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Abstract

We have developed an e�cacious algorithm for simulation of the beam-beam in-

teraction in synchrotron colliders based on the nonlinear �f method, where �f

is the much smaller deviation of the beam distribution from the slowly evolving

main distribution f0. In the presence of damping and quantum 
uctuations of

synchrotron radiation it has been shown that the slowly evolving part of the

distribution function satis�es a Fokker-Planck equation. Its solution has been

obtained in terms of a beam envelope function and an amplitude of the dis-

tribution, which satisfy a coupled system of ordinary di�erential equations. A

numerical algorithm suited for direct code implementation of the evolving dis-

tributions for both �f and f0 has been developed. Explicit expressions for the

dynamical weights of macro-particles for �f as well as an expression for the slowly

changing f0 have been obtained.
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1 Introduction

The e�ects of the beam-beam interaction on particle dynamics in a synchrotron collider are

the key element that determines the performance of the collider such as luminosity [1] - [3].

In order to accurately understand these e�ects, it is necessary to incorporate not only the

overall collisional e�ects of the beam-beam interaction, but also the collective interaction

among individual parts of the beam in each beam and its feedback on the beam distribution.

The particle-in-cell (PIC) approach [4], [5] has been adopted to address such a study need

[6], [7], [8].

Particle-in-cell codes typically use macro-particles to represent the entire distribution

of particles. In the beam-beam interaction for the PEP-II [9] (for example), the beams

consist of 1010 particles each. Simulating this many particles with the PIC technique is

computationally prohibitive. With the conventional PIC code 1010 particles are represented

by only 103 � 104 macro-particles allowing simulation of the beam-beam interaction in a

reasonable computation time. However, the statistical 
uctuation level of various quantities

such as the beam density � in the code is much higher than that of the real beam. The


uctuation level �� goes as approximately

��

�
�
p
N

N
; (1.1)

where N is the number of particles. Therefore, the 
uctuation level of the PIC code is about

103 times higher than that of the real beam. Although this probability is not signi�cant for

beam blowup near resonances, the higher 
uctuation level has a large e�ect on more subtle

phenomenon such as particle di�usion. The purpose of the �f algorithm is to facilitate the

study of subtle e�ects and has been introduced in [10], [11], [12].

The �f method follows only the 
uctuating part of the distribution instead of the entire

distribution. This is essentially modeling the numerator of the right-hand side of equation

(1.1). So the 103 � 104 macro particles are used to represent
p
1010 or 105 real 
uctuation

particles in PEP-II beams. This is only one or two orders of magnitude beyond the number

of macro particles. Such a modest gap between the number of macro particles and the real


uctuating particles maybe ameliorated by the standard techniques of the PIC approach,

such as the method of �nite-sized macro-particles [4], [5].

PIC strong-strong codes use a �nite number of particles to represent the Klimontovich

equation for the microscopic phase space density (MPSD) [13]. In the particular case of

one-dimensional beam-beam interaction,

@f

@s
+ p

@f

@x
� (K(s)x� F (x; s))

@f

@p
= 0; (1.2)

where K(s)x is the usual magnetic guiding force and F (x; s) is the beam-beam force

F (x; s) =
2eEx(x)

m
v2
�p(s): (1.3)
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The electric �eld Ex(x) is calculated from the distribution of the particles of the on-coming

beam and �p(s) is the periodic �-function with a periodicity of the accelerator circumference.

The distribution function f(x; p; s) is represented by a �nite number of macro-particles by

f(x; p; s) =
1

N

NX
n=1

�(x� xn(s))�(p� pn(s)); (1.4)

where N is the number of macro-particles.

The strategy of the �f method is that only the perturbative part of the distribution is

followed. The total distribution function f(x; p; s) is decomposed into

f(x; p; s) = f0(x; p; s) + �f(x; p; s); (1.5)

where f0(x; p; s) is the steady or slowly varying part of the distribution and �f(x; p; s) is the

perturbative part. The key to this method is �nding a distribution f0(x; p; s) which is close

to the total distribution f(x; p; s). The perturbative part �f(x; p; s) is then small, causes

only small changes to the distribution, and thus represents only the 
uctuation levels. If

a distribution f0(x; p; s) close to the total distribution is not found or found poorly, then

�f(x; p; s) represents more than the 
uctuation part of the total distribution; defeating the

purpose of the method. The ideal situation is having an analytic solution for f0(x; p; s). In

this case any numerical truncation errors which result from the necessary derivatives of this

function are eliminated. If an analytic solution cannot be found, then a numerical solution

needs to be found which is close to the total distribution f(x; p; s) and is slowly varying.

