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1 Introduction

Quantum Chromodynamics, the non-abelian SU(NC = 3) gauge theory of quark and
gluons is the central theory of particle and nuclear physics. The range of applications
of QCD to physical processes is extraordinary, ranging from the dynamics and struc-
ture of hadrons and nuclei, the properties of electroweak transitions, quark and gluon
jet processes, to the properties and phases of hadronic matter at the earliest stages of
the universe. At very short distances QCD is believed to unify with the electroweak
interactions, and possibly even gravity, into more fundamental theories.

There has been enormous progress in understanding QCD since its inception in
1973,[1] particularly in the applications of the perturbative theory to inclusive and
exclusive processes involving collisions at large momentum transfer. New experimen-
tal tools are continually being developed which probe the non-perturbative structure
of the theory, such as hard di�ractive reactions, self-resolving jet reactions, semi-
exclusive reactions, deeply virtual Compton scattering, and heavy ion collisions. Nev-
ertheless, many fundamental questions have not been resolved. These include rigorous
proofs of color con�nement, the behavior of the QCD coupling at small scales, the
computation of the non-perturbative structure of hadrons in terms of their quark and
gluon degrees of freedom, the problem of n! growth of the perturbation theory (renor-
malon phenomena), the nature of the pomeron and reggeons, the nature of shadowing
and antishadowing in nuclear collisions, the apparent conict between QCD vacuum
structure and the small size of the cosmological constant, and the problems of scale
and scheme ambiguities in perturbative QCD expansion. One of the most pressing
problems is to understand the QCD physics of exclusive B-meson decays at the ampli-
tude level, since the interpretation of the basic parameters of the electroweak theory
and CP violation depend on hadronic dynamics and phase structure.

The most challenging nonperturbative problem in QCD is the solution of the
bound state problem; i.e., to determine the structure and spectrum of hadrons and
nuclei in terms of their quark and gluon degrees of freedom. Ideally, one wants a
frame-independent, quantum-mechanical description of hadrons at the amplitude level
capable of encoding multi-quark, hidden-color and gluon momentum, helicity, and
avor correlations in the form of universal process-independent hadron wavefunctions.
Remarkably, the light-cone Fock expansion allows just such a unifying representation.

Formally, the light-cone expansion is constructed by quantizing QCD at �xed
light-cone time [2] � = t + z=c and forming the invariant light-cone Hamiltonian:

H
QCD
LC = P+P�� ~P 2

? where P� = P 0�P z.[3] The operator P� = i d
d�

generates light-

cone time translations. The P+ and ~P? momentum operators are independent of
the interactions. Each intermediate state consists of particles with light-cone energy

k� =
~k2
?
+m2

k+
> 0 and positive k+.

The procedure for quantizing non-Abelian gauge theory in QCD is well-known.[4,
5] In brief: if one chooses light-cone gauge A+ = 0, the dependent gauge �eld A�

and quark �eld  � = �� can be eliminated in terms of the physical transverse �eld
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A? and A+ = �+ �elds. Here �� = 1
2
�� are hermitian projection operators.

Remarkably, no ghosts �elds appear in the formalism, since only physical degrees of
freedom propagate. The interaction Hamiltonian includes the usual Dirac interactions
between the quarks and gluons, the three-point and four-point gluon non-Abelian
interactions plus instantaneous [5] light-cone time gluon exchange and quark exchange
contributions:

Hint = �g  
i
�A�

ij j

+
g

2
fabc (@�A

a
� � @�Aa

�)A
b�Ac�

+
g2

4
fabcfadeAb�A

d�Ac�A
e�

�g
2

2
 
i
+ (?

