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1 Introduction

Radiative Bhabhas can be used as one of the calibrations of the BaBar electromagnetic calori-

meter (EMC). Radiative Bhabha events (e�e+ ! e�e+) deposit photons over a large energy

range everywhere in the calorimeter. If the momenta of the incoming and outgoing electrons and

positrons, as well as the photon's angular position are known, the photon energy can be obtained

via a kinematic �t. This �t results in an absolute measurement of the photon energy which then

can be compared to the measured photon energy to obtain calibration constants.

The radiative Bhabha module is part of BaBar's Online Prompt Reconstruction (OPR) exe-

cutable. Initial cuts select good electrons, positrons, and photons. Then all possible combinations

of triplets (one electron, one positron, one photon) are formed. Each triplet is sent to the �tting

routine to calculate its �2est, the \estimated �2". The triplet with the lowest �2est is then sub-

mitted to the full kinematic �t which returns, among other quantities, the �tted photon energy

Ef and the error matrix of the �tted quantities. The ratio Emeas=Ef is later used to calibrate

the calorimeter. Note that no information on the measured photon energy Emeas goes into the

kinematic �t or �2est.

This note is the complete documentation on the algorithm for �tting the radiative Bhabha

events for the purpose of calibrating the calorimeter. It describes the whole �tting procedure: the

quantities for the kinematic �t and �2est; the derivation and formulas for �2est; the derivation and

algorithm for the kinematic �t; tests to check the quality of the kinematic �t. The note details all

formulas which go into the computer program so that the program can be checked directly against

this document. The derivations contain more details than needed to understand the concept, but

the details help to derive, check and recheck all necessary formulas. Actual results of the �tting

procedure using real data are not included in this note to keep it a pure code documentation.

2 De�ning the quantities and constraints

2.1 Measured quantities

From the experiment come the following measurements, which shall form the 14-dimensional

vector y:

Pix� � y1 Piy� � y2 Piz� � y3 msrd momentum in x, y, and z of incoming e�

Pix+ � y4 Piy+ � y5 Piz+ � y6 msrd momentum in x, y, and z of incoming e+

Pox� � y7 Poy� � y8 Poz� � y9 msrd momentum in x, y, and z of outgoing e�

Pox+ � y10 Poy+ � y11 Poz+ � y12 msrd momentum in x, y, and z of outgoing e+

�o � y13 �o � y14 measured � and � of the photon

The momenta of the incoming electron and positron and their errors are changing run-by-run.

The errors of the incoming leptons are given as covariance matrices:

Vi� =

0
B@ Vixx� Vixy� Vixz�

Vixy� Viyy� Viyz�
Vixz� Viyz� Vizz�

1
CA Vi+ =

0
B@ Vixx+ Vixy+ Vixz+

Vixy+ Viyy+ Viyz+
Vixz+ Viyz+ Vizz+

1
CA

The errors on P i� and P i+ are assumed to be independent.
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The errors of P o� = (Pox�; Poy�; Poz�) and P o+ = (Pox+; Poy+; Poz+) are also assumed to be

independent from each other. They are given in two 3� 3 error matrices:

Vo� =

0
B@ Voxx� Voxy� Voxz�

Voxy� Voyy� Voyz�
Voxz� Voyz� Vozz�

1
CA Vo+ =

0
B@ Voxx+ Voxy+ Voxz+

Voxy+ Voyy+ Voyz+
Voxz+ Voyz+ Vozz+

1
CA

The errors on �o and �o appear in the current analysis without �-�-correlations since they were

found to be negligibly small, but we still use this 2� 2 sub-set of the larger 4� 4 error matrix of

the EmcCluster:

Vo =

 
Vo�� Vo��
Vo�� Vo��

!

