For the case shown in Fig. 4, where Æ = 10�2, the
transition corresponds to N � 102.

We can estimate the emittance dilution in this regime, using the following
arguments. Let us denote by lc the decoherence length in the linac such that
(lc=l)Æ � d�=dÆ = �=2. When the beam passes the distance lc, due to the
�lamentation, the betatron oscillation of the beam are converted into the
increased emittance, and the subsequent motion becomes uncorrelated with
the previously excited betatron oscillations. The emittance growth on the
distance lc is given by Eq. (21), in which N = 2lc=l,

��c =
4

3
Æ2

 
2lc
l

!3 h�2i
l

tan3
�

2
� h�2i
l
p
Æ2
: (23)

The total emittance increase in the linac of length lL in this regime is equal
to ��c multiplied by the number of coherent distances lL=lc in the linac

�� = ��c
lL

lc
� lLh�2i
l2 tan �

2

: (24)
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Figure 4: The relative emittance growth of a beam as a function ofN in a long
linac. The computer simulation (lower curve) were performed for a FODO
lattice with � = 80 degrees phase advance averaged over 100 random seeds,
and the beam energy spread Æ = 10�2. The rms value of the misalignments
in this case is 100 times smaller than in the simulation shown in Fig. 3. The
upper curve is the analytical formula (21).

Note that if the linac length lL < lc, the emittance dilution is reversible
in principle { the initial beam emittance can be recovered by taking out the
dispersion generated by the misaligned quadrupoles downstream of the linac.
For very long linacs, when lL > lc, the emittance growth becomes irreversible
due to the phase space �lamentation, and associated with it decoherence of
the betatron oscillations.

6 Alignment with account of BPM errors and

�nite mover steps

Measuring the beam position at each quadrupole, with the knowledge of the
lattice functions, allows us to �nd the quadrupole o�sets �i. Moving the
quadrupoles by distance ��i would position them in the original state, and
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restore the ideal lattice. Of course, in reality, there are many factors, such
as wake�elds and measurement errors, that do not allow to perfectly align
the lattice. In this section we will study two such e�ects { errors associated
with the BPM measurements, and �nite step of the quadrupole movers that,
even with the perfect knowledge of the values �i, do not allow to move the
quadrupoles exactly to the desired place.

Let us consider �rst the e�ect of BPM errors. Due to the �nite reso-
lution of BPMs the measured vector of the beam transverse o�sets XM =
(xM1 : : : xMN ) di�ers from the exact values X = (x1 : : : xN ) by an error vector
e, XM = X + e, where e = (e1 : : : eN). The errors are small relative to the
measured values, jeij � jxij. We assume that the BPMs are built in the
quadrupoles, and the quadrupole displacement �k also moves the center line
of the BMP, so that BPM reading is

xMk = xk � �k + ek: (25)

Using the measured o�sets xMk we infer the quadrupole o�sets �k from the
following equation

xMi + �i =
i�1X
k=1

Rik(�1)k �k
F
: (26)

Note that without errors, ek = 0, we would �nd from Eq. (26) the correct
value �k = �k. Measurement errors ek cause the inferred values of the o�sets
di�er from the true ones, �k 6= �k.

We then align the lattice by moving the quadrupoles by distance ��k.
After the alignment the corrected beam orbit ~xi does not vanish:

~xi =
i�1X
k=1

Rik(�1)k �k � �k

F
= xi � xMi � �i = �ei + �i � �i: (27)

Since the quadrupoles after alignment are located at �k� �k, the beam o�set
relative to the center of the quadrupole, ~xk � (�k � �k), is equal to �ek. This
important observation allows us to use Eq. (22) to �nd the emittance dilution
in the linac after the alignment,

@xN

@Æ
= �

N�1X
k=0

RNk(�1)k�1 ek
F
: (28)

Assuming that ek are uncorrelated random numbers makes the problem
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equivalent to the orbit equation (7) with the result given by Eq. (12),

1

�N

* 
@xN

@Æ

!2+
= 4N

he2i
l

tan
�

2
: (29)

We see that the rms value of the dispersion at the and of the linac after
alignment scales as

p
N . Calculating in a similar way the variance of the

derivative @x0N=@Æ, allows us to �nd the chromatic emittance growth after
alignment,

�� = 4NÆ2
he2i
l

tan
�

2
: (30)

Let us now assume that in addition to the BPM errors the quadrupole
movers have a �nite step so that the �nal position of the quadrupoles �k after
alignment is �k � �k + rk, where as above, �k is the o�set inferred from the
measurements (and containing BPM errors), and rk is the quadrupole move-
ment error. Again, we assume that rk are random, uncorrelated numbers,
and of course uncorrelated with the BPM errors ek. For the beam orbit after
alignment we now have

~xi = �ei + �i � �i +
i�1X
k=1

Rikrk (31)

with the resulting emittance growth that is a combination of Eqs. (30) and
(21),

�� = 4NÆ2
he2i
l

tan
�

2
+
4

3
Æ2N3 hr2i

l
tan3

�

2
: (32)

From this equation, it follows that for a large N , the contribution of the
movers errors becomes more important and imposes tighter tolerances on
the movers.