0

A?0)
ij 1

i@�
(?A?)

jk  k

�g
2

2
j+a

1

(@�)2
j+a (1)

where

j+a =  
i
+(ta)

ij j + fabc(@�Ab�)A
c� (2)

Srivastava and I have recently shown how one can use the Dyson-Wick formalism to
construct the Feynman rules in light-cone gauge for QCD. The gauge �elds satisfy
both the light-cone gauge and the Lorentz condition @�A

� = 0: We have also shown
that one can also e�ectively quantize QCD in the covariant Feynman gauge.[6]

The eigen-spectrum of HQCD
LC in principle gives the entire mass squared spec-

trum of color-singlet hadron states in QCD, together with their respective light-cone
wavefunctions. For example, the proton state satis�es: HQCD

LC j	pi = M2
p j	pi. The

projection of the proton's eigensolution j	pi on the color-singlet B = 1, Q = 1

eigenstates fjnig of the free Hamiltonian H
QCD
LC (g = 0) gives the light-cone Fock

expansion: [7]

���	p;P
+; ~P?; �

E
=

X
n�3;�i

Z
�n
i=1

d2k?idxip
xi16�3

16�3Æ

0
@1� nX

j

xj

1
A Æ(2)

 
nX
`

~k?`

!
���n; xiP+; xi ~P? + ~k?i; �i

E
 n=p(xi; ~k?i; �i):

The light-cone Fock wavefunctions  n=H(xi; ~k?i; �i) thus interpolate between the hadron
H and its quark and gluon degrees of freedom. The light-cone momentum fractions of
the constituents, xi = k+i =P

+ with
Pn

i=1 xi = 1; and the transverse momenta ~k?i withPn
i=1

~k?i = ~0? appear as the momentum coordinates of the light-cone Fock wavefunc-
tions. A crucial feature is the frame-independence of the light-cone wavefunctions.
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The xi and ~k?i are relative coordinates independent of the hadron's momentum P �.
The actual physical transverse momenta are ~p?i = xi ~P? + ~k?i:

The �i label the light-cone spin S
z projections of the quarks and gluons along the

z direction. The physical gluon polarization vectors ��(k; � = �1) are speci�ed in
light-cone gauge by the conditions k � � = 0; � � � = �+ = 0: Each light-cone Fock
wavefunction satis�es conservation of the z projection of angular momentum: Jz =Pn

i=1 S
z
i +
Pn�1

j=1 l
z
j : The sum over Sz

i represents the contribution of the intrinsic spins of

the n Fock state constituents. The sum over orbital angular momenta lzj = �i(k1j @
@k2

j

�
k2j

@
@k1

j

) derives from the n � 1 relative momenta. This excludes the contribution to

the orbital angular momentum due to the motion of the center of mass, which is not
an intrinsic property of the hadron.[8]

Light-cone wavefunctions are thus the frame-independent interpolating functions
between hadron and quark and gluon degrees of freedom. Hadron amplitudes are
computed from the convolution of the light-cone wavefunctions with irreducible quark-
gluon amplitudes. For example, space-like form factors can be represented as the
diagonal �n = 0 overlap of light-cone wavefunctions. Time-like form factors such
as semi-exclusive B decays can be expressed as the sum of diagonal �n = 0 and
�n = 2 overlap integrals. Structure functions are simply related to the sum over
absolute squares of the light-cone wavefunctions. More generally, all multi-quark and
gluon correlations in the bound state are represented by the light-cone wavefunctions.
Thus in principle, all of the complexity of a hadron is encoded in the light-cone Fock
representation, and the light-cone Fock representation is thus a representation of the
underlying quantum �eld theory.

The LC wavefunctions  n=H(xi; ~k?i; �i) are universal, process-independent, and
thus control all hadronic reactions. In the case of deep inelastic scattering, one
needs to evaluate the imaginary part of the virtual Compton amplitudeM[�(q)p!
�(q)p]: The simplest frame choice for electroproduction is q+ = 0; q2? = Q2 =
�q2; q� = 2q � p=P+; p+ = P+; p? = 0?; p

� = M2
p=P

+: At leading twist, soft �nal-
state interactions of the outgoing hard quark line are power-law suppressed in light-
cone gauge, so the calculation of the virtual Compton amplitude reduces to the evalu-
ation of matrix elements of the products of free quark currents of the free quarks. The
absorptive amplitude imposes conservation of light-cone energy: p� + q� =

Pn
i k

�
i

for the n�particle Fock state. In the impulse approximation, where only one quark
q recoils against the scattered lepton, this condition becomes

M2
p + 2q � p =

(~k?q + ~q?)
2 +m2

q

xq
+
X
i6=q

k2?i +m2
i

xi
: (3)

If we neglect the transverse momenta k2? relative to Q2 in the Bjorken limit Q2 !1;
xbj = Q2=2q � p �xed, we obtain the condition xq = xbj; i.e., the light-cone fraction
xq = k+=p+ of the struck quark is kinematically �xed to be equal to the Bjorken
ratio. Contributions from high k2? = O(Q2) which originate from the perturbative

4



QCD radiative corrections to the struck quark line lead to the DGLAP evolution
equations.