A frequent numerical update of f0(x; p; s) would also defeat the purpose of the �f method,

since the PIC technique essentially does this also.

The beam-beam interaction can lead to beam instabilities that disrupt or severely distort

the beam or gradual beam spreading. The higher the beam current, and thus the beam-

beam interaction, the stronger these e�ects become. Therefore, when one wants to maximize

the luminosity of a collider, one needs to confront the beam-beam interaction e�ects. The

operation of PEP-II, for example, is critically dependent on the beam-beam interaction and

optimal parameters to minimize the related beam instabilities are under intense study.

The paper is organized as follows. In the next Section we present a brief formulation of

the problem of beam-beam interaction in synchrotron colliders. In Section 3 we develop the

nonlinear �f method for solving the equation for the microscopic phase space density in the

presence of random external forces. The equation for the 
uctuating part �f is being derived

and its solution is found explicitly in terms of dynamical weight functions, prescribed to each

macro-particle. In Section 4 we solve the Fokker-Planck equation for the averaged slowly

evolving part of the distribution. We show that the solution is an exponential of a bilinear

form in coordinates and momenta with coe�cients that can be regarded as generalized

Courant-Snyder parameters. In Section 5 we outline numerical algorithms to alternatively

solve the Fokker-Planck equation and the macro particle distribution with dynamical weight.

Finally, Section 6 is dedicated to our summary and conclusions.
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2 Description of the beam-Beam Interaction

In order to describe the beam dynamics in an electron positron storage ring, we introduce

the equations of motion in the following manner. The beam propagation in a reference frame

attached to the particle orbit is usually described in terms of the canonical conjugate pairs

bu(k) = u(k) �D(k)
u
b�(k) ; bp(k)

u
=
p(k)
u

p
(k)
0

� b�(k)dD(k)
u

ds
; (2.1)

b�(k) = e�(k) +
X
u=x;z

 
u(k)

dD(k)
u

ds
�D(k)

u

p(k)
u

p
(k)
0

!
; b�(k) = 1

�2
k0

E(k) � Ek0

Ek0

; (2.2)

where u = (x; z), s is the path length along the particle orbit, and the index k refers to

either beam (k = 1; 2). In equations (2.1) and (2.2) the quantity u(k) is the actual particle

displacement from the reference orbit in the plane transversal to the orbit, p(k)
u

is the actual

particle momentum, and E(k) is the particle energy. Furthermore, p
(k)
0 and Ek0 are the total

momentum and energy of the synchronous particle, respectively, and D(k)
u

is the well-known

dispersion function. The quantity

e�(k) = s� !
(k)
0 Rt (2.3)

is the longitudinal coordinate of a particle from the k-th beam with respect to the syn-

chronous particle, where !
(k)
0 is the angular frequency of the synchronous particle and R is

the mean machine radius.

It is known that the dynamics of an individual particle is governed by the Langevin

equations of motion:

dbu(k)
ds

=
@cH(k)

@ bp(k)u

�D(k)
u
eF (k)
�

;
dbp(k)

u

ds
= �@

cH(k)

@bu(k) + eF (k)
u

� eF (k)
�

dD(k)
u

ds
; (2.4)

db�(k)

ds
=
@cH(k)

@ b�(k) � X
u=x;z

D(k)
u
eF (k)
u

;
db�(k)
ds

= �@
cH(k)

@b�(k)
+ eF (k)

�
; (2.5)

where

eF (k)
u

= �p(k)0 Ak

 bp(k)
u

+ b�(k)dD(k)
u

ds

!
; (2.6)

eF (k)
�

= �p(k)0 Ak

"
1 +

�
3� �2

k0 + �
(k)
M

�b�(k) + X
u=x;z

K(k)
u
bu(k)#; (2.7)
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Ak = C1jBkj2 +
q
C2jBkj3=2�k(s); (2.8)

C1 =
2ree

2

3(mec)
3 ; C2 =

55

24
p
3

re�he
3

(mec)
6 ; re =

e2

4��0mec2
: (2.9)