All the errors can be combined in one 14� 14 error matrix Vall. Its format is like this:

Vall =

0
BBBBB@

Vi� 0 0 0 0

0 Vi+ 0 0 0

0 0 Vo� 0 0

0 0 0 Vo+ 0

0 0 0 0 Vo

1
CCCCCA =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� �
� �

1
CCCCCCCCCCCCCCCCCCCCCCCCCA
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2.2 Quantities for the kinematic �t

The kinematic �t determines the following numbers:

fix� � f1 fiy� � f2 fiz� � f3 x, y, and z momentum of incoming e�

fix+ � f4 fiy+ � f5 fiz+ � f6 x, y, and z momentum of incoming e+

fox� � f7 foy� � f8 foz� � f9 x, y, and z momentum of outgoing e�

fox+ � f10 foy+ � f11 foz+ � f12 x, y, and z momentum of outgoing e+

�f � f13 �f � f14 Ef � h1 � and �, and energy of the photon

�1 �2 �3 four Lagrange multipliers for momentum and

�4 energy conservation constraints

The variables f1 to f14 have corresponding measurements. The variable h1, the photon energy,

is called a \hidden variable". The vector � shall be de�ned as a 19-element composite of f

(14 elements), h (1 element), and � (4 elements).

2.3 Constraints

We have four constraint equations that have to be satis�ed in the kinematic �t:

pix� + pix+ � p0x� � p0x+ �Ef sin �f cos�f = 0 momentum in x

piy� + piy+ � p0y� � p0y+ �Ef sin �f sin�f = 0 momentum in y

piz� + piz+ � p0z� � p0z+ �Ef cos �f = 0 momentum in z

Ei� +Ei+ �E0� �E0+ �Ef = 0 energy

Here we use, e.g.,

Ei� �
q
p2ix� + p2iy� + p2iz� +m2

e

=
q
f21 + f22 + f23 +m2

e

3 The estimated �
2
: �

2
est

This function is calculated for any given electron-positron-gamma triplet to determine which

triplet should be used for the kinematic �t. At the end of this subsection, we will have a complete

analytical formula for calculating �2est.

The formula is based on the di�erence between the initial and �nal momentum, P � P i�P o.

The initial momentum P i is the sum of the momenta of the incoming electron and positron as

de�ned earlier: P i� and P i+. The measured momenta of the outgoing electron, positron are

given by P 0� and P 0+.

For the outgoing photon, we only have its angles �0 and �0 . Using the energy constraint

E = Ei� +Ei+ �E0� �E0+

we may substitute the unknown photon energy E with measured values, and we obtain:

P 0 � (Ei� +Ei+ �E0� �E0+)

0
B@ sin �0 cos�0

sin �0 sin�0
cos �0

1
CA � E

0
B@ nx

ny
nz

1
CA � E n

Of course, n is the normal vector, the direction of the photon.
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Calculating the di�erence to form vector P is easy:

P �

0
B@ Px

Py
Pz

1
CA = P i� + P i+ � P o� � P o+ � P o

In the ideal world, this vector would be exactly zero. For its error matrix Vp, we convert Vall, the

error matrix of y, via a transformation matrix T into Vp:

Vp = T
t Vall T

For the transformation matrix T we have to calculate expressions like @Px

@Pix�
. We note that for

j = x; y; z:
@(E nj)

@Pix�
=

Pix�

Pi�
nj

The transformation matrix is a 3� 14 matrix:

T =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

@Px

@Pix�

@Py

@Pix�

@Pz

@Pix�
@Px

@Piy�

@Py

@Piy�

@Pz

@Piy�
@Px

@Piz�

@Py

@Piz�

@Pz

@Piz�
@Px

@Pix+

@Py

@Pix+

@Pz

@Pix+
@Px

@Piy+

@Py

@Piy+

@Pz

@Piy+
@Px

@Piz+

@Py

@Piz+

@Pz

@Piz+
@Px

@P0x�

@Py

@P0x�

@Pz

@P0x�

@Px

@P0y�

@Py

@P0y�

@Pz

@P0y�

@Px

@P0z�

@Py

@P0z�

@Pz

@P0z�

@Px

@P0x+

@Py

@P0x+

@Pz

@P0x+

@Px

@P0y+

@Py

@P0y+

@Pz

@P0y+

@Px

@P0z+

@Py

@P0z+

@Pz

@P0z+

@Px

@�0

@Py

@�0

@Pz

@�0
@Px

@�0

@Py

@�0

@Pz

@�0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1�
Pix�

Ei�
nx �

Pix�

Ei�
ny �

Pix�

Ei�
nz

�
Piy�

Ei�
nx 1�

Piy�

Ei�
ny �

Piy�

Ei�
nz

�
Piz�

Ei�
nx �

Piz�

Ei�
ny 1�

Piz�

Ei�
nz

1�
Pix+

Ei+
nx �

Pix+

Ei+
ny �

Pix+

Ei+
nz

�
Piy+

Ei+
nx 1�

Piy+

Ei+
ny �

Piy+

Ei+
nz

�
Piz+

Ei+
nx �

Piz+

Ei+
ny 1�

Piz+

Ei+
nz

�1 +
P0x�

E0�
nx

P0x�

E0�
ny

P0x�

E0�
nz

P0y�

E0�
nx �1 +

P0y�

E0�
ny

P0y�

E0�
nz

P0z�

E0�
nx

P0z�

E0�
ny �1 +

P0z�

E0�
nz

�1 +
P0x+

E0+
nx

P0x+

E0+
ny

P0x+

E0+
nz

P0y+

E0+
nx �1 +

P0y+

E0+
ny

P0y+

E0+
nz

P0z+

E0+
nx

P0z+

E0+
ny �1 +

P0z+

E0+
nz

�E cos �0 cos�0 �E cos �0 sin�0 E sin �0

E sin �0 sin�0 �E sin �0 cos�0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Now we have V �1
p = T t V �1

all T , and hence we may calculate �2est:

�2est = P
t V �1

p P
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What is the meaning of this �2? We can say that the 14 input variables are used to measure

P , and �2est tells us the deviation of the measured P from the expected P , which is zero.

4 The kinematic �t

For the derivation of the kinematic �t algorithm, we follow the description of Louis Lyons, page

151, 152 [1].

4.1 The �2-Function

The real �2-function can be written down in the following way:

�2 = (f �m)tV �1
all (f �m)

+ �1 [pxi� + pxi+ � pxo� � pxo+ �E sin � cos� ]

+ �2 [pyi� + pyi+ � pyo� � pyo+ �E sin � sin� ]

+ �3 [pzi� + pzi+ � pzo� � pzo+ �E cos � ]

+ �4 [Ei� +Ei+ �Eo� �Eo+ �E ]

The constraint equations are here included via Lagrange multipliers. To minimize this �2,

we could use a standard package like MINUIT, but standard packages are always slower than

specially adapted code. Since the �2-minimization is being done millions of times, it pays o� to

write special code for the minimization. In addition, MINUIT is not supported in BaBar's Online

Prompt Reconstruction.

4.2 Derivation of kinematic �t algorithm

At the minimum of �2, its �rst derivatives are to be zero. Lyons uses for this the following

equations:

@�2

@�i
= 0 for i = 1 to 14

@�2

@h
= 0 here h = E = �15

@�2

@�k
= 0 here �1 = �16 etc.

The three equation sets can be written as:y

2G (f �m) +Dt � = 0

Et � = 0

C = 0

yThe factor 2 in front of V �1

all
is missing in Lyons' book [1]. We could easily remove this factor from our formulas

by re-de�ning the Lagrange multipliers in the �2-function with a factor 2. This would not change the �t result or

errors, as long as the subsequent calculations were carried out consistently.
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where G is the 14� 14 inverse error matrix of the measurements which we also call V �1
all .