Thus given the light-cone wavefunctions, one can compute[4] all of the leading
twist helicity and transversity distributions measured in polarized deep inelastic lep-
ton scattering.[9] For example, the helicity-speci�c quark distributions at resolution
� correspond to

q�q=�p
(x;�) =

X
n;qa

Z nY
j=1

dxjd
2k?j

16�3
X
�i

j (�)
n=H(xi;

~k?i; �i)j2 (4)

�16�3Æ
 
1�

nX
i

xi

!
Æ(2)

 
nX
i

~k?i

!
Æ(x� xq)Æ�;�q�(�2 �M2

n) ;

where the sum is over all quarks qa which match the quantum numbers, light-cone
momentum fraction x; and helicity of the struck quark. Similarly, the transversity
distributions and o�-diagonal helicity convolutions are de�ned as a density matrix of
the light-cone wavefunctions. This de�nes the LC factorization scheme [4] where the
invariant mass squared M2

n =
Pn

i=1 (k
2
?i +m2

i )=xi of the n partons of the light-cone
wavefunctions are limited toM2

n < �2

The light-cone wavefunctions also specify the multi-quark and gluon correlations
of the hadron. For example, the distribution of spectator particles in the �nal state
which could be measured in the proton fragmentation region in deep inelastic scat-
tering at an electron-proton collider are in principle encoded in the light-cone wave-
functions. We also note that the high momentum tail of the light-cone wavefunctions
can be computed perturbatively in QCD. In particular, the evolution equations for
structure functions and distribution amplitudes follow from the perturbative high
transverse momentum behavior of the light-cone wavefunctions.[7] The gauge the-
ory features of color transparency and color opacity for color singlet hadrons follows
from the distribution of the quarks and gluons in transverse space of the hadron
wavefunctions.[10]

There are many sources of power-law corrections to the standard leading twist
formula for deep inelastic structure functions. Higher-twist corrections arise from
QCD radiative corrections (renormalons), �nal-state interactions, �nite target mass
e�ects [11], constituent masses, and their transverse momenta k?:[12] Despite the
many sources of power-law corrections to the deep inelastic cross section, certain
types of dynamical contributions will stand out at large xbj since they arise from
compact, highly-correlated uctuations of the proton wavefunction. In particular,
as I will discuss in Section 12, there are particularly interesting dynamical O(1=Q2)
corrections which are due to the interference of quark currents; i.e., contributions
which involve leptons scattering amplitudes from two di�erent quarks.

Recently, the E791 experiment at Fermilab has demonstrated that the light-cone
wavefunction of a hadron can be directly measured by di�ractively dissociating a high
energy hadron into jets.[13] I will review the physics of self-resolving interactions in
Section 12.
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In addition to the light-cone Fock expansion, a number of other useful theoretical
tools are available to eliminate theoretical ambiguities in QCD predictions:

(1) Conformal symmetry provides a template for QCD predictions,[20] leading to
relations between observables which are present even in a theory which is not scale
invariant. For example, the natural representation of distribution amplitudes is in
terms of an expansion of orthonormal conformal functions multiplied by anomalous
dimensions determined by QCD evolution equations.[14, 15, 16] Thus an important
guide in QCD analyses is to identify the underlying conformal relations of QCD
which are manifest if we drop quark masses and e�ects due to the running of the
QCD couplings. In fact, if QCD has an infrared �xed point (vanishing of the Gell
Mann-Low function at low momenta), the theory will closely resemble a scale-free
conformally symmetric theory in many applications.