7 Varying parameters of lattice and beam

In the previous section we assumed that such parameters of the lattice, as
phase advance � and the cell length l are constant throughout the linac. We
also assumed that the beam energy E, and the energy spread Æ are constant.
In reality however, this is not true: the energy of the beam increases during
acceleration, and the energy spread changes along the orbit. Also, the lattice
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parameters often vary along the linac. In this section, we generalize our
approach and take those variations into account.

We now assume that the lattice can be characterized as a local FODO,
that is � and l are de�ned in each cell of the lattice but can slowly vary with s.
We also allow a slow variation of the beam parameters 
 and Æ. Finally, the
variance of the misalignment h�2i can now be a slow function of s. The slow
variation of the parameters, allows us to average out the oscillating terms in
the corresponding sums, as in the case of constant parameters, leaving only
the secular terms.

First, we need to generalize the expressions (2) and (4) for the transfer
matrix elements for the case when the beam energy is not constant. In case
of acceleration we have

Rik =

s

k


i

q
�i�k sin� ik; Gik =

s

k�k


i�i
cos� ik; (33)

where we again assumed that the parameter � is equal to zero in both initial
and �nal points1. With these de�nitions, we can repeat the derivation of
Section 3 using the fact that the main contribution comes from the nonoscil-
lating terms in the sum. For the variance of the orbit deviation one now
�nds


Nhx2Ni
�N

= 
N�Nhx02Ni = 4
X
k


kh�2ki
lk

tan
�k

2
: (34)

As pointed out at the beginning of this Section, in this expression, all param-
eters under the sum sign can slowly vary along the linac. Eq. (34) demon-
strates the e�ect of adiabatic damping of the betatron oscillations during
acceleration.

A similar generalization can be done for the chromatic emittance growth
in the misaligned lattice. The complication here comes from the fact that
the phase advance � ik is now equal to

� ik =
iX
l=k

�l (35)

and the variation of the phase advance gives

Æ� Ni =
NX
l=i

Æl
d�l

dÆ
= 2

NX
l=i

Æl tan
�l

2
(36)

1
Note that now this parameter should be de�ned as � = �

1

2

d(�=
)=ds.
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This gives the following result for the normalized emittance growt


N�� = 4
X
k

s2kh�2ki

k

lk
tan

�k

2
; (37)

where

sk =
kX
l=i

Æl tan
�l

2
: (38)

Finally, a generalization of Eq. (32) for the case of varying parameters
reads


N�� = 4
X
k

Æ2k

khe2ki
lk

tan
�

2
+ 4

X
k

s2khr2ki

k

lk
tan

�k

2
: (39)

where the �rst term is due to the �nite BPM resolution, and the second term
accounts for the �nite mover step.

8 Analysis of the NLC lattice

Strictly speaking, the NLC lattice is not a FODO lattice with slowly varying
parameters. The phase advance �, the cell length l and the nominal rms
energy spread in the beam as functions of position s for this lattice are
shown in Fig. 5. As is seen, the lattice consists of three segments, which
are approximately FODO, however the lattice parameters experience jumps
at the boundaries of the segments. Nevertheless, we will apply the theory
developed in the previous section to this lattice.

We also note here that for the NLC lattice the betatron phase advance
within the bunch on the length of the linac is relatively large,

jÆ�j = 2
NX
k=1

Æk tan
�k

2
= 5:3 : (40)

This means that the decoherence e�ects in the lattice are rather strong,
and Eq. (37) tends to overestimate the emittance growth. The computer
simulations were performed using the code LIAR [7] for the nominal NLC
parameters: the initial beam energy { 10 GeV, the �nal beam energy { 500
GeV, number of particles in the bunch { 1:1 � 1010. In the �rst set of simula-
tions, the quadrupoles were misaligned in the vertical direction with the rms
o�set of 40 nm and no orbit correction was used. The transverse wake�elds
were turned o� in the simulation. The vertical normalized emittance growth
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Figure 5: The NLC lattice. Shown are the phase advance �, the cell length l
and the nominal rms energy spread in the beam as functions of position s.

is shown in Fig. 6. As we see, the beam emittance doubles in this case. A
theoretical estimate for the NLC lattice based on Eq. (37) with the lattice
parameters and the beam energy spread shown in Fig. 5 gives the following
result,


N�� = 2 � 108h�2ki m�1; (41)

which for h�2ki1=2 = 40 nm gives 
N�� = 3:2 � 10�7 m, or about ten times
the initial emittance. As expected, the theoretical formula overestimates the
emittance growth in this case.

Another set of simulations was performed with 1 to 1 orbit steering as-
suming the BPM resolution of 3 �m. The result of the simulations in this
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Figure 6: Vertical emittance growth for 40 nm rms misalignments. The
shown result is an average value over 100 random seeds.

case is shown in Fig. 7. Again the emittance approximately doubles over the
length of the linac. The theoretical formula for this case, Eq. (39), reads


N�� = 2 � 103he2ki m�1; (42)

which for which for he2ki1=2 = 3 �m gives 
N�� = 1:8 � 10�8 m, or about half
of the initial emittance. We see that in this case the theory is in qualitative
agreement with the simulations.

9 Summary

We have studied the emittance growth caused by chromatic e�ects in the
lattice with randomly misaligned quadrupoles of a long linac. The simplest
problem of this kind | a FODO lattice with a beam of constant energy and
constant energy spread | allows an analytical solution for both beam orbit
and emittance dilution. These solutions, given by Eqs. (12) and (21), are
valid for not very long linacs, such that betatron oscillations of the beam do
not decohere on the linac length. In this regime, the rms orbit deviation and
emittance increase scale as N1=2 and N3, respectively, with the number of
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Figure 7: Vertical emittance growth for 1 to 1 orbit correction. The shown
result is an average value over 100 random seeds.

quadrupoles in the linac. In the limit when the linac length is much longer
than the decoherence length, the chromatic emittance dilution scales linearly
with the length of the linac. Note, that for the NLC lattice the decoherence
length (for the nominal relative energy spread of order of 1%) is of the order
of the linac length, as estimated in Section 8, which means that the NLC is
in an intermediate regime between these two limits.

We have also studied the e�ect of quadrupole alignment based on steering
the orbit through the centers of the beam position monitors. After such
alignment the residual emittance dilution caused by the �nite BPM resolution
scales linearly with N . However, �nite movers steps add to the emittance
growth a term that again scales as N3.

We also generalized the results for the emittance growth for the case of
a FODO lattice with slowly varying parameters taking also into account a
slow variation of beam energy and energy spread. Those results are compared
with the computer simulation for the NLC beam.
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11 Appendix A

To prove Eq. (22) we consider a di�erential equation of betatron oscillations
in a linac with continuous focusing strength K(s) and misalignments �(s),

@2x

@s2
+K(s)x = K(s)�(s) : (43)

In the limit of thin lenses, which is treated in this paper, the functions K(s)
reduces to a sum of delta functions, however, we do not need to use this
assumption here.

Introducing the Green function G(s; s0) which satis�es the equation

@2G

@s2
+K(s)G = Æ(s� s0); (44)

with G(s; s0) = 0 for s < s0, the perturbed orbit is given by

x(s) =
Z s

0
G(s; s0)K(s0)�(s0)ds0; (45)

where s = 0 corresponds to the beginning of the linac.
To �nd the derivative of the orbit with respect to Æ we di�erentiate Eq.

(45)
@x(s)

@Æ
=
Z s

0
[GÆ(s; s

0)K(s0) +G(s; s0)KÆ(s
0)] �(s0)ds0: (46)

The derivative of the focusing strength with respect to the relative energy is
KÆ = �K. For the derivative GÆ, we will use a di�erential equation that is
obtained by di�erentiating Eq. (44)

@2GÆ

@s2
+K(s)GÆ = �KÆ(s)G(s; s

0) = K(s)G(s; s0): (47)

The solution to the last equation can be found using the Green function

GÆ(s; s
0) =

Z s

s0
G(s; s00)K(s00)G(s00; s0) ds00: (48)
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Putting Eq. (48) into Eq. (46) yields

@x(s)

@Æ
=

Z s

0
K(s0)�(s0)ds0

Z s

s0
G(s; s00)K(s00)G(s00; s0)ds00

�
Z s

0
G(s; s0)K(s0)�(s0)ds0: (49)

Changing the order of integration in the �rst integral gives

@x(s)

@Æ
=

Z s

0
G(s; s00)K(s00)ds00

Z s00

0
K(s0)�(s0)G(s00; s0)ds0

�
Z s

0
G(s; s0)K(s0)�(s0)ds0

=
Z s

0
x(s00)G(s; s00)K(s00)ds00 �

Z s

0
G(s; s0)K(s0)�(s0)ds0

=
Z s

0
G(s; s0)K(s0)(x(s0)� �(s0))ds0 : (50)

For thin quadrupoles, K(s) =
PN
n=1(�1)nF�1Æ(s�sn), where sn = (n�1)l=2,

and Eq. (50) reduces to Eq. (22) with xN = x(sN) and Rik = G(xi; xk).
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