Here �
(k)
M

is the momentum compaction factor, K(k)
u
(s) is the local curvature of the reference

orbit, and Bk =
�
B(k)
x
; B(k)

z
; B(k)

s

�
is the magnetic �eld. The variable �k(s) is a Gaussian

random variable with formal properties:

h�k(s)i = 0 ; h�k(s)�k(s0)i = �(s� s0): (2.10)

The hamiltonian part in equations (2.4) and (2.5) consists of three terms:

cH(k) = cH(k)
0 + cH(k)

2 + cH(k)
BB

; (2.11)

where

cH(k)
0 = �K

(k)

2
b�(k)2 + 1

2��2
k0

�Ek0

Ek0

cos

 
hke�k
R

+ �k0

!
; (2.12)

cH(k)
2 =

1

2

�bp(k)2
x

+ bp(k)2
z

�
+

1

2R2

�
G(k)
x
bx(k)2 +G(k)

z
bz(k)2�; (2.13)

cH(k)
BB

= �k�p(s)Vk
�
x(k); z(k); e�(k); s

�
: (2.14)

The parameter K(k) is the so called slip phase coe�cient, hk is the harmonic number of the RF

�eld and �Ek0 is the energy gain per turn. The coe�cients G(k)
x;z
(s) represent the focusing

strength of the linear machine lattice, �p(s) is the periodic delta-function, while �k and

Vk
�
x(k); z(k); e�(k); s

�
are the beam-beam coupling coe�cient and the beam-beam potential,

respectively. The latter are given by the expressions:

�k =
reN3�k


k0

1 + �k0�(3�k)0

�2
k0

; (2.15)

Vk
�
x(k); z(k); e�(k); s

�
=

Z
dxdzde�Gk�u(k) � u; e�(k) � e�; s��3�k(u; e�; s); (2.16)
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where Nk is the number of particles in the k-th beam and the Green's function Gk(u; e�; s)
for the Poisson equation in the fully 3D case, in the ultra-relativistic 2D case and in the 1D

case can be written respectively as:

Gk
�
u(k) � u; e�(k) � e�; s� =

8>>>>>>>>>><>>>>>>>>>>:

�
��
x(k) � x

�2
+
�
z(k) � z

�2
+
�e�(k) � e� + 2s

�2��1=2
;

�
�e�(k) � e� + 2s

�
ln

��
x(k) � x

�2
+
�
z(k) � z

�2�
;

2��
�e�(k) � e� + 2s

�
�
�
z(k) � z

����x(k) � x
���:

(2.17)

In what follows we focus on the two-dimensional case, entirely neglecting the longitudinal

dynamics. Let us write down the Langevin equations of motion (2.4) and (2.5) once again

in the following form:

dx(k)

ds
= p(k); (2.18)

dp(k)

ds
= F

(k)
L

+ F
(k)
B

+ F
(k)
R
; (2.19)

x(k) =
�bx(k) ; bz(k)� ; p(k) =

�bp(k)
x

; bp(k)
z

�
; (2.20)

where

F
(k)
L

=

 
�G

(k)
x

R2
bx(k) ; �G(k)

z

R2
bz(k)! (2.21)

is the (external) force acting on particles from the k-th beam, that is due to the linear

focusing properties of the corresponding con�ning lattice. Furthermore,

F
(k)
B

= �k�p(s)

 
� @Vk

@bx(k) ; � @Vk

@bz(k)
!

(2.22)

is the beam-beam force and

F
(k)
R

= �pk0Ak

 bp(k)
x
� dD(k)

x

ds
; bp(k)

z
� dD(k)

z

ds

!
(2.23)

is the synchrotron radiation friction force with a stochastic component due to the quantum


uctuations of synchrotron radiation [cf expression (2.8)].
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3 The Nonlinear �f Method

It can be checked in a straightforward manner that the Klimontovich microscopic phase

space density

fk(x;p; s) =
1

Nk

NkX
n=1

�
h
x� x(k)

n
(s)
i
�
h
p� p(k)

n
(s)
i

(3.1)

satis�es the following evolution equation:

@fk

@s
+ p � rxfk +

�
F

(k)
L

+ F
(k)
B

�
� rpfk +rp �

�
F

(k)
R
fk
�
= 0; (3.2)

where
n
x(k)
n
(s) ; p(k)

n
(s)
o
is the trajectory of the n-th particle from the k-th beam. Next we

split the MPSD fk into two parts according to the relation:

fk(x;p; s) = fk0(x;p; s) + �fk(x;p; s); (3.3)

where fk0 is a solution to the equation

@fk0

@s
+ p � rxfk0 +

�
F

(k)
L

+ F
(k)
L0

�
� rpfk0 +rp �

�
F

(k)
R
fk0
�
= 0: (3.4)