(2) Commensurate scale relations[17, 18] are perturbative QCD predictions which
relate observable to observable at �xed relative scale, such as the \generalized Crewther
relation" [19], which connects the Bjorken and Gross-Llewellyn Smith deep inelastic
scattering sum rules to measurements of the e+e� annihilation cross section. The
relations have no renormalization scale or scheme ambiguity. The coeÆcients in the
perturbative series for commensurate scale relations are identical to those of conformal
QCD; thus no infrared renormalons are present.[20] One can identify the required con-
formal coeÆcients at any �nite order by expanding the coeÆcients of the usual PQCD
expansion around a formal infrared �xed point, as in the Banks-Zak method.[21] All
non-conformal e�ects are absorbed by �xing the ratio of the respective momentum
transfer and energy scales. In the case of �xed-point theories, commensurate scale
relations relate both the ratio of couplings and the ratio of scales as the �xed point
is approached. [20]

(3) �V and Skeleton Schemes. A physically natural scheme for de�ning the QCD
coupling in exclusive and other processes is the �V (Q

2) scheme de�ned from the
potential of static heavy quarks. Heavy-quark lattice gauge theory can provide highly
precise values for the coupling. All vacuum polarization corrections due to fermion
pairs are then automatically and analytically incorporated into the Gell Mann-Low
function, thus avoiding the problem of explicitly computing and resumming quark
mass corrections related to the running of the coupling.[22] The use of a �nite e�ective
charge such as �V as the expansion parameter also provides a basis for regulating the
infrared nonperturbative domain of the QCD coupling. A similar coupling and scheme
can be based on an assumed skeleton expansion of the theory.[21]

(4) The Abelian Correspondence Principle. One can consider QCD predictions
as analytic functions of the number of colors NC and avors NF . In particular, one
can show at all orders of perturbation theory that PQCD predictions reduce to those
of an Abelian theory at NC ! 0 with b� = CF�s and cNF = NF=TCF held �xed.[23]
There is thus a deep connection between QCD processes and their corresponding
QED analogs.

A review of these topics can be found in the lectures by Rathsman and myself.
[24, 20]
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2 Applications of Light-cone wavefunctions to

Current Matrix Elements

As I shall review in the next sections, the light-cone Fock representation of current
matrix elements has a number of simplifying properties. Matrix elements of space-like
local operators for the coupling of photons, gravitons and the deep inelastic struc-
ture functions can all be expressed as overlaps of light-cone wavefunctions with the
same number of Fock constituents. This is possible since one can choose the special
frame q+ = 0 [25, 26] for space-like momentum transfer and take matrix elements
of \plus" components of currents such as J+ and T++. Since the physical vacuum
in light-cone quantization coincides with the perturbative vacuum, no contributions
to matrix elements from vacuum uctuations occur.[27] Exclusive semi-leptonic B-
decay amplitudes involving time-like currents such as B ! A`� can also be evaluated
exactly.[28, 29] In this case, the time-like decay matrix elements require the compu-
tation of both the diagonal matrix element n! n where parton number is conserved
and the o�-diagonal n+ 1! n� 1 convolution such that the current operator anni-
hilates a qq0 pair in the initial B wavefunction. This term is a consequence of the fact
that the time-like decay q2 = (p`+ p�)

2 > 0 requires a positive light-cone momentum
fraction q+ > 0. A similar result holds for the light-cone wavefunction representation
of the deeply virtual Compton amplitude.[30]

3 Electromagnetic and Gravitational Form Factors

The light-cone Fock representation allows one to compute all matrix elements of
local currents as overlap integrals of the light-cone Fock wavefunctions. In partic-
ular, we can evaluate forward and non-forward matrix elements of the electroweak
currents, moments of the deep inelastic structure functions, as well as the electro-
magnetic form factors and the magnetic moment. Given the local operators for the
energy-momentum tensor T ��(x) and the angular momentum tensor M���(x), one
can directly compute momentum fractions, spin properties, the gravitomagnetic mo-
ment, and the form factors A(q2) and B(q2) appearing in the coupling of gravitons
to composite systems.

