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1 Abstract

Quantum theory of the optical stochastic cooling [1] is presented. Consid-

eration follows the evolution of the density matrix of a bunch of particles

interacting with radiation in the undulators and quantum ampli�er.

2 Introduction

Optical stochastic cooling was proposed recently [1],[2]. In the method, ra-

diation is generated by a particle in a (pickup) undulator and, after ampli�-

cation in the optical ampli�er, is send to another undulator (kicker). In the

kicker, ampli�ed wave of radiation interacts with the same particle providing

desirable cooling. The phase shift of the o�-momentum partilce in respect

with the wave is controlled in a dispersion section between two undulators.

E�ect of radiation of a given particle on other particles in the beam leads to

di�usion and limits the damping rate. In this respect, optical stochastic cool-

ing is not di�erent from the rf stochastic cooling. In the later [3], interaction

of particles changes momentum of the j-th particle

�pj = pj � �pj � �
X
i6=j

pi; (1)

where � is parameter of interaction between particles proportional to the

electronic gain of the ampli�er. The rms value �2 = (1=Nb)
P
j[< (pj)

2 >

� < pj >
2] for initially uncorrelated particles changes to ��2 = �2[1� 2� +

Ns�
2], where Ns is number of particles interacting through the ampli�er

(number of particles per "slice"). The maximum cooling rate ( ��2��2)=�2 =

��, and is achieved for � = 1=Ns. The number of particles per slice Ns =

NBc=(�
0
B�f), where �

0
B is the bunch length in the laboratory frame, NB

is number of particles per bunch, and �f is the (full) bandwidth of the

ampli�er.

In the case of the optical stochastic cooling, the bandwidth �f ' 20(c=Lu)

where Lu = Nu�u is the undulator length and 0 is relativistic factor of the

beam in the laboratory frame. Large �f is advantage of the optical stochastic

cooling allowing fast cooling. Parameters of the undulator has to be chosen

to match the undulator mode to the central frequency and bandwidth �f

of the ampli�er. For the typical solid state Ti:Sapphire ampli�er (� = 0:8�,

�f=f ' 1=5). Given bandwidth, the fast cooling (for example, for the muon

collider) can be achieved reducing Ns. However, with small number of par-

ticles per slice, classical and quantum uctuations could be dangerous. This

is the primary motivation of the study we present here. Related problem

might be ampli�cation of the noise induced by interaction of particles in the

undulator and by the noise of the ampli�er.
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In our consideration we follow evolution of the density matrix of the sys-

tem (bunch plus radiated mode) through the undulators and quantum am-

pli�er. Dynamics in the undulators is described in the next section as 1D dy-

namics in the rest frame of a bunch as it is outlined by Dattoli-Renieri [4], [5]

where other references can be found. The formalism we use to describe radi-

ation of the beam in the undulators reproduces results but is di�erent from

Becker and McIver [6] formalism and has been described elsewhere [7]. In this

formalism as well as in the Becker-McIver's formalism, number of particles

per bunch Ns can be arbitrary, but e�ect of bunching is neglected. In this

sense the interaction of particles with radiation is weak. This assumption

substantially simpli�es consideration being quite adequate for describing op-

tical stochastic cooling. Evolution of the density matrix in quantum ampli�er

follows our previous note [8]. The theory of quantum ampli�er includes the

non-diagonal components of the matrix. In the following sections we describe

radiation in the kicker in the same way as it was done for the pickup, and

then combine results of the previous sections to get moments of the �nal

distribution function. All phase relations are retained through the whole

system. In conclusion, we compare the �nal result for the rms energy spread

with the classical theory.

3 Pickup

We assume that, at the entrance to the pickup, there are NB relativistic

particles, there is no initial z; p correlation, and correlations generated in

one pass are wiped out in one turn. The pickup (and the kicker) undulators

are helical with the undulator parameter K0 and period �u = 2�=ku. The

bunch dynamics is considered in the Bambini-Renieri frame moving with

the relativistic factor  = 0=
q
1 +K2

0 , where the bunch centroid initially

has zero velocity, and the resonance frequency of the mode is k = ku.

