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Abstract

Exclusive two-photon reactions such as Compton scattering at large angles, deeply

virtual Compton scattering, and hadron production in photon-photon collisions pro-

vide important tests of QCD at the amplitude level, particularly as measures of hadron

distribution amplitudes and skewed parton distributions.
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1 Introduction

A central focus of study in QCD are the wavefunctions which describe hadrons in

terms of their quark and gluon degrees of freedom at the amplitude level. Of particular

interest are the gauge- and process-independent meson and baryon valence-quark

distribution amplitudes �M(x;Q), and �B(xi; Q) which control exclusive processes

involving a hard scale Q; for example, meson distribution amplitudes play a key role

in the analysis of exclusive semi-leptonic and two-body hadronic B-decays[1, 2, 3,

4, 5, 6]. There has recently been considerable progress both in calculating hadron

wavefunctions from �rst principles in QCD and in measuring them using di�ractive

di-jet dissociation.

Two-photon processes such as � ! hadrons, Compton scattering p ! p

at large momentum transfer, and  ! hadron pairs at high momentum transfer

and �xed �cm, can play a crucial role in understanding the perturbative and non-

perturbative structure of QCD, �rst by testing the validity and empirical applica-

bility of leading-twist factorization theorems, second by verifying the structure of

the underlying perturbative QCD subprocesses, and third, through measurements of

angular distributions and ratios which are sensitive to the shape of the distribution

amplitudes. In e�ect, Compton scattering and photon-photon collisions are micro-

scopes for testing fundamental scaling laws of PQCD and for measuring distribution

amplitudes. In addition, as I shall discuss in the next section, deeply virtual Compton

scattering �p ! p for far o�-shell initial photons has emerged as one of the most

important and interesting exclusive QCD reactions.

2 Deeply Virtual Compton Scattering

The virtual Compton scattering amplitude d�
dt
(�p ! p) has extraordinary sensi-

tivity to fundamental features of proton structure[7, 8, 9, 10, 11, 12, 13, 14]. Even

though the �nal state photon is on-shell, the deeply virtual Compton process probes

the elementary quark structure of the proton near the light cone as an e�ective local

current. In contrast to deep inelastic scattering, which measures only the absorp-

tive part of the t = 0 forward virtual Compton amplitude, deeply virtual Compton

scattering allows the measurement of the phase and spin structure of proton ma-

trix elements for general momentum transfer t. The scaling, Regge behavior, and

phase structure of deeply virtual Compton scattering have been discussed in the con-

text of the covariant parton model in Ref. [15]. The interference of Compton and
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bremsstrahlung amplitudes gives an electron-positron asymmetry in the e�p! e�p

cross section which is proportional to the real part of the Compton amplitude[15].

To leading order in 1=Q, the deeply virtual Compton scattering amplitude factor-

izes as the convolution in x of the amplitude t�� for hard Compton scattering on a

quark line with the generalized Compton form factors H(x; t; �); E(x; t; �), ~H(x; t; �);

and ~E(x; t; �) of the target proton. Here x is the light-cone momentum fraction of the

struck quark, and � = Q2=2P �q plays the role of the Bjorken variable. The form factor

H(x; t; �) describes the proton response when the helicity of the proton is unchanged,

and E(x; t; �) is for the case when the proton helicity is ipped. Two additional

functions ~H(x; t; �); and ~E(x; t; �) appear, corresponding to the dependence of the

Compton amplitude on quark helicity. These \skewed" parton distributions involve

non-zero momentum transfer, so that a probabalistic interpretation is not possible.

However, there are remarkable sum rules connecting the chiral-conserving and chiral-

ip form factors H(x; t; �) and E(x; t; �) with the corresponding spin-conserving and

spin-ip electromagnetic form factors F1(t) and F2(t) and gravitational form factors

Aq(t) and Bq(t) for each quark and anti-quark constituent[7]. Thus deeply virtual

Compton scattering is related to the quark contribution to the form factors of a proton

scattering in a gravitational �eld.

One can construct space-like electromagnetic, electroweak, gravitational couplings,

or any local operator product matrix element from the diagonal overlap of the LC

wavefunctions [16]. In the case of the generalized form factors of deeply virtual Comp-

ton scattering, the computation[17, 18] requires not only the diagonal matrix element

n ! n for � < x < 1, where parton number is conserved, but also an o�-diagonal

n + 1 ! n � 1 convolution for 0 < x < �. This second domain occurs since the

current operator of the �nal-state photon with positive light-cone momentum frac-

tion � can annihilate a qq0 pair in the initial proton wavefunction. The o�-diagonal

terms are referred to in the literature as the \ERBL" contributions, since they re-

semble virtual Compton scattering on an exchanged mesonic system �qq0 !  and

thus obey the same evolution equations in log q2 as the meson distribution ampli-

tudes [19, 20, 21, 22]. In fact, the light cone Fock representation shows that there

are underlying relations between the Fock states of di�erent particle number which

interrelate the two domains.
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3 Non-Perturbative Calculations of the Pion Dis-

tribution Amplitude

The distribution amplitude �(x; eQ) can be computed from the integral over transverse

momenta of the renormalized hadron valence wavefunction in the light-cone gauge at

�xed light-cone time [23]:

�(x; eQ) =
Z
d2 ~k? �

0
@ eQ2 �

~k?
2

x(1� x)

1
A (eQ)(x; ~k?); (1)

where a global cuto� in invariant mass is identi�ed with the resolution ~Q. The distri-

bution amplitude �(x; ~Q) is boost and gauge invariant and evolves in ln ~Q through an

evolution equation[24, 19, 21]. Since it is formed from the same product of operators

as the non-singlet structure function, the anomalous dimensions controlling �(x;Q)

dependence in the ultraviolet logQ scale are the same as those which appear in the

DGLAP evolution of structure functions[25]. The decay � ! �� normalizes the wave

function at the origin: a0=6 =
R 1
0 dx�(x;Q) = f�=(2

p
3): One can also compute the

distribution amplitude from the gauge invariant Bethe-Salpeter wavefunction at equal

light-cone time. This also allows contact with both QCD sum rules[26] and lattice

gauge theory; for example, moments of the pion distribution amplitudes have been

computed in lattice gauge theory [27, 28, 29]. Conformal symmetry can be used as

a template to organize the renormalization scales and evolution of QCD predictions

[25, 30]. For example, Braun and collaborators have shown how one can use conformal

symmetry to classify the eigensolutions of the baryon distribution amplitude[31].

Dalley[32] has recently calculated the pion distribution amplitude from QCD us-

ing a combination of the discretized light-cone quantization[33] method for the x�

and x+ light-cone coordinates with the transverse lattice method [34, 35] in the trans-

verse directions, A �nite lattice spacing a can be used by choosing the parameters

of the e�ective theory in a region of renormalization group stability to respect the

required gauge, Poincar�e, chiral, and continuum symmetries. The overall normaliza-

tion gives f� = 101 MeV compared with the experimental value of 93 MeV. Figure 1

(a) compares the resulting DLCQ/transverse lattice pion wavefunction with the best

�t to the di�ractive di-jet data (see the next section) after corrections for hadroniza-

tion and experimental acceptance [36]. The theoretical curve is somewhat broader

than the experimental result. However, there are experimental uncertainties from

hadronization and theoretical errors introduced from �nite DLCQ resolution, using

a nearly massless pion, ambiguities in setting the factorization scale Q2, as well as
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errors in the evolution of the distribution amplitude from 1 to 10 GeV2. Instanton

models also predict a pion distribution amplitude close to the asymptotic form[37].

In contrast, recent lattice results from Del Debbio et al.[29] predict a much nar-

rower shape for the pion distribution amplitude than the distribution predicted by

the transverse lattice. A new result for the proton distribution amplitude treating

nucleons as chiral solitons has recently been derived by Diakonov and Petrov[38].

Dyson-Schwinger models[39] of hadronic Bethe-Salpeter wavefunctions can also be

used to predict light-cone wavefunctions and hadron distribution amplitudes by in-

tegrating over the relative k� momentum. There is also the possibility of deriving

Bethe-Salpeter wavefunctions within light-cone gauge quantized QCD[40] in order to

properly match to the light-cone gauge Fock state decomposition.
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Figure 1: (a) Preliminary transverse lattice results for the pion distribution amplitude

at Q2 � 10GeV2. The solid curve is the theoretical prediction from the combined

DLCQ/transverse lattice method[32]; the chain line is the experimental result ob-

tained from jet di�ractive dissociation[36]. Both are normalized to the same area

for comparison. (b) Scaling of the transition photon to pion transition form factor

Q2F�0(Q
2). The dotted and solid theoretical curves are the perturbative QCD pre-

diction at leading and next-to-leading order, respectively, assuming the asymptotic

pion distribution The data are from the CLEO collaboration[41].
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4 Measurements of the Pion Distribution Ampli-

tude by Di-jet Di�ractive Dissociation

The shape of hadron distribution amplitudes can be measured in the di�ractive dis-

sociation of high energy hadrons into jets on a nucleus. For example, consider the

reaction[42, 43, 44] �A ! Jet1 + Jet2 + A0 at high energy where the nucleus A0 is

left intact in its ground state. The transverse momenta of the jets balance so that

~k?i + ~k?2 = ~q? < R�1A : The light-cone longitudinal momentum fractions also need

to add to x1 + x2 � 1 so that �pL < R�1A . The process can then occur coherently in

the nucleus. Because of color transparency and the long coherence length, a valence

qq uctuation of the pion with small impact separation will penetrate the nucleus

with minimal interactions, di�racting into jet pairs[42]. The x1 = x, x2 = 1 � x

dependence of the di-jet distributions will thus reect the shape of the pion valence

light-cone wavefunction in x; similarly, the ~k?1 � ~k?2 relative transverse momenta of

the jets gives key information on the second derivative of the underlying shape of the

valence pion wavefunction[43, 44, 45]. The di�ractive nuclear amplitude extrapolated

to t = 0 should be linear in nuclear number A if color transparency is correct. The

integrated di�ractive rate should then scale as A2=R2
A � A4=3.

The E791 collaboration at Fermilab has recently measured the di�ractive di-jet

dissociation of 500 GeV incident pions on nuclear targets[36]. The results are consis-

tent with color transparency, and the momentum partition of the jets conforms closely

with the shape of the asymptotic distribution amplitude, �asympt
� (x) =

p
3f�x(1� x),

corresponding to the leading anomalous dimension solution[19, 21] to the perturbative

QCD evolution equation.

5 The Photon-to-Pion Transition Form Factor and

the Pion Distribution Amplitude

The simplest and perhaps most elegant illustration of an exclusive reaction in QCD is

the evaluation of the photon-to-pion transition form factor F!�(Q
2) which is measur-

able in single-tagged two-photon ee! ee�0 reactions. The form factor is de�ned via

the invariant amplitude �� = �ie2F�(Q2)�����p�� ��q� : As in inclusive reactions, one

must specify a factorization scheme which divides the integration regions of the loop

integrals into hard and soft momenta, compared to the resolution scale ~Q. At leading

twist, the transition form factor then factorizes as a convolution of the � ! qq
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amplitude (where the quarks are collinear with the �nal state pion) with the valence

light-cone wavefunction of the pion:

FM (Q2) =
4p
3

Z 1

0
dx�M(x; ~Q)TH

!M(x;Q2): (2)

The hard scattering amplitude for � ! qq is TH
M(x;Q2) = [(1� x)Q2]�1 (1 +O(�s)) :

The leading QCD corrections have been computed by Braaten [46]. The evaluation

of the next-to-leading corrections in the physical �V scheme is given in Ref. [47].

For the asymptotic distribution amplitude �asympt
� (x) =

p
3f�x(1 � x) one predicts

Q2F�(Q
2) = 2f�

�
1� 5

3

�V (Q�)

�

�
where Q� = e�3=2Q is the BLM scale for the pion

form factor. The PQCD predictions have been tested in measurements of e ! e�0

by the CLEO collaboration[41]. See Fig. 1 (b). The at scaling of the Q2F�(Q
2) data

from Q2 = 2 to Q2 = 8 GeV2 provides an important con�rmation of the applicability

of leading twist QCD to this process. The magnitude of Q2F�(Q
2) is remarkably

consistent with the predicted form, assuming the asymptotic distribution amplitude

and including the LO QCD radiative correction with �V (e
�3=2Q)=� ' 0:12. One

could allow for some broadening of the distribution amplitude with a corresponding

increase in the value of �V at small scales. Radyushkin [48], Ong [49] and Kroll [50]

have also noted that the scaling and normalization of the photon-to-pion transition

form factor tends to favor the asymptotic form for the pion distribution amplitude

and rules out broader distributions such as the two-humped form suggested by QCD

sum rules [51].

The two-photon annihilation process � ! hadrons, which is measurable in

single-tagged e+e� ! e+e�hadrons events, provides a semi-local probe of C = +

hadron systems �0; �0; �0; �c; �
+��, etc. The � ! �+�� hadron pair process is

related to virtual Compton scattering on a pion target by crossing. The leading twist

amplitude is sensitive to the 1=x � 1=(1 � x) moment of the two-pion distribution

amplitude coupled to two valence quarks[52, 53].

6 Exclusive Two-Photon Annihilation into Hadron

Pairs

Two-photon reactions,  ! HH at large s = (k1 + k2)
2 and �xed �cm, provide a

particularly important laboratory for testing QCD since these cross-channel \Comp-

ton" processes are the simplest calculable large-angle exclusive hadronic scattering

reactions. The helicity structure, and often even the absolute normalization can be
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rigorously computed for each two-photon channel[54]. In the case of meson pairs,

dimensional counting predicts that for large s, s4d�=dt( ! MM scales at �xed

t=s or �c:m: up to factors of ln s=�2. The angular dependence of the  ! HH

amplitudes can be used to determine the shape of the process-independent distribu-

tion amplitudes, �H(x;Q). An important feature of the  ! MM amplitude for

meson pairs is that the contributions of Landsho� pitch singularities are power-law

suppressed at the Born level { even before taking into account Sudakov form factor

suppression. There are also no anomalous contributions from the x ! 1 endpoint

integration region. Thus, as in the calculation of the meson form factors, each �xed-

angle helicity amplitude can be written to leading order in 1=Q in the factorized form

[Q2 = p2T = tu=s; ~Qx = min(xQ; (l � x)Q)]:

M!MM =

Z 1

0

dx

Z 1

0

dy�M(y; ~Qy)TH(x; y; s; �c:m:�M(x; ~Qx); (3)

where TH is the hard-scattering amplitude  ! (qq)(qq) for the production of the

valence quarks collinear with each meson, and �M(x; ~Q) is the amplitude for �nding

the valence q and q with light-cone fractions of the meson's momentum, integrated

over transverse momenta k? < ~Q: The contribution of non-valence Fock states are

power-law suppressed. Furthermore, the helicity-selection rules[55] of perturbative

QCD predict that vector mesons are produced with opposite helicities to leading

order in 1=Q and all orders in �s. The dependence in x and y of several terms in T�;�0

is quite similar to that appearing in the meson's electromagnetic form factor. Thus

much of the dependence on �M(x;Q) can be eliminated by expressing it in terms

of the meson form factor. In fact, the ratio of the  ! �+�� and e+e� ! �+��

amplitudes at large s and �xed �CM is nearly insensitive to the running coupling and

the shape of the pion distribution amplitude:

d�
dt
( ! �+��)

d�
dt
( ! �+��)

� 4jF�(s)j2
1� cos2 �c:m:

: (4)

The comparison of the PQCD prediction for the sum of �+�� plus K+K� channels

with recent CLEO data[56] is shown in Fig. 2. The CLEO data for charged pion and

kaon pairs show a clear transition to the scaling and angular distribution predicted

by PQCD[54] for W =
q
(s > 2 GeV. It is clearly important to measure the

magnitude and angular dependence of the two-photon production of neutral pions

and �+�� cross sections in view of the strong sensitivity of these channels to the

shape of meson distribution amplitudes. QCD also predicts that the production cross

section for charged �-pairs (with any helicity) is much larger that for that of neutral
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� pairs, particularly at large �c:m: angles. Similar predictions are possible for other

helicity-zero mesons.
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Figure 2: Comparison of the sum of  ! �+�� and  ! K+K� meson pair

production cross sections with the scaling and angular distribution of the perturbative

QCD prediction[54]. The data are from the CLEO collaboration[56].

Baryon pair production in two-photon annihilation is also an important testing

ground for QCD. The only available data is the cross channel reaction, p ! p.

The calculation of TH for Compton scattering requires the evaluation of 368 helicity-

conserving tree diagrams which contribute to (qqq) ! 0(qqq)0 at the Born level

and a careful integration over singular intermediate energy denominators [57, 58, 9].

Brooks and Dixon[59] have recently completed a recalculation of the Compton pro-

cess at leading order in PQCD, extending and correcting earlier work. It is use-

ful to consider the ratio s6d�=dt(p! p)=t4F 2
1 (ep! ep) where F1(t) is the elastic

helicity-conserving Dirac form factor since the power-law fall-o�, the normalization

of the valence wavefunctions, and much of the uncertainty from the scale of the QCD

coupling cancel. The scaling and angular dependence of this ratio is sensitive to

the shape of the proton distribution amplitudes and appears to be consistent with

the distribution amplitudes motivated by QCD sum rules. The normalization of the

ratio at leading order is not predicted correctly by perturbative QCD. However, it

is conceivable that the QCD loop corrections to the hard scattering amplitude are

9



signi�cantly larger than those of the elastic form factors in view of the much greater

number of Feynman diagrams contributing to the Compton amplitude relative to the

proton form factor. The perturbative QCD predictions for the phase of the Compton

amplitude phase can be tested in virtual Compton scattering by interference with

Bethe-Heitler processes[60].

A debate has continued[61, 62, 63, 64] on whether processes such as the pion and

proton form factors and elastic Compton scattering p! p might be dominated by

higher-twist mechanisms until very large momentum transfer. If one assumes that

the light-cone wavefunction of the pion has the form  soft(x; k?) = A exp(�b k2
?

x(1�x)
),

then the Feynman endpoint contribution to the overlap integral at small k? and

x ' 1 will dominate the form factor compared to the hard-scattering contribution

until very large Q2. However, this ansatz for  soft(x; k?) has no suppression at k? = 0

for any x; i.e., the wavefunction in the hadron rest frame does not fall-o� at all for

k? = 0 and kz ! �1. Thus such wavefunctions do not represent well soft QCD

contributions. Endpoint contributions are also suppressed by the QCD Sudakov form

factor, reecting the fact that a near-on-shell quark must radiate if it absorbs large

momentum. One can show [21] that the leading power dependence of the two-particle

light-cone Fock wavefunction in the endpoint region is 1�x, giving a meson structure

function which falls as (1� x)2 and thus by duality a non-leading contribution to the

meson form factor F (Q2) / 1=Q3. Thus the dominant contribution to meson form

factors comes from the hard-scattering regime. Radyushkin [62] has argued that

the Compton amplitude is dominated by soft end-point contributions of the proton

wavefunctions where the two photons both interact on a quark line carrying nearly all

of the proton's momentum. This description appears to agree with the Compton data

at least at forward angles where�t < 10 GeV2. From this viewpoint, the dominance of

the factorizable PQCD leading twist contributions requires momentum transfers much

higher than those currently available. However, the endpoint model cannot explain

the empirical success of the perturbative QCD scaling s7d�=dt(p ! �+n) � const

at relatively low momentum transfer in pion photoproduction [65].

7 Conclusions

The leading-twist QCD predictions for exclusive two-photon processes such as the

photon-to-pion transition form factor and  ! hadron pairs are based on rigorous

factorization theorems. The recent data from the CLEO collaboration on F�(Q
2)
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and the sum of  ! �+�� and  ! K+K� channels are in excellent agreement

with the QCD predictions. It is particularly compelling to see a transition in angu-

lar dependence between the low energy chiral and PQCD regimes. The success of

leading-twist perturbative QCD scaling for exclusive processes at presently experi-

mentally accessible momentum transfer can be understood if the e�ective coupling

�V (Q
�) is approximately constant at the relatively small scales Q� relevant to the hard

scattering amplitudes[47]. The evolution of the quark distribution amplitudes in the

low-Q� domain at also needs to be minimal. Sudakov suppression of the endpoint con-

tributions is also strengthened if the coupling is frozen because of the exponentiation

of a double logarithmic series.

One of the formidable challenges in QCD is the calculation of non-perturbative

wavefunctions of hadrons from �rst principles. The recent calculation of the pion

distribution amplitude by Dalley[32] using light-cone and transverse lattice methods

is particularly encouraging. The predicted form of ��(x;Q) is somewhat broader than

but not inconsistent with the asymptotic form favored by the measured normalization

of Q2F�0(Q
2) and the pion wavefunction inferred from di�ractive di-jet production.

Clearly much more experimental input on hadron wavefunctions is needed, partic-

ularly from measurements of two-photon exclusive reactions into meson and baryon

pairs at the high luminosity B factories. For example, the ratio

d�

dt
( ! �0�0)=

d�

dt
( ! �+��)

is particularly sensitive to the shape of pion distribution amplitude. Baryon pair

production in two-photon reactions at threshold may reveal physics associated with

the soliton structure of baryons in QCD[66]. In addition, �xed target experiments

can provide much more information on fundamental QCD processes such as deeply

virtual Compton scattering and large angle Compton scattering.
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