In the case of a spin-1
2
composite system, the Dirac and Pauli form factors F1(q

2)
and F2(q

2) are de�ned by

hP 0jJ�(0)jP i = u(P 0)
h
F1(q

2)� + F2(q
2)

i

2M
���q�

i
u(P ) ; (5)

where q� = (P 0 � P )� and u(P ) is the bound state spinor. In the light-cone formal-
ism it is convenient to identify the Dirac and Pauli form factors from the helicity-
conserving and helicity-ip vector current matrix elements of the J+ current [31]:*

P + q; "
�����J

+(0)

2P+

�����P; "
+
= F1(q

2) ; (6)

7



*
P + q; "

�����J
+(0)

2P+

�����P; #
+
= �(q1 � iq2)

F2(q
2)

2M
: (7)

The magnetic moment of a composite system is one of its most basic properties. The
magnetic moment is de�ned at the q2 ! 0 limit,

� =
e

2M
[F1(0) + F2(0)] ; (8)

where e is the charge andM is the mass of the composite system. We use the standard
light-cone frame (q� = q0 � q3):

q = (q+; q�; ~q?) =

 
0;
�q2
P+

; ~q?

!
;

P = (P+; P�; ~P?) =

 
P+;

M2

P+
;~0?

!
; (9)

where q2 = �2P � q = �~q2? is 4-momentum square transferred by the photon.
The Pauli form factor and the anomalous magnetic moment � = e

2M
F2(0) can

then be calculated from the expression

�(q1 � iq2)
F2(q

2)

2M
=
X
a

Z d2~k?dx

16�3
X
j

ej  
"�
a (xi;

~k0?i; �i) 
#
a(xi;

~k?i; �i) ; (10)

where the summation is over all contributing Fock states a and struck constituent
charges ej. The arguments of the �nal-state light-cone wavefunction are [32, 26]

~k0?i =
~k?i + (1� xi)~q? (11)

for the struck constituent and

~k0?i =
~k?i � xi~q? (12)

for each spectator. Notice that the magnetic moment must be calculated from the
spin-ip non-forward matrix element of the current. It is not given by a diagonal
forward matrix element.[33] In the ultra-relativistic limit where the radius of the
system is small compared to its Compton scale 1=M , the anomalous magnetic moment
must vanish.[34] The light-cone formalism is consistent with this theorem.

The form factors of the energy-momentum tensor for a spin-1
2

composite are
de�ned by

hP 0jT ��(0)jP i = u(P 0)
h
A(q2)(�P

�)
+B(q2)

i

2M
P

(�
��)�q�

+C(q2)
1

M
(q�q� � g��q2)

i
u(P ) ; (13)

where q� = (P 0 � P )�, P �
= 1

2
(P 0 + P )�, a(�b�) = 1

2
(a�b� + a�b�), and u(P ) is the

spinor of the system.
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As in the light-cone decomposition Eqs. (6) and (7) of the Dirac and Pauli form
factors for the vector current [31], we can obtain the light-cone representation of the
A(q2) and B(q2) form factors of the energy-tensor Eq. (13). Since we work in the
interaction picture, only the non-interacting parts of the energy momentum tensor
T++(0) need to be computed in the light-cone formalism. By calculating the ++
component of Eq. (13), we �nd

*
P + q; "

�����T
++(0)

2(P+)2

�����P; "
+
= A(q2) ; (14)

*
P + q; "

�����T
++(0)

2(P+)2

�����P; #
+
= �(q1 � iq2)

B(q2)

2M
: (15)

The A(q2) and B(q2) form factors Eqs. (14) and (15) are similar to the F1(q
2)

and F2(q
2) form factors Eqs. (6) and (7) with an additional factor of the light-cone

momentum fraction x = k+=P+ of the struck constituent in the integrand. The B(q2)
form factor is obtained from the non-forward spin-ip amplitude. The value of B(0)
is obtained in the q2 ! 0 limit. The angular momentum projection of a state is given
by

D
J i
E
=

1

2
�ijk

Z
d3x

D
T 0kxj � T 0jxk

E
= A(0)

D
Li
E
+ [A(0) +B(0)]u(P )

1

2
�iu(P ) :