D =

0
BB@
@C1=@�1 : : : @C1=@�14

@C2=@�1 : : : @C2=@�14

@C3=@�1 : : : @C3=@�14

@C4=@�1 : : : @C4=@�14

1
CCA and E =

0
BB@
@C1=@�15

@C2=@�15

@C3=@�15

@C4=@�15

1
CCA

We now expand the constraint equations C around f0 and h0, and we obtain for the four equations

Ck with k = 1 to 4:

Ck � C
(0)
k +

14X
i=1

@C(0)

@fi
(fi � f

(0)
i ) +

@C(0)

@h
(h� h(0)) = 0 (1)

We may rewrite this into:

14X
i=1

@C(0)

@fi
(fi �mi) +

@C(0)

@h
(h� h(0)) = �C

(0)
k +

14X
i=1

@C(0)

@fi
(f

(0)
i �m

(0)
i )

Now we collect everything, use the de�nitions forM , Y , and Z,

M =

0
B@ 2G 0 Dt

0 0 Et

D E 0

1
CA Y =

0
B@ f �m
h� h0
�

1
CA Z =

0
B@ 0

0

�R

1
CA

with

R = C(0) �D(f0 �m) =

0
BB@
C1(f0;h0)

C2(f0;h0)

C3(f0;h0)

C4(f0;h0)

1
CCA�D(f0 �m);

and we see:

M Y = Z

This is the equation we have to solve. Since the constraint equations C = 0 contain non-linear

functions like sin � , Eq. (1) is only an approximation, and we have to iterate as described in the

next section.

4.3 Recipe for the kinematic �t algorithm

The matrix M and the vector Z are functions of the measurements and their error matrices as

well as of the parameters �. The vector Y is, as mentioned above,

Y =

0
@ f �mh� h0

�

1
A

and can be calculated with:

Y =M�1Z

Here is the iteration: Initially, we will use for the �t quantities f0 = m, i.e. the measured

quantities. For h = h0, we calculate the photon energy via simple energy conservation. These
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together with the measured quantities allow us to calculate M and Z. We multiply the inverse

ofM with Z and obtain Y . This result will then give us a better set of f and h, which we again

use to calculateM and Z, and then a better Y . And we continue until our constraint equations

are su�ciently ful�lled and the quantities f and h are stable.

It might happen that the iteration does not converge at the minimum, but wanders o� into

unphysical numbers. In that case, it would be good to have a certain boundary box around the

point. If the step would make the point lie outside the box, then the program would change the

step so that the point would be back inside. It might be good to implement this, although the

radiative Bhabha �tting does not seem to need this part of the algorithm.

4.4 Details of matrices and vectors used in the kinematic �t

We de�ne the following variables:

Ei =

8>>><
>>>:

Ei� for i = 1, 2, 3 (pix�, piy�, piz�)

Ei+ for i = 4, 5, 6 (pix+, piy+, piz+)

E0� for i = 7, 8, 9 (p0x�, p0y�, p0z�)

E0+ for i = 10, 11, 12 (p0x+, p0y+, p0z+)

si =

(
1 for i � 6 (pix�, piy�, piz�, pix+, piy+, piz+)

�1 for i > 6 (p0x�, p0y�, p0z�, p0x+, p0y+, p0z+)

For 4� 14 matrix D we need the following expressions:

Row j = 1 to 3, columns i = 1 to 12:

@Cj

@�i
=

(
si if i = j or i = j + 3 or i = j + 6 or i = j + 9

0 else

Row j = 1, column i = 13:

@C1

@�13
= �Ef cos �f cos�f = ��15 cos�13 cos�14

Row j = 1, column i = 14:

@C1

@�14
= Ef sin �f sin�f = �15 sin�13 sin�14

Row j = 2, column i = 13:

@C2

@�13
= �Ef cos �f sin�f = ��15 cos�13 sin�14

Row j = 2, column i = 14:

@C2

@�14
= �Ef sin �f cos�f = ��15 sin�13 cos�14

Row j = 3, column i = 13:

@C3

@�13
= Ef sin �f = �15 sin�13
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Row j = 3, column i = 14:
@C3

@�14
= 0

Row j = 4, columns i = 1 to 12:
@C4

@�i
= si

�i

Ei

Row j = 4, column i = 13 and 14:

@C4

@�13
=

@C4

@�14
= 0

The 4� 1 matrix E is:

E =

0
BBB@
� sin �f cos�f
� sin �f sin�f

� cos �f
�1

1
CCCA =

0
BBB@
� sin�13 cos�14

� sin�13 sin�14

� cos�13

�1

1
CCCA

4.5 The error matrix of the �t

The second partial derivatives of �2 appear in the error matrix of the �t parameters:

H =

 
1

2

@2�2

@�i@�j

!�1

So in our case, H is a 19 � 19 matrix. The detailed expressions for the second derivatives of �2

will be given in the following section.

4.6 Tests for goodness of �t

After completing the iteration on the kinematic �t, one wants to make sure that all quantities are

indeed correct.

Besides the obvious tests that the constraint equations are satis�ed, one can check that indeed

a minimum was reached. For this, one may wiggle each �nal value �1 to �14 and recalculate �2.

In our case we have in the �2-function the terms with the Lagrange multipliers. Just recalculating

the �2 function will not lead to correct results, since the found vector � is a minimum only when

also requiring the constraints. So one has to redo the �t while forcing the selected element of �

to the o�-minimum value.

This wiggling allows us to map out the minimum, and it also tells us whether the �t error

returned for that parameter is reasonable. If we �x Ef to be �1� �t way from the real �t result,

then the �2 should rise by 1 in either direction. When mapping out this rise, one will see the shape

of a parabola. When the formulas are complicated and/or one is far away from the minimum, the

parabola will be distorted.

In our case, we can indeed calculate the �t error for Ef , but if this would be impossible,

one can �nd the �t error by mapping out the minimum with the above described re-�tting with

�xed values. The �1�-error is then de�ned to be where �2 is 1 unit above the minimum. As

mentioned, this function may be distorted when far away from the minimum. A complicated

�2-function might even distort the �1�-area. In this case, one can take the minimum and two

9



points very close to it, �t a parabola through these three points, and take the sigma from that

parabola as the error.

The same process also works for the hidden parameter (�tted photon energy), and we de�nitely

have to re-�t since the �tted photon energy only appears in the constraints, where the Lagrange

multipliers would inuence the outcome.

Here is how we have to modify the formulas for re-�tting:

4.6.1 Re-�tting with �xed Ef

We want to redo the �t with the photon energy �xed to E�x = Ef + �. To the �2-function, we

add the term

+ X (E �E�x)
2

where X is a large number compared to the original �2. If we now minimize this new �2-function,

the additional term adds a large penalty to any deviation of E from E�x.

Going through the derivation again, we �nd the following places that have to be changed in

the code:

� First partial derivative @�2

@�i

for i = 15 [for i = k] has the additional term \+2X(E �E�x)".

� No change to second partial derivatives.

� Matrix M has the additional term \+2X" at (15,15). This means that the (15,15)-element

of M is no longer zero.

� Vector Z has an additional term at position 15:

Z =

0
@ 0

�2X(h0 �E�x)

�R

1
A

.

These are all necessary changes. The iteration should converge again, but this time always

result in E = E�x for su�ciently large X.

4.6.2 Re-�tting with �xed fk

Let us now wiggle one of the measurement variables �1 to �14. When �xing fk to fk = fk �x, we

add the term

+ X (fk � fk �x)
2

to the �2-function. Again, X is a large number compared to the original �2. The following changes

have to be made in the formulas of the algorithm:

� The �rst partial derivative @�2=@�i gets for i = k the additional term \+2X(fk � fk �x)".

� Again no change to second partial derivatives.

� Matrix M gets at position (k; k) the additional term \+2X".

� Vector Z has at position k the entry \�2X(mk � fk �x)".
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4.6.3 Con�dence Level

If all errors of the measurements are nicely described by Gaussian distributions, and if all events

are what we think they are, i.e., (in our case) radiative Bhabhas, then the �2 values of the �ts

should be distributed like the �2-distribution for n = 3 (3 because out �t is a 3-constraint �t).