The quantity F
(k)
L0 in Eq. (3.4) is the linear part of the beam-beam force F

(k)
B
. The beam-

beam force should be calculated with the on-coming beam distribution f(3�k)0. In what

follows it will prove convenient to cast the beam-beam force into the form:

F
(k)
B

= F
(k)
L0 + F

(k)
N0 + �F

(k)
B
; (3.5)

where F
(k)
N0 is the nonlinear (in the transverse coordinates) contribution calculated with

f(3�k)0, while �F
(k)
B

denotes the part of the beam-beam force due to �f3�k.

It is worthwhile to note here that the representation (3.3) is unique, embedding the basic

idea of the �f method. However, one is completely free to �x the f0 part, which usually

describes those features of the evolution of the system one can solve easily (and preferably in

explicit form). In the next Section we show that fk0, averaged over the statistical realizations

of the process �k(s) satis�es a Fokker-Planck equation and �nd its solution.

Subtract now the two equations (3.2) and (3.4) to obtain an equation for the �fk

@�fk

@s
+ p � rx�fk +

�
F

(k)
L

+ F
(k)
B

�
� rp�fk +rp �

�
F

(k)
R
�fk

�
=
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= �
�
�F

(k)
B

+ F
(k)
N0

�
� rpfk0: (3.6)

The next step consists in de�ning the weight function that is relative to the total distribution

as

Wk(x;p; s) =
�fk(x;p; s)

fk(x;p; s)
: (3.7)

Substituting

�fk = Wkfk ; fk =
fk0

1�Wk

(3.8)

into (3.6) and taking into account (3.2) we �nally arrive at the evolution equation for the

weights:

@Wk

@s
+ p � rxWk +

�
F

(k)
L

+ F
(k)
B

+ F
(k)
R

�
� rpWk =

= � 1

fk

�
�F

(k)
B

+ F
(k)
N0

�
� rpfk0 =

=
Wk � 1

fk0

�
�F

(k)
B

+ F
(k)
N0

�
� rpfk0: (3.9)

Equation (3.9) can be solved formally by the method of characteristics. The �rst couple

of equations for the characteristics are precisely the equations of motion (2.18) and (2.19).

Suppose their solution (particle's trajectory in phase space) fx(s) ; p(s)g is known, and let

us write down the last one of the equations for the characteristics

1

Wk � 1

dWk

ds
=

1

fk0

�
�F

(k)
B

+ F
(k)
N0

�
� rpfk0

�����
x;p�!trajectory

: (3.10)

Note that its right-hand-side is a function of s only, provided x and p are replaced by par-

ticle's trajectory in phase space fx(s) ; p(s)g. Therefore equation (3.10) can be integrated

readily to give:

Wk(s) = 1 + [Wk(s0)� 1] exp

8<:
sZ

s0

d�

fk0(�)

h
�F

(k)
B
(�) + F

(k)
N0(�)

i
� rpfk0(�)

�����
x(�) ; p(�)

9=;: (3.11)
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4 The Fokker-Planck Equation

To derive the desired equation let us de�ne the distribution function Fk0(x;p; s) and the


uctuation �fk0(x;p; s) according to the relations:

Fk0(x;p; s) = hfk0(x;p; s)i ; �fk0(x;p; s) = fk0(x;p; s)�Fk0(x;p; s); (4.1)

where h� � �i implies statistical average. Neglecting second order terms and correlators in �fk0
and �f(3�k)0 that generally give rise to collision integrals, we write down the equations for

Fk0 and �fk0

@Fk0

@s
+ p � rxFk0 +

�
F

(k)
L

+ F
(k)
L0

�
� rpFk0 +rp �

�
�F
(k)
R
Fk0

�
=

= �rp �
DeF(k)

R
�k(s)�fk0

E
; (4.2)

@�fk0

@s
= �rp �

�eF(k)
R
�k(s)Fk0

�
+O(�fk0); (4.3)

where �F
(k)
R

and eF(k)
R

denote the deterministic and the stochastic parts of the radiation fric-

tion force F
(k)
R

respectively. Moreover, the force F
(k)
L0 should be calculated now with the

distribution function Fk0. Equation (4.3) has a trivial solution

�fk0(s) = �rp �
1Z
0

d� eF(k)
R
(s� �)�k(s� �)Fk0(s� �); (4.4)

which is substituted into equation (4.2) yielding the Fokker-Planck equation:

@Fk0

@s
+ p � rxFk0 +

�
F

(k)
L

+ F
(k)
L0

�
� rpFk0 +rp �

�
�F
(k)
R
Fk0

�
=

= rp �
h eF(k)

R
rp �

�eF(k)
R
Fk0

�i
: (4.5)

In order to carry out the �f method e�ectively, it is important to �nd an equilibrium

solution of f0 (or very slowly varying solution) so that the evolution of �f is separate in time

scale from that of f0. In the following we discuss the equation and the solution of the f0
distribution.

For the sake of simplicity, in what follows bellow in this Section, we consider one dimen-

sion only (say x), since the results can be easily generalized to the multidimensional case,
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provided the x-z coupling is neglected. Let us write down the Fokker-Planck equation (4.5)

in the simpli�ed form:

@Fk0

@s
+ p

@Fk0

@x
� Fk(s)x

@Fk0

@p
= �k

@

@p
(pFk0) +Dk

@2Fk0

@p2
; (4.6)

where

�k =
pk0C1
2�R

2�RZ
0

dsjBk(s)j2 ; Dk =
p2
k0C2
4�R

2�RZ
0

dsjBk(s)j3
D
p2
kx
(s)
E
; (4.7)

Fk(s) =
G(k)
x
(s)

R2
+ �k�p(s)A

(k)
x
(s) ; A(k)

x
(s)x =

@Vk

@x

�����
linear part

: (4.8)

Let us seek for a solution of the Fokker-Planck equation (4.6) in the general form:

Fk0(x; p; s) = ak(s) exp

"
�
e
k(s)x2 + 2e�k(s)xp+ e�k(s)p2

2�
(k)
x0

#
; (4.9)

where �
(k)
x0 is a scaling factor with dimensionality and meaning of emittance. Direct substi-

tution of (4.9) into (4.6) and equating similar powers (up to second order) in x and p yield

the following equations for the unknown coe�cients:

dak

ds
= �kak

 
1�

e�k
�
(eq)
k

!
; (4.10)

de�k
ds

= Fk
e�k � e
k + �k e�k

 
1� 2 e�k

�
(eq)
k

!
; (4.11)

d e�k
ds

= �2e�k + 2�k
e�k
 
1�

e�k
�
(eq)
k

!
; (4.12)

de
k
ds

= 2Fk e�k � 2�k
e�2
k

�
(eq)
k

; (4.13)

where
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�
(eq)
k

=
�k�

(k)
x0

Dk

(4.14)

is the equilibrium �-function.

It is important to note that when the damping vanishes (�k = 0) the above equations are

exactly the same as the well-known di�erential equations for the Courant-Snyder parameters.

In this sense the functions e�k, e�k and e
k can be regarded as a generalization of the Courant-

Snyder parameters in the case when radiation damping and quantum excitation are present.

The well-known quantity

eIk = det

 e
k e�ke�k e�k
!
= e�ke
k � e�2

k
(4.15)

is no longer invariant. It is easy to check that its dynamics is governed by the equation

deIk
ds

= 2�k
eIk
 
1�

e�k
�
(eq)
k

!
: (4.16)

Comparison between equations (4.10) and (4.16) shows that

ak(s) = Ck0

qeIk(s) (4.17)

with Ck0 an arbitrary constant as it should be. Therefore the solution (4.9) takes its �nal

form

Fk0(x; p; s) =

qeIk(s)
2��

(k)
x0

exp

"
�
e
k(s)x2 + 2e�k(s)xp+ e�k(s)p2

2�
(k)
x0

#
; (4.18)

Let us de�ne now the dimensionless envelope function �k according to the relations

�k =

p
�ke

ak
; �ke =

e�k
�
(eq)
k

: (4.19)

Manipulating equations (4.11), (4.12) and (4.13) for the generalized Courant-Snyder param-

eters one can eliminate e�k and e
k and obtain a single equation for the envelope �k, which

combined with equation (4.10) comprises a complete set:

d2�k

ds2
+ �k

d�k

ds
+ Fk�k =

1

�
(eq)2
k

a2
k
�3
k

; (4.20)
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dak

ds
= �kak

�
1� a2

k
�2
k

�
: (4.21)

By solving equations (4.20) and (4.21) one can obtain a complete information about the

evolution of the Fk0 part of the distribution function. However, solving the above system

of equations for the beam envelopes and amplitudes of the distributions is not an easy task.

For that purpose we develop in the next Section a numerical scheme which is more suited

for direct code implementation.

5 Numerical Algorithm

In the previous Sections, we have established the theoretical foundation of the nonlinear �f

method for the beam-beam interaction. In this Section we will apply those results to outline

numerical algorithms suitable for computer simulation.

Starting with Eq. (3.4), because the forces in the equation both from lattice and the

on-coming beam are linear, its solution is well known Gaussian distribution (for example as

shown in the previous Section in the one-dimensional case)

Fk0(z; s) =
1h

2� det
�b�k

�i 3
2

exp

�
�1

2
zT � b��1

k
� z
�
; (5.1)

where b�k is the matrix of the second moments for the distribution and z is a vector in the six-

dimensional phase space. Based on the method of the beam-envelope [14], the propagation

of Fk0 can be represented as the iteration of the b�k matrix,

b�(i+1)
k

= cMk � b�(i)
k
� cMT

k
+ cDk; (5.2)

where cMk is the one-turn matrix including the linear beam-beam force of the on-coming

beam, and the radiation damping and cDk is the one-turn quantum di�usion matrix. BothcMk and
cDk can be extracted from the lattice using for example the LEGO code [15], [16].

However, there is a di�erence compared to the situation of a single storage ring, namely,

we have to simultaneously iterate the Gaussian distribution for both beams, since the linear

map cMk depends on the beam size of the other beam.

Combining Eqs. (3.1) and (3.7), the perturbative part of the beam distribution �fk has

a representation in terms of macro-particles

�fk(x;p; s) =
1

Nk

NkX
n=1

W
(n)
k

(s)�
h
x� x(k)

n
(s)
i
�
h
p� p(k)

n
(s)
i
; (5.3)

where W
(n)
k

(s) is the dynamical weight of the n-th particle from the k-th beam.

As a part of the solution for Eq. (3.9), the propagation of the particle coordinates in

phase space is the same as the conventional PIC code [8] provided that the beam-beam force

is the sum of the two parts from both Fk0 and �fk.
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For the Fk0 part, we can apply the well known Erskine-Bassetti formula [17] for a Gaus-

sian beam. The force due to the �fk is obtained by solving the two-dimensional Poisson

equation. In addition to the change of the coordinate, the weight of the particle should be

propagated according to Eq. (3.11). The weight should be updated after the change of the

coordinate since the change of the weight depends on the trajectory of the particle.

6 Summary

We have developed an e�cacious algorithm for simulating the beam-beam interaction in a

synchrotron collider with (or without) synchrotron radiation. The nonlinear �f method has

been introduced into the evolutionary description of subtle changes of the counter stream-

ing distribution of the colliding beams over many revolutions. The overall equation that

describes this evolution is the Fokker-Planck equation (with the radiative process and quan-

tum 
uctuations). In order to isolate the �f distribution from the average distribution, we

analyze the solution of the Fokker-Planck equation. Obtained is a form of solution in which

the time dependence is parameterized through a slow evolution (slow compared with the

changes in the �f distribution due to the individual beam-beam interaction) in the Courant-

Snyder parameters and the emittance of the beam. This algorithm will enhance the analysis

capability to scrutinize greater details and subtle e�ects in the beam-beam interaction than

the PIC version which has been widely deployed [8].

The current algorithm as well as the previous one [8] have been developed with an

immediate application to the PEP-II B-factory collider. The code [8] has already been

applied to describe the beam-beam interaction in the PEP-II with unprecedented accuracy

and reproduction faithfulness, and will be su�cient to study the overall dynamics such as

the analysis of resonance instabilities and associated luminosity functions. It is anticipated,

however, that the numerical noise associated with the PIC will require either an inordinate

amount of macro-particle deployment or a level of noise high enough to mask some minute

phase space structure that may manifest in subtle but important long-time evolution of the

beam such as particle di�usion. It is here that the current algorithm will cope with the

problem.
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