(16)
This result is derived using a wave-packet description of the state. The hLii term
is the orbital angular momentum of the center of mass motion with respect to an
arbitrary origin and can be dropped. The coeÆcient of the hLii term must be 1;
A(0) = 1 also follows when we evaluate the four-momentum expectation value hP �i.
Thus the total intrinsic angular momentum Jz of a nucleon can be identi�ed with the
values of the form factors A(q2) and B(q2) at q2 = 0 :

hJzi =
�
1

2
�z
�
[A(0) +B(0)] : (17)

One can de�ne individual quark and gluon contributions to the total angular
momentum from the matrix elements of the energy momentum tensor.[35] However,
this de�nition is only formal; Aq;g(0) can be interpreted as the light-cone momentum
fraction carried by the quarks or gluons hxq;gi : The contributions from Bq;g(0) to Jz
cancel in the sum. In fact, it will be shown below [8] that the contributions to B(0)
vanish when summed over the constituents of each individual Fock state.

We will give an explicit realization of these relations in the light-cone Fock rep-
resentation for general composite systems. In the next section we will illustrate the
formulae by computing the electron's electromagnetic and energy-momentum tensor
form factors to one-loop order in QED. In fact, the structure of this calculation has
much more generality and can be used as a template for more general composite
systems.
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4 The Light-Cone Fock State Decomposition and

Spin Structure of Leptons in QED

Recently Dae Sung Hwang, Bo-Qiang Ma, Ivan Schmidt, and I [8] have shown that
the light-cone wavefunctions generated by the radiative corrections to the electron in
QED provides a simple system for understanding the spin and angular momentum
decomposition of relativistic systems. This perturbative model also illustrates the
interconnections between Fock states of di�erent number. The model is patterned
after the quantum structure which occurs in the one-loop Schwinger �=2� correction
to the electron magnetic moment.[36] In e�ect, we can represent a spin-1

2
system as

a composite of a spin-1
2

fermion and spin-one vector boson with arbitrary masses.
A similar model has been used to illustrate the matrix elements and evolution of
light-cone helicity and orbital angular momentum operators.[37] This representation
of a composite system is particularly useful because it is based on two constituents
but yet is totally relativistic. We can then explicitly compute the form factors F1(q

2)
and F2(q

2) of the electromagnetic current, and the various contributions to the form
factors A(q2) and B(q2) of the energy-momentum tensor. The anomalous moment
couplingB(0) to a graviton is shown to vanish for any composite system. This remark-
able result, �rst derived by Okun and Kobzarev, [38, 39, 40, 41, 42] is shown to follow
directly from the Lorentz boost properties of the light-cone Fock representation.[8]

The Schwinger one-loop radiative correction to the electron current in quantum
electrodynamics has played a historic role in the development of quantum �eld the-
ory. In the language of light-cone quantization, the electron anomalous magnetic
moment ae = �=2� is due to the one-fermion one-gauge boson Fock state component
of the physical electron. An explicit calculation of the anomalous moment in this
framework was given by Brodsky and Drell.[31] We shall show here that the light-
cone wavefunctions of the electron provides an ideal system to check explicitly the
intricacies of spin and angular momentum in quantum �eld theory. In particular, we
shall evaluate the matrix elements of the QED energy momentum tensor and show
how the \spin crisis" is resolved in QED for an actual physical system. The analysis
is exact in perturbation theory. The same method can be applied to the moments of
structure functions and the evaluation of other local matrix elements. We will also
show how the perturbative light-cone wavefunctions of leptons and photons provide
a template for the wavefunctions of non-perturbative composite systems resembling
hadrons in QCD.

The light-cone Fock state wavefunctions of an electron can be systematically eval-
uated in QED. The QED Lagrangian density is

L =
i

2
[  �(

�!
@ � + ieA�) �  �(

 �
@ � � ieA�) ]�m  � 1

4
F ��F�� ; (18)

and the corresponding energy-momentum tensor is

T �� =
i

4

�
[  �(

�!
@ � + ieA�) �  �( �@ � � ieA�) ] + [ � ! � ]

�
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+ F ��F �
� +

1

4
g��F ��F�� : (19)

Since T �� is the Noether current of the general coordinate transformation, it is con-
served. In later calculations we will identify the two terms in Eq. (19) as the fermion
and boson contributions T ��

f and T ��
b , respectively.

The physