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Abstract

We present direct measurements of the parity-violation parameters Ab, Ac, and As at the
Z0 resonance with the SLD detector. The measurements are based on approximately 530k
hadronic Z0 events collected in 1993-98. Obtained results are Ab = 0:914 � 0:024 (SLD
combined: preliminary),Ac = 0:635�0:027 (SLD combined: preliminary), and As = 0:895�
0:066(stat:)� 0:062(sys:).
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1 Introduction

In the Standard Model, the Z0 coupling to fermions has both vector (vf) and axial-vector (af)

components. Measurements of fermion asymmetries at the Z0 resonance probe a combination

of these components given by Af = 2vfaf=(v
2
f +a2f). The parameter Af expresses the extent

of parity violation at the Zf �f vertex and its measurement provides a sensitive test of the

Standard Model.

At the Stanford Linear Collider (SLC), the ability to manipulate the longitudinal polar-

ization of the electron beam allows the isolation of Af through formation of the left-right

forward-backward asymmetry:
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where Pe is the longitudinal polarization of the electron beam, and z = cos � is the direction
of the outgoing fermion relative to the incident electron.

The measurements described here are based on 530k Z0-decay events taken in 1993-
98 with the SLC Large Detector (SLD)[1]. The average electron polarization is jPej =

73� 0:5%[2]. Polarized electron beams, a small and stable SLC interaction region, the high
resolution CCD vertex detector[3], and the excellent particle identi�cation with �Cerenkov
Ring imaging Detector (CRID)[4] provide precision electroweak measurements.

2 Ab measurements

In order to tag the b-quark, topologically reconstructed mass of the secondary vertex[5] is
used. The secondary vertex is reconstructed with charged tracks, and its invariant mass is
calculated. To account for neutral particles and missing tracks, the vertex mass is corrected:
we calculate the PT -corrected mass MPT by estimating a missing PT from the acolinear-
ity between the momentum sum of the vertex and the direction of the vertex ight path.

Applying the cut of MPT > 2 GeV=c2, we identify the b-quark with 98% purity and 50%
eÆciency.

To determine the b-quark charge, we uses 4 di�erent methods: 1) vertex charge, 2) jet
charge, 3) cascade kaon and 4) lepton.

The vertex-charge analysis uses the track charge sum of the secondary vertex to identify

the charge of the primary quark[6]. We introduce the Neural Network technique to reject
background and to associate the tracks to the secondary vertices. It improves the b-tagging

eÆciency to 57%. In this analysis, we reconstruct the tracks which has hits in the vertex
detector only. By adding such tracks, we enhance the charge separation performance to 83%.

The b-tagging purity and correct charge probability are estimated using opposite hemisphere
information.

In the jet-charge analysis, we use the net momentum-weighted jet-charge[7]. The track

charge sum and di�erence between the two hemispheres are used to extract the analyzing
power from data, thereby reducing MC dependencies and lowering systematic e�ects.
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In the kaon analysis, we use the charged kaon in the decay �B ! D! K�, to determine

the b charge[8]. CRID is used to identify K� with high-impact parameter tracks. The

charges of the kaon candidates are summed in each hemisphere and the di�erence between

the two hemisphere charges is used to determine the polarity of the thrust axis for the b-quark

direction.

Electrons and muons are used to identify the charge and direction of the primary b

quark[9]. Geometrical information is used to separate cascade and prompt leptons. In the

electron analysis, we also use the Neural Network for source classi�cation.

Fig.1 shows the preliminary results from the SLD and LEP measurements, where the LEP

measurements are derived from Ab = 4A0;b
FB/(3Ae) using Ae = 0:1500�0:0016 (the combined

SLD ALR and LEP Alepton). The combined preliminary SLD result for Ab is obtained as

Ab = 0:914 � 0:024:

3 Ac measurements

At the SLD, four di�erent techniques are used to measure the Ac: 1) inclusive charm-

asymmetry measurement with kaon charge and vertex charge, 2) lepton, 3) exclusively re-
constructed D� and D-mesons, and 4) using PT spectrum of soft-pion from D�.

In the inclusive charm analysis, c-quarks are tagged using intermediate PT -corrected-
mass vertices[10]. It provides 82% purity and 29% eÆciency for Z0 ! c�c events. A b veto is
applied to reject any event with high vertex mass in either hemisphere. For the hemispheres

with a secondary vertex, a secondary track identi�ed as K� from the CRID, or a non-zero
vertex charge, is used to sign the charm quark direction. The background is mostly b events
and its fraction is constrained by the double-tag calibration. This analysis has signi�cantly
high statistical power and the systematic errors are still very much under control.

