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Abstract

The light-front (LF) quantization[1] of QCD in light-cone (l.c.) gauge is discussed.

The Dirac method is employed to construct the LF Hamiltonian and canonical quan-

tization of QCD. The Dyson-Wick perturbation theory expansion based on LF-time

ordering is constructed. The framework automatically incorporates the Lorentz con-

dition as an operator equation. The propagator of the dynamical  + part of the free

fermionic propagator is shown to be causal, while the gauge �eld propagator is found

to be transverse. The interaction Hamiltonian is re-expressed in a form closely resem-

bling the one in conventional theory, except for additional instantaneous interactions.

The fact that gluons have only physical degrees of freedom in l.c. gauge may provide

an analysis of coupling renormalization similar to that of the pinch technique, which

is currently being discussed as a physical and analytic renormalization scheme for

QCD.
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1 Introduction

The quantization of relativistic �eld theory at �xed light-front time � = (t�z=c)=
p
2,

was proposed by Dirac[2] half a century ago. It has found important applications[3, 4,

5, 6] in gauge theory and string theory. The light-front (LF) quantization of QCD in

its Hamiltonian form provides an alternative approach to lattice gauge theory for the

computation of nonperturbative quantities. We discuss here[7] the LF quantization of

QCD gauge �eld theory in l.c. gauge employing the Dyson-Wick S-matrix expansion

based on LF-time-ordered products. The case of covariant gauge has been discussed

in our earlier work[8].

2 QCD action in light-cone gauge

The LF coordinates are de�ned as x� = (x+ = x� = (x0 + x3)=
p
2; x� = x+ =

(x0 � x3)=
p
2; x?), where x? = (x1; x2) = (�x1;�x2) are the transverse coordinates

and � = �;+; 1; 2. The coordinate x+ � � will be taken as the LF time, while x� is

the longitudinal spatial coordinate.

The quantum action of QCD in l.c. gauge is described in the standard notation

by

LQCD = �1

4
F a��F a

�� +BaAa
� + �caDab

� c
b

+ � i(i
�Dij
� �mÆij) j:

Here �ca; ca are anticommuting ghost �elds and auxiliary �elds Ba(x) are introduced

in the linear gauge-�xing term. The action is invariant under BRS symmetry trans-

formations. Since Ba carries canonical dimension three, no quadratic terms in them

are permitted.

3 Spinor �eld propagator

The quark �eld term in LF coordinates reads
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where[8]  � = �� .

This shows that the minus components  j
� are in fact nondynamical �elds without

kinetic terms. Their equations of motion in l.c. gauge lead to the constraint equation

i
p
2 j

�(x) = � 1

@�
(i
0
?Dkl

? �m
0Ækl) l
+(x)

The free �eld propagator of  + is determined from the quadratic terms (suppressing

the color index) i
p
2 +

y@+ + +  +
y(i
0
?@? � m
0) � where 2i@� �= (i
?@? +

m)
+ + . The equation of motion for the independent component  + is nonlocal in

the longitudinal direction. In the quantized theory we �nd the following nonvanishing

local anticommutator f +(�; x
�; x?);  +

y(�; y�; y?)g= 1p
2
�+Æ(x� � y�)Æ2(x? � y?).

They may be realized in momentum space through the following Fourier transform

 (x) =
1q
(2�)3

X
r=�

Z
d2p?dp+�(p+)

s
m

p+

h
b(r)(p)u(r)(p)e�ip�x + dy(r)(p)v(r)(p)eip�x

i

where[8]

u(r)(p) =

hp
2p+�+ + (m + 
?p?)�

�
i

(
p
2p+m)

1

2

~u(r)

and the nonvanishing anticommutation relations are given by: fb(r)(p); by(s)(p0)g =

fd(r)(p); dy(s)(p0)g = ÆrsÆ
3(p � p0). The free propagator < T i

+(x) 
yj
+ (0) >0 is then

shown[8] to be causal

iÆij

(2�)4

Z
d4q

p
2q+�+

(q2 �m2 + i�)
e�iq�x

and it contains no instantaneous term.

4 Gauge �eld propagator in l.c. gauge

In the l.c. gauge the ghost �elds decouple. We can obtain the free propagator using

the Lagrangian density of abelian gauge theory

1

2

h
(F+�)

2 � (F12)
2 + 2F+?F�?

i
+BA�

where F�� = (@�A� � @�A�). Following the Dirac procedure we show that the phase

space constraints remove all the canonical momenta from the theory. The surviving
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variables are A? and A+. The latter, however, is a dependent variable satisfying

@�(@�A+ � @?A?) = 0. The construction of the Dirac bracket shows that in the

l.c. gauge on the LF we simultaneously obtain the Lorentz condition @ � A = 0

as an operator equation as well. The reduced Hamiltonian is found to be H0
LF =

1
2

R
d2x?dx�

h
(@�A+)

2 + 1
2
F??0F??0

i
. The equal-� commutators are found to be

[A?(x); A?(y)] = iÆ??0K(x; y) where K(x; y) = �(1=4)�(x� � y�)Æ2(x? � y?). They

are nonlocal in the longitudinal coordinate, like the ones for scalar �eld, but there

is no violation of the microcausality principle on the LF. Their momentum space

realization is obtained by the Fourier transform[7]

A�(x) =
1q
(2�)3

Z
d2k?dk+

�(k+)p
2k+

X
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E
�

(?)(k)
h
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y
(?)(k)e
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i

where k� is shown[7] to be de�ned through the dispersion relation, 2k�k+ = k?k?

corresponding to a massless photon. Here the nonvanishing commutators are given

by [b(?)(k); b
y
(?0)(k

0)] = Æ(?)(?0) Æ
3(k � k0). The free gluon propagator is hence found

to be[7]
iÆab

(2�)4

Z
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where

D��(k) = �g�� + n�k� + n�k�

(n � k) � k2

(n � k)2 n�n�

with n� = Æ+� ; E
�
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?(k), n

�D��(k) = 0, and k�D��(k) = 0.

5 QCD Hamiltonian in l.c. gauge

The interaction Hamiltonian in the l.c. gauge, Aa
� = 0, may be rewritten[7] as

�g � i
�Aij
�  
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where j+a = � i
+(ta)
ij j + fabc(@�Ab�)A

c� and a sum over distinct 
avours, not

written explicitly, is to be understood.
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The Dyson-Wick perturbation expansion based on the time ordering with respect

to the LF time � , is built[7] straightforwardly. There are no ghost interaction terms in

l.c. gauge. The instantaneous interactions, which can be treated systematically, are

seen to be required, say, from the computation of the classical Thomson scattering

limit or of electron-muon scattering. While using LF coordinates together with the

dimensional regularization the causal prescription for the 1=k+ singularity, as given

by Mandelstam and Leibbrandt, is mathematically consistent with the causal form

of, say, the fermionic propagator. Computations of the divergent parts of the 1-loop

gluon and quark self-energy and a three-gluon vertex corrections have been discussed

in reference[7].

The fact that gluons have only physical degrees of freedom in l.c. gauge may pro-

vide an analysis of coupling renormalization similar to that of the pinch technique,

which is currently being discussed[9] as means to de�ne a physical and analytic renor-

malization scheme for QCD. In addition, the couplings of gluons in the l.c. gauge

provides a simple procedure for the factorization of soft and hard gluonic corrections

in high momentum transfer inclusive and exclusive reactions.
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