At entrance to the pickup, each particle is described by the density matrix

�0(pi; zi), i = 1; 2::Nb. �0 is the wave packet localized at the point (z0i ; p
0
i ) in

the space phase,

�0(p0; p) =
h
p
2�

L�
e�

i
h
(p0�p)z0�

1
2
(�
h
)2(p0�p)2� 1

2
( 1
�
)2( p+p

0

2
�p0)2 ; (2)

where � and � are the rms values of the wave packet which may be small

compared to the rms energy spread �B and rms length �B of a bunch, and L

is normalization length. The density matrix of the whole bunch �̂ = �NB
i=1jp0 >

�0(p0i; pi) < pj.
In the moving frame, interaction of particles with the mode k = !=c is

described by the Hamiltonian

H =
NBX
i=1

p̂2i
2m

+ h!(a+a+ 1=2)� ihg[ae2ikẑ+i!t � cc]; (3)
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where m = me

q
1 +K2

0 .

If the vector-potential of the radiation is normalized to one photon per

volume V [6], [7]

~A =

s
2�hc2

V !
~y[âeikẑ + cc]; j~yj = 1; (4)

then parameter of interaction gk = c K0p
1+K2

0

q
e2

hc
2�
kV
. However, we consider

1D model where beam interacts with a single radiated mode. In this case,

operator a, a+ are operators changing number of coherent photons in the

mode, and the vector potential Eq. (4) has to be normalized to the phase

volume 
 of the mode.

In the laboratory frame [11], 
 = (V=(2�)3)(�k3=N2
u). The later is de-

�ned in the laboratory frame by the constrain j2�Nu� j <= � on the phase

slippage  = j!t � kzzj along the undulator, and requirement that the fre-

quency spread j(! � !r)=!rj < 1=(2Nu), where !r is resonance frequency of

radiation at zero angle. Result in the moving frame follows from relativistic

invariance of d3k=!.

The normalized vector potential is obtained by multiplying Eq.(4) byp

. Parameter of interaction with the mode is then g = gk

p

 and, using

time of the interaction in the moving frame t = 2�Nu=(ck), we get gt =

(K0=
q
1 +K2

0)
q
�e2=hc, i.e. (gt)2 of the order of �0 = e2=hc.

Interaction of particles with the mode described by Hamiltonina Eq.

(3) is just back-scattering of equivalent photons. Initial state jpi; n >=

jp1; p2; ::; pNB ; n > of the system with n-photons and particles with mo-

mentums pi, i = 1::NB is transformed by the interaction with the mode

k = !=c = ku to the vector

j	(t) >=
X
li;pi

jpi�2hkli; n+l� >
s

n!

(n+ l�)!
Fn(t; pi; li)e

�i!t(n+l�)�(it=h)
P

i
E(pi;li);

(5)

where E(pi; li) = (pi � 2hkli)
2=(2me), and l� =

P
i li is the total number of

radiated photons. Function Fn(t) is given [7] by

Fn(t; p; l) =
Z 1

0
d�
�n

n!
e��Ô��f�NB

i=1(
�ai

�a�i
)li=2Jli(2gjaij

p
��)gj�=1; (6)

where we neglected a small phase factor. Here Jl is Bessel function, operator

Ô�� = e�(1=2)
@2

@�@� , and

ai(t) =
sin(�it=2)

(�i=2)
e�i�it=2; _ai(t) = e�i�it; �i =

2kpi

me

: (7)

As the main simpli�cation [4] of the theory, terms of the order of hk2=me

in Eq. (4) are neglected. As a result, we loose e�ect of bunching due to
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radiation. However, this is suÆcient for our purpose. For short undulators,

kpt=me << 1, sin(�it=2)

(�i=2)
' t, and Fn depends on parameter gt, where t is time

of ight in the undulator (t = Nu�u=(c) in the moving frame), and g is

parameter de�ning coupling of a particle to radiation.

We assume that at the entrance to the pickup there is no radiation, n = 0.

In this case, initial density matrix �̂ = �NB
i=1jp0 > �0(p0i; pi) < pj is transformed

according to Eqs. (5), (6) (cp. with Eq. (37) of the reference [7]) to �̂(t) =

jq0; l0� > �(q0; q; l�; l
0
�) < q; l�, where

�(q0; q; l0�; l�) =
1q
l�!l

0
�!

Z
d d 0

(2�)2
e�i(l

0
�
 0�l� )ei!t(l��l

0
�
)
Z
d�d�0e����

0

Ô��Ô�0�0Floc(q
0; q):

(8)

Here jq > stands for the set jq1::qNB >, Floc(q0; q) = �NB
i=1F

i
loc,

F i
loc(q

0
i; qi) =

X
l;l0

f 0if
�
i �

0(q0i + 2hkl0i; qi + 2hkli)e
�i

((q0
i
)2�q2

i
)t

2meh ; (9)

where fi = f(qi; li;  ), f
0
i = f(q0i; l

0
i;  

0),

f(q; l;  ) = (
�a

�a�
)l=2Jl[2gja(t)j

p
��]eil : (10)

Integration over  ;  0 is introduced in Eq. (8) to separate the global param-

eters l�, l
0
� of the radiation and particle parameters fqi; lig. It is convenient

to consider Fourier transform

F i
loc(p; z) =

Z
Ldq

2�h
eiqz=hF i

loc(p+ q=2; p� q=2): (11)

For a short undulator, parameter �it << 1. In this case, a(t) ' te�i�it=2.

Parameter (gt)2 has meaning of the average number of photons radiated in

the undulator per particle and is always small. This justi�es expansion of

fi in series over gt. Neglecting terms of the order of (gt)3, we write for the

i�th particle F i
loc(p; z) = F 0

i (p; z)(1 + gtF
(1)
i + (gt)2F

(2)
i ),

F
(1)
i = e�(1=2)(hk=�)2f��e

hk(p�p0)

�2 +i �2ik(z� pt
2me

) � �0e
hk(p�p0)

�2 �i 0+2ik(z� pt
2me

)

(12)

+�e�
hk(p�p0)

�2 �i +2ik(z� pt
2me

) + �0e�
hk(p�p0)

�2 +i 0�2ik(z� pt
2me

)g; (13)

where

F 0
i (p; z) =

h

��
e�

(p�p0)
2

2�2 �
(z�z0�pt=me)

2

2�2 : (14)

F (2) has a similar structure.

With the same accuracy,

Floc(p; z) = f�NB
i=1F

0
i (pi; zi)gegt�iF

(1)

i
+(gt)2�iF

corr
i ; (15)
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where F corr
i = F

(2)
i � (1=2)[F

(1)
i ]2. Eq. (15) takes into account all terms of

the order of Nbgt and Nb(gt)
2 neglecting terms Nb(gt)

3.

The sum f0 � gt
P
i F

0
i in Eq. (15) is de�ned by parameters

��(p; z) = gt
NBX
i=1

e�2ik(zi�
pit

2me
)�

hk(pi�p
0
i
)

�2 e�
1
2
(hk
�
)2 : (16)

This expression has to be averaged over frequency spread in the mode around
�k = ku:

��(p; z) = gt
NBX
i=1

e�2i
�k(zi�

pit

2me
)�

h�k(pi�p
0
i
)

�2 e�
1
2
(h

�k
�
)2si: (17)

where

si =
Z
dk

�
e�2i(k�

�k)(zi�pit=2me)
sin2(�Nu(k � �k)=�k)

(�Nu=�k)(k � �k)2
: (18)

Factor si restricts summation over particles within the length (length of a

"slice") / 2�Nu=(2�k) or, in the laboratory system, within ls = Nu�lab. Pa-

rameter Ns =<< ���
�
� >> =(gt)2 is the fundamental parameter of the

theory de�ning number of interacting particles within the bandwidth of the

mode (number of particles per slice). Here double averaging means averaging

with the density matrix of the wave packet Eq.(15) and within the Gaussian

bunch �B(z0; p0) = (1=2��B�B)e
�p20=2�

2
B
�z20=2�

2
B over z0; p0. If the width of

the packet � is of the order of the length of a slice and Nu >> 1, then
�k� >> 1, and

Ns =
X
i

Z
dx

�

sin2 x

x2
dy

�

sin2 y

y2
<< e�

2ik
�Nu

(x�y)(zi�
pit

2me
) >> : (19)

Neglecting terms of the order of h, we get

Ns = Nb

Nu

p
2�

3k�B
; (20)

where �B is rms bunch length in the moving frame and we use
R
(dx=�)(sinx=x)4 =

0:6666. In terms of the wave length of the mode and the bunch length in the

laboratory frame, Ns = NB(
Nu�L

3
p
2��0

B

).

In terms of averaged ��, Eq. (17),

f0( ;  
0) = ���+ei � �0��+e

�i 0 + ����e
�i + �0��e

i 0 : (21)

The second terms (gt)2�iF
corr
i in the exponent of Eq. (15) can be ex-

panded over h. Expansion starts with the term proportional to h2. It can be

split in two parts: one,

f (1)cor = �Ns(gt)
2(
hk

�
)2(�ei + �0ei 

0

)(�0e�i 
0

+ �e�i ); (22)
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which is proportional to the number of particles Ns, and f
(2)
cor, proportional

to the sum over oscillating factors. Introducing r� = �ie
�4ik(zi�pit=2me), we

can write

f (2)cor = �(gt)2

2
(
hk

�
)2[(�ei + �0ei 

0

)2r� + (�0e�i 
0

+ �e�i )2r+]: (23)

In these notations,

Floc(p; z) = f�NB
i=1F

0
i (pi; zi)gef0( ; 

0)+f
(1)
cor+f

(2)
cor : (24)

The �rst factor is the product of unperturbed single particle distribution

functions while exponent describes particle interaction. The last term, f (2)cor

is small. Eq. (15) can be simpli�ed writing ef
(2)
cor = (1 + f (2)cor) and replacing

�gt�0e�i 0 , gt�e�i , �gt�ei , and gt�0ei 0 by the derivatives over ��+, ���, �+,
and ��, respectively. The result is di�erential operator P̂ (��). The factor

ef
(1)
cor can be written as

ef
(1)
cor = Ô�;�e

��(�ei +�0ei 
0
)��(�0e�i 

0
+�e�i )j�=�=0; (25)

where Ô�;� = e��
2 @2

@�@� , and �2 = Ns(gt)
2(hk

�
)2. Then,

Floc(p; z) = f�NB
i=1F

0
i (pi; zi)g(1+P̂ )Ô�;�e

��(�++�)ei ��0(��++�)e
�i 0+�(�����)e

�i +�0(����)ei 
0

:

(26)

Now it is easy to calculate

Ô�;�Ô�0;�0e
��(�++�)ei +�(�����)e

�i ��0(��++�)e
�i 0+�0(����)ei 

0

j�=�0=1 (27)

= e(1=2)(�++�)(�����)+(1=2)(��++�)(����)e�(�++�)e
i +�(�����)e

�i �(��++�)e
�i 0+�0(����)ei 

0

:

(28)

Integration over  and  0 can be carried out using

Z
d 

2�
eil e�e

�i ��ei = (
�

�
)l=2Jl(2

p
��): (29)

After that, integrals over � and �0 are known [9]Z 1

0
d�e���l=2Jl(2

p
�a) = al=2e�a: (30)

The distribution function at the end of the pickup

�(p; z; l0�; l�) =
Z
Ldq

2�h
eiqz=h�(p+ q=2; p� q=2; l0�; l�); (31)

takes form

�(p; z; l0�; l�) =
1q
l�!l

0
�!
ei!t(l��l

0
�
)f�NB

i=1F
0
i (pi; zi)g(1 + P̂ )R(p; z); (32)
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where

R(p; z) = Ô�;�(�
�
� � �)l�(�� � �)l

0
�e�(1=2)(�

�
���)(�++�)�(1=2)(����)(�

�
++�): (33)

For small �2 << 1, and N = (l� + l0�)=2, � = (l� � l0�)=2,

R(p; z) = e�(1=2)(�
�
��++c:c:)(

��

���
)�j��j2N : (34)

Correction �2j��j2 is of the order of (Ns(gt)
2 hk
�
)2 and always negligible.

4 Optical Ampli�er and Dispersion Section

For small �, the density matrix at the end of the pickup takes form

�(p; z; l0�; l�) =
1q
l�!l

0
�!
f�NB

i=1F
0
i (pi; zi)g(1 + P̂ )R(p; z; N; �)ei!t(l��l

0
�
); (35)

where R = e�(1=2)(�
�
��++c:c:) ~R(p; z; N; �), and

~R(p; z; N; �) = (
���
��

)�j��j2N ; N =
l� + l0�

2
; � =

l� � l0�
2

: (36)

Now let us transform the density matrix �(p; z; l0�; l�) back to the momentum

representation, �(p + q=2; p � q=2) = f�i

R
(dzi=L)e

�i(q0�q)zig�( q
0
i+qi
2;zi

). The

result is

�̂ = jq0; l0� > �(q0q) < q; l�j; (37)

where

�(q0; q) =
1q
l�!l

0
�!
f�i

Z
dzi

L
F i(q0; q; z)g(1 + P̂ )R(

q0 + q

2
; z; N; �)e2i�!t; (38)

and

F i(q0; q; z) =
h

��
e�i(q

0�q)z=h� 1

2�2 (
q0+q
2

)2� 1

2�2
(z� q0+q

2me
t)2 : (39)

Note that �� are functions of the set of coordinates (zi;
q0i+qi
2

) of all par-

ticles.

The density matrix Eqs. (35), (36) at the exit of the pickup undulator

is the superposition of coherent states. Transformation of such a state in

the optical ampli�er can be obtained following the recipe formulated in our

previous note [8]. The Mellin transform ~RM(N; �) of ~R( q
0+q
2
; z; N; �),

~RM(�; �) =
Z i1

�i1

dN

2�i
��N ~R(

q0 + q

2
; z; N; �); (40)
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is proportional to Æ(� � �0),

~RM(�; �) = �0[
���
��

]�Æ(� � j��j2): (41)

Let us for simplicity consider two-level fully inverted ampli�er. In this

case, after the ampli�er, ~R( q
0+q
2
; z; N; �) should be replaced after the ampli�er

by (see [8], Eq. (22)) by Fampl,

Fampl(N; �) = (N � j�j)! 1
G
[
���
��

]�[
�����

G� 1
]j�j (42)

(
G� 1

G
)NL

2j�j
N�j�j(�

j��j2
G� 1

): (43)

Here G is power gain of the ampli�er, LmN are Laguerre polynomials, and

N = (l� + l0�)=2, � = (l� � l0�)=2.

So far we considered transform of the main term in Eq. (35). Calculation

of the derivatives in the correction term, P̂R(p; z; N; �) where P̂ is di�erential

operator of the second order in ��, gives polynomial of the second order in N

multiplied by R(p; z; N; �). The result can be written as P̂ (y @
@y
)x�yN where

P̂ is now a di�erential operator of the second order in y independent of N ,

and y = j��j2, x = ���=��. It can be transformed in the ampli�er in the

same way as the main term above.

Dispersion section with momentum compaction �MC and length Lds, in-

troduces (z; p) correlation for each particle by changing the path length in the

lab frame by �z = �MCLds(p�p0)=q0. In the moving frame, this corresponds
to the classical distribution function

f(p; z) =
1

2���
e�

(p�p0)
2

2�2 �
(z�z0��p)

2

2�2 ; (44)

where parameter � = 0�MCLds=mec. The corresponding density matrix is

di�erent from Eq. (2) by the factor e�(i=h)�[q
02�q2]=2.

Hence, the dispersion section modi�es F i(q0; q; z) in Eq. (39) which have

to be replaced by

F i(q0; q; z)e�(i=h)�[q
02�q2]=2ei�: (45)

Here, a phase slip � of a bunch centroid is added and should be controlled in

the experiment.

5 Kicker

We obtain the density matrix at the entrance to the kicker combining Eqs.

(38), (42), and (45)

�̂in(t) = jq0; l0� >
Finq
l�!l

0
�!
< q; l�j; (46)
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where Fin = Fds(q
0; q)(1 + P̂ )Fampl(N; �)e

2i�!te�
1
2
[����++c:c:], and

Fds = �i

Z
dz

L
F i(q0; q; z)e�i

�
2h

[(q0)2�q2]: (47)

The transform of the density matrix at the end of the kicker is given by Eq.

(5) where n has to be replaced by the number of photons l�. We will use

notation mi for the number of photons radiated by the i-th electron in the

kicker and m� =
P
imi for the total number of photons. We also assume

that parameters of both undulators are the same.

Then, the density matrix at the exit of the kicker

�̂out(t) = jq0 � 2hkm0; l0� +m0
� > �loc(q; q

0;  ;  0)F �
out(q; l�; m�) (48)

F �
out(q

0; l0�0 ; m
0
�)(1 + P̂ )Fampl(N; �)e

2i�!te�
1
2
[����++c:c:] < q � 2hkm; l� +m�j:

(49)

Here l� = N + �, l0� = N � �, m� = M � �, m0
� = M + �. Because l� and

l0� are positive, the range of summation is 0 < N <1, �N < M <1, and

j�j < N . Functions �� in Fampl depend on coordinates of individual particles
q0i+qi
2
; zi. The operator Fout is

Fout(q; l�; m�) =
1q

(l� +m�)!

Z
d 

2�
e�im� ei!t(l�+m�)

Z
d�
�l�

l�!
e��Ô��; (50)

where

�loc(q; q
0;  ;  0) = �i

dzi

L
F (i)(q0; q; z)e�

i�
2h

[(q0i)
2�(qi)

2)]S�mi(q; �; �)Si(q
0; �0; �0);

(51)

and

Smi(q; �; �) = (
�a

�a�
)mi=2Jmi[2gjai(t)j

p
��]eimi e

�i[(q�2hkm)2]t

2meh : (52)

To describe stochastic cooling, it is suÆce to calculate the momentum of a

particle at the end of the kicker. The average moments for the j-th particle

after a bunch passed through the system are < pkj >= Tr[p̂kj �̂out(t)], k =

0; 1; ::, where p̂ is momentum operator and brackets < :: > mean averaging

over the wave packet. In the momentum representation, only the diagonal

components, q0i � 2hkm0
i = qi � 2hkmi, i = 1; 2::Nb and l

0
� +m0

� = l� +m�,

contribute in < pkj >. We can utilize the fact that �� are functions only of

the sum q0+q and introduce P , q0i = Pi+hk(m
0
i�mi), qi = Pi�hk(m0

i�mi).

This allows us to write

< pn >= [Pj�hk(mj+m
0
j)]

n�loc(1+P̂ )F
�
out(q; l�; m�)Fout(q

0; l0�; m
0
�)Fampl(N; �);

(53)

where

�loc = �i

dzidPi

2���
�0(Pi; zi)

X
m0
i;mi

Smi(�; �)Sm0
i
(�0; �0)e�2ik(zi+�Pi)(m

0
i�mi); (54)
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and

�0(Pi; zi) = e�(Pi�p
0
i )
2=2�2�(zi�z

0
i�Pit=m0)2 : (55)

Note, that Fampl depends on �� which are given now by Eq.(17) where pi are

replaced by Pi.

Similarly to what was done for the pickup, we expand S(�; �) in series

over gt neglecting terms o(gt)3. We skip over details of calculations and give

the �nal result:

< pnj >=
X
i6=j

K̂n(1+P̂ )Fout(q; l�; m�)Fout(q
0; l0�; m

0
�)Q(b1; b2)Fampl(P; z)jb2�>b1:

(56)

Here the sum stands for integrals �i
dzidPi
2���

�0(Pi; zi) over all particles in a

bunch, and

Q(b1; b2) = e�
0b1e

i 0��0b�2e
�i 0+�b�1e

�i ��b2ei ; (57)

where b1 = gt
P
i e
�i�i, and phase �j = 2k[zj + pj�]. Operators K̂n for

di�erent n = 0; 1; 2 are: K̂0 = 1, K̂1 = qj � hkgt(a� � a�), K̂2 = K̂2
1 +

(hk)2gt(a� + a�), where

a� = e�i�j
@

@b2
++ei�j

@

@b�2
; a� = ei�j

@

@b�1
+ e�i�j

@

@b1
: (58)

Eq. (56) after some calculations, see Appendix, can be written as:

< pnj >=
X
i6=j

K̂n

X
�

(1 + P̂ )(
���
��

)�I2�[2
q
Gjb2 � b1j2 j�� � �+j2] (59)

(
b1 � b2

b�1 � b�2
)�e(G�1)jb2�b1j

2+(1=2)[b2(b�2�b
�
1)+c:c:]e(1=2)[��(�

�
���+)+c:c]jb2=b1 : (60)

The operators K̂n are not more than the second order di�erential opera-

tors in b2, b1 and the function depends on b2;1 only through powers of b2� b1.
Therefore, it is suÆce to take into account only terms � = 0, � = �1=2 and
� = �1 in the sum over �. Additionally, we can expand the answer in series

over gt and neglect terms o(h3).

To check the result, we calculated the average < pnj > for n = 0. This

quantity is just the norm of the distribution function and has to be equal

one. Indeed, the answer is di�erent from one by the term of the order of

N2
s (gt)

4(hk=�)4.

The result for the moments n = 1 and n = 2 were obtained with MATH-

EMATICA. As it will be shown below, the power gain G has to be of the

order of �b=(hk). Hence, G >> 1 and we can neglect terms which are inde-

pendent of G. In this approximation, momentum ~pj of the j-th particle at

the end of the kicker is

~pj = pj � 2(gt)2hk
p
G[��0e

�2ik(zj+�effpj)+i� + c:c:]; (61)
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where �eff = �+t=2me, and � is phase slip of the bunch centroid. Calculation

of ~p2j at the end of the kicker gives

~p2j = p2j�4G(gt)2(hk)pj(��0e�2ik(zj+�effpj)+i�+c:c:)+8G(gt)2(hk)2(1+(gt)2�0��0+c:c:)
(62)

+4
p
G(gt)4(hk)2(b1�

�
0e
i� + c:c:): (63)

Here �0 = ��jh!0. Double averaging over the wave packet �0(pj; zj) and over

Gaussian distribution of particles in the bunch gives the rms �2 =<< p2 >>

� << p >>2 at the end of the kicker:

~�2 ��2

�2
= �16

p
G(gt)2

hk

�B

� sin � + 8G(gt)2(
hk

�B

)2[1 +Ns(gt)
2] (64)

+8
p
G(gt)4(

hk

�B

)2Ns cos �e
�2(k�B)

2�2
eff : (65)

Here � = k�B�effe
�2(k�B�eff )

2

.

To get damping, we have to choose sin � = 1. The damping is maximum

if the power gain G of the ampli�er is equal to

p
G =

�

(hk=�B)[1 +Ns(gt)2]
: (66)

Parameter � as function of x = k�B�eff has maximum value �max ' 0:3 at

x ' 2. This de�nes the optimum parameter � of the dispersion section.

The optimized reduction of the rms in one pass through the system is

~�2 ��2

�2
= � 8�2

max

(gt)�2 +Ns

: (67)

6 Conclusion

The one pass reduction of the energy spread rms is derived following the

evolution of the density matrix through all components of the system. The

consideration is fully quantum-mechanical both for the beam and radiation

but bunching e�ect is neglected and length of a slice of the order of Nu�lab is

assumed to be small compared to the bunch length in the laboratory frame

�0B. The �nal result Eq. (67) for large Ns >> 1=(gt)2 corresponds to classical

theory of stochastic cooling: the damping rate is given by the number of

particles Ns per slice. However, for small Ns the damping rate goes to a

constant proportional to 1=(gt)2, where (gt)2 / (K2
0=(1 + K2

0 ))�0. As a

result, the minimum number of turns for cooling is of the order of 1=�0.

The term 1=(gt)2 is equivalent to the noise induced by 1=�0 particles and is

related to the quantum limit of the input noise of the ampli�er equal to one

photon in a mode. The other quantum mechanical corrections are small, of

12



the order of (hk)=�B (i.e. hkL=�pL in the laboratory frame) and can be

noticeable only for very cold beams with energy spread comparable with the

photon energy. The cooling is the result of interference of the ampli�ed mode

with the mode radiated in the kicker.
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8 Appendix

Eq. (56) can be simpli�ed, �rst, integrating over  and  0 and then by �

and �0 using formula:

Z
d�
�l

l!
e��Ô��(

�

�
)m=2Jm(2

p
��b)j�=1 = bm=2e�b=2Lml (b); (68)

It can be obtained expanding Bessel function and gives result in terms of

Laguerre polynomials Lmn . Eq. (71) is valid both for m > 0 and m < 0,

where L
�jmj
l (b) has to be understood as

L
�jmj
l (b) = (�1)m (l � jmj)!

l!
bjmjL

jmj
l�jmj(b): (69)

In this way we obtain

Fout(l�;M�)Fout(l
0
�;M

0
�)Q(b1; b2) = (b�1)

M��(b1)
M+�e�

1
2
(b2b

�
1+c:c:)LM��

N+� (b2b
�
1)L

M+�
N�� (b

�
2b1):

(70)

where b1 = gt
P
e�2ik(zj+�pj). The average, < pkj > is proportional to the sum

S(�) =
1X

M=�1

xM0

1X
N=max(�M;N)

(N � �)!

(N +M)!
(
G� 1

G
)NL

M��
N+� [x]L

M+�
N�� [x

�]L
2�
N��[�

y

G� 1
];

(71)

where y = j��j2, x = b2b
�
1, and x0 = jb1j2. Terms � < 0 can be obtained by

complex conjugation.

The sum S(�) can be split in two parts: one, for �� < M < 1, � <

N < 1, and another one for �1 < M < ��, �M < N < 1. In the �rst

sum we may start summation from N = �� because the maximum power of

z in LM��
N+� (z) is N + � and, therefore, derivatives over z give zero if N < �.

After this, the sum can be calculated, �rst, expressing L2�
N��[�y] in terms of

the conuent hypergeometric factor and using integral representation for the

last one,

L2�
N��[�y] =

(N + �)!

(N � �)!
y�2�e�y

Z i1

�i1

ds

2�i
esy

sN��

(s� 1)N+�+1
: (72)

13



Secondly, we write LM+�
N�� [x

�] = (� @
@z
)2�LM��

N+� [z]jz=x�, and use [9]

1X
N=�M

(N + �)!

(N +M)!
�N+�L

M��
N+� (x)L

M��
N+� (z) =

(�xz)�(M��)=2

1� �
e��(x+z)=(1��)IjM��j(

2
p
�xz

1� �
);

(73)

where � = ( s(G�1)
(s�1)G

). In this form, the answer is valid also for the second part

of the sum, �1 < M < ��, �M < N <1.

The sum over M ,

S(�) = (� @

@z
)2�

1X
M=�1

xM0
y2�

e�y
Z i1

�i1

ds

2�i

(�s)��esy

(s� 1)�+1

(�xz)�(M��)=2

1� �
e
�
�(x+z)

(1��) IjM��j(
2
p
�xz

1� �
);

(74)

can be calculated using

1X
k=�1

�k=2Ijkj(2�) = e
�
p
�
+�

p
�
: (75)

After that, each derivative over z gives factor ( �
1��

)(1� x
x0
). S takes form

S(�) = y�2�x�0e
�y
Z i1

�i1

ds

2�i
esye[�x

�(x=x0�1)+x0��x]=(1��)(1� x

x0
)2�

G�+1(G� 1)�

(s�G)2�+1
:

(76)

The integral is given by the residues of the poles at s = G,

S(�) = G(G� 1)�(
x0

yA
)�(1� x

x0
)2�I2�(2

q
GAy)ex0+y+(G�1)A; (77)

where A = jb2 � b1j2. Finally,

< pnj >=
X
i6=j

K̂n

X
�

(1 + P̂ )(
���
��

)�I2�[2
q
Gjb2 � b1j2 j�� � �+j2] (78)

(
b1 � b2

b�1 � b�2
)�e(G�1)jb2�b1j

2+(1=2)[b2(b
�
2�b

�
1)+c:c:]e(1=2)[��(�

�
���+)+c:c]jb2=b1 : (79)
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