We also measure the charm asymmetry with traditional technique using electrons and

muons which not only tag the c events but also determine the c-quark direction from the
lepton[9].

The exclusive reconstruction of charmed mesons provide the cleanest technique for the
charm-asymmetry measurements[11]. We use four decay modes to identify D�+: the de-
cay D�+ ! �+

s D
0 followed by D0 ! K��+, D0 ! K��+�0 (Satellite resonance), D0 !

K��+���+, or D0
! K�l+�l (l =e or �). We also identifyD+ and D0 mesons via the decay

of D+ ! K��+�+ and D0 ! K��+ (not from D�+). In this analysis, we reject Z0 ! b�b
events using PT -corrected mass of the reconstructed vertices. The random-combinatoric

background can be estimated from the mass sidebands.

The soft-pions from the decay D�+ ! D0�+
s are also used to tag c-quarks[11]. To

determine the D� direction, charged tracks and neutral clusters are clustered into jets. We

also reject the b�b background using PT -corrected-mass of reconstructed vertices. Using the
momenta transverse to the jet axis (PT ) for tracks, we select the soft-pion candidates which

have small PT value. The largest systematic uncertainty is the choice of the background PT

shape.
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Fig.2 shows the preliminary results from the SLD and LEP measurements. The combined

preliminary SLD result for Ac is obtained as Ac = 0:635 � 0:027:

4 Measurement of As

In this analysis, we use high-momentum strange particles[12]. We require both event hemi-

spheres have K� with p > 9 GeV/c, or K0
s with p > 5 GeV/c. CRID is used to identify

K�. To determine the s-quark charge, we require at least one hemisphere have K�. The

heavy-quark background are rejected by identifying B and D decay vertices. We obtain 66%

purity for Z0 ! s�s events.

From the 1993-98 SLD data, we get the result of As = 0:895� 0:066(stat:)� 0:062(sys:).

As a test of d-type quark universality, we compare it with the SLD combined Ab measure-

ment: Ab=As = 1:02 � 0:10: These are consistent within the error.

5 Conclusion

SLD produces world class measurements of parity-violation parameters. The SLD mea-
surements of Ac and As are now the most precise single measurements in the world. The
measured Ab, Ac and As results are consistent with the Standard Model.
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Ab

LEP Average 0.880 ± 0.020

OPAL JetC 0.894 ± 0.048 ± 0.036

L3 JetC 0.801 ± 0.105 ± 0.051

DELPHI JetC 0.890 ± 0.042 ± 0.020

ALEPH JetC 0.968 ± 0.034 ± 0.030

OPAL Lept 0.850 ± 0.038 ± 0.021

L3 Lept 0.868 ± 0.055 ± 0.030

DELPHI Lept 0.916 ± 0.051 ± 0.023

ALEPH Lept 0.886 ± 0.036 ± 0.023

SLD Average 0.914 ± 0.024

SLD Vtx-Q 0.926 ± 0.019 ± 0.027

SLD K± tag 0.960 ± 0.040 ± 0.069

SLD Lepton 0.922 ± 0.029 ± 0.024

SLD JetC 0.882 ± 0.020 ± 0.029

Update

Update

Update

Update

SM
0.7 0.8 0.9 1 1.1

Figure 1: The world Ab measurements (Summer 2000). LEP measurements are derived from
Ab = 4A0;b

FB/(3Ae) using Ae = 0:1500 � 0:0016 (the combined SLD ALR and LEP Alepton).
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A c

LEP Average 0.612 ± 0.032

OPAL D* 0.64 ± 0.10 ± 0.05

DELPHI D* 0.64 ± 0.08 ± 0.04

ALEPH D* 0.63 ± 0.08 ± 0.02

OPAL Lepton 0.58 ± 0.06 ± 0.04

L3 Lepton 0.82 ± 0.29 ± 0.19

DELPHI Lepton 0.68 ± 0.08 ± 0.06

ALEPH Lepton 0.58 ± 0.05 ± 0.03

SLD K & vtx-Q 0.603 ± 0.028 ± 0.023

SLD Lepton 0.567 ± 0.051 ± 0.064

SLD D*,D+ 0.690 ± 0.042 ± 0.021

SLD soft π* 0.685 ± 0.052 ± 0.038

SLD Average 0.635 ± 0.027

Update

Update

Update

SM
0.5 0.6 0.7 0.8 0.9 1

Figure 2: The world Ac measurements (Summer 2000). LEP measurements are derived from
Ac = 4A0;c

FB/(3Ae) using Ae = 0:1500 � 0:0016 (the combined SLD ALR and LEP Alepton).
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