Instead of looking at the �2 distributions directly, it is easier to map the �2 to a at distribution

with values between 0 and 1. This value is then called the con�dence level (C.L.) of the event. If

the �2 is really distributed as it should be, the con�dence level will have a at distribution.

So we are looking for two things in the C.L. distribution:

(1) Most of the region should have a at distribution. If not, the errors used in the �t might be

too large or too small. If the errors are underestimated, the �2 will be larger than expected, and

the con�dence level distribution will be tilted downward (when going from 0 to 1). Vice-versa,

if the errors are overestimated, the C.L. distribution will be tilted upward. More information on

the validity of errors might be obtained from the \pull" distributions described later.

(2) A peak at zero indicates events that do not ful�ll the kinematics of radiative Bhabhas

at all. They will result in very large �2 (=very small C.L., close to zero). These events can come

from backgrounds or misidenti�ed tracks. What can we do? We can improve our selection criteria.

Or we can cut out all events belonging to that peak, taking only those events that are part of the

at distribution. A cut on the con�dence level is, of course, equivalent to a cut on �2.

4.6.4 The \Pull"

For each measured variable, one can plot the so-called \pull" [2] or \normalized stretch val-

ues" [3] [4]:

pull p =
meas� �t
p
�meas � ��t

The minus sign in the square root comes from the strong correlation between the measured and the

�tted quantity, and \still puzzles many users" [2]. If all measured errors were estimated correctly

and the conditions for the �t were satis�ed (e.g., the event was really a radiative Bhabha event),

then the pull quantity will be distributed like a Gaussian centered at 0 with � = 1. If an error is

for example overestimated, the pull quantity will have a more narrow distribution. In this case,

the con�dence level should also be a�ected, displaying a tilt in its distribution.

To check whether a systematic increase or decrease of one or more errors would improve the

pull and/or the con�dence level distributions, one can redo the whole analysis with increased or

decreased errors. Perhaps one can �nd a set of corrections that create nice pull distributions and

a nice con�dence level distribution. If the errors are really not correct, one should talk with the

colleagues who are responsible for the errors. However, abnormal pull quantities might not be

always created by incorrect errors. Systematically shifted measurements could also cause such

symptoms.

5 �
2
-Function | First Derivatives

For this set of equations, we will use the following notation:

Li =

8><
>:

�1 for i = 1, 4, 7, 10 (pix�, pix+, p0x�, p0x+)

�2 for i = 2, 5, 8, 11 (piy�, piy+, p0y�, p0y+)

�3 for i = 3, 6, 9, 12 (piz�, piz+, p0z�, p0z+)
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Now we calculate the �rst partial derivatives of the �2-function, i.e., the 19 equations @�2=@�i.

For i = 1 to 12:
@�2

@�i
= 2

14X
j=1

V �1
all ij(fj �mj) + siLi + si�4

fi

Ei

For i = 13:

@�2

@�i
= 2

14X
j=1

V �1
all ij(fj �mj)� �1E cos � cos� � �2E cos � sin� + �3E sin �

= 2
14X
j=1

V �1
all ij(�j �mj)

��16�15 cos�13 cos�14 � �17�15 cos�13 sin�14 + �18�15 sin�13

For i = 14:

@�2

@�i
= 2

14X
j=1

V �1
all ij(fj �mj) + �1E sin � sin� � �2E sin � cos�

= 2
14X
j=1

V �1
all ij(�j �mj) + �16�15 sin�13 sin�14 � �17�15 sin�13 cos�14

For i = 15:

@�2

@�i
= ��1 sin � cos� � �2 sin � sin� � �3 cos � � �4

= ��16 sin�13 cos�14 � �17 sin�13 sin�14 � �18 cos�13 � �19

For i = 16:

@�2

@�i
= pxi� + pxi+ � px0� � px0+ �E sin � cos�

= �1 + �4 � �7 � �10 � �15 sin�13 cos�14

For i = 17:

@�2

@�i
= pyi� + pyi+ � py0� � py0+ �E sin � sin�

= �2 + �5 � �8 � �11 � �15 sin�13 sin�14

For i = 18:

@�2

@�i
= pzi� + pzi+ � pz0� � pz0+ �E cos �

= �3 + �6 � �9 � �12 � �15 cos�13

For i = 19:

@�2

@�i
= Ei� +Ei+ �E0� �E0+ �E

= Ei� +Ei+ �E0� �E0+ � �15
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6 �
2
-Function | Second Derivatives

For i = 1 to 12 and j = 1 to 12:

@2�2

@�j@�i
= 2V �1

all ij + si�4
Ei�f

2

i
=Ei

E2

i

= 2V �1
all ij � si�19

�2

i
�E2

i

E3

i

if i = j

= 2V �1
all ij � si�4

fi fj
E3

i

= 2V �1
all ij � si�19

�i �j

E3

i

if Ei = Ej by de�nition

= 2V �1
all ij else

For i = 1 to 12 and j = 13 to 14:
@2�2

@�j@�i
= 2V �1

all ij

For i = 1 to 12 and j = 15:
@2�2

@�j@�i
= 0

For i = 1 to 12 and j = 16 to 18:

@2�2

@�j@�i
= si if Li = Lj by de�nition

= 0 else

For i = 1 to 12 and j = 19:
@2�2

@�j@�i
= si

fi

Ei
= si

�i

Ei

For i = 13 and j = 13:

@2�2

@�j@�i
= 2V �1

all ij + �1E sin � cos� + �2E sin � sin� + �3E cos �

= 2V �1
all ij + �16�15 sin�13 cos�14 + �17�15 sin�13 sin�14 + �18�15 cos�13

For i = 13 and j = 14:

@2�2

@�j@�i
= 2V �1

all ij + �1E cos � sin� � �2E cos � cos�

= 2V �1
all ij + �16�15 cos�13 sin�14 � �17�15 cos�13 cos�14

For i = 13 and j = 15:

@2�2

@�j@�i
= ��1 cos � cos� � �2 cos � sin� + �3 sin �

= ��16 cos�13 cos�14 � �17 cos�13 sin�14 + �18 sin�13

For i = 13 and j = 16:

@2�2

@�j@�i
= �E cos � cos� = ��15 cos�13 cos�14
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For i = 13 and j = 17:

@2�2

@�j@�i
= �E cos � sin� = ��15 cos�13 sin�14

For i = 13 and j = 18:
@2�2

@�j@�i
= E sin � = �15 sin�13

For i = 13 and j = 19:
@2�2

@�j@�i
= 0

For i = 14 and j = 14:

@2�2

@�j@�i
= 2V �1

all ij + �1E sin � cos� + �2E sin � sin�

= 2V �1
all ij + �16�15 sin�13 cos�14 + �17�15 sin�13 sin�14

For i = 14 and j = 15:

@2�2

@�j@�i
= �1 sin � sin� � �2 sin � cos�

= �16 sin�13 sin�14 � �17 sin�13 cos�14

For i = 14 and j = 16:

@2�2

@�j@�i
= E sin � sin�

= �15 sin�13 sin�14

For i = 14 and j = 17:
@2�2

@�j@�i
= �E sin � cos�

= ��15 sin�13 cos�14

For i = 14 and j = 18 and 19:
@2�2

@�j@�i
= 0

For i = 15 and j = 15:
@2�2

@�j@�i
= 0

For i = 15 and j = 16:

@2�2

@�j@�i
= � sin � cos� = � sin�13 cos�14

For i = 15 and j = 17:

@2�2

@�j@�i
= � sin � sin� = � sin�13 sin�14
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For i = 15 and j = 18:
@2�2

@�j@�i
= � cos � = � cos�13

For i = 15 and j = 19:
@2�2

@�j@�i
= �1

For i = 16 to 19 and j = 16 to 19:
@2�2

@�j@�i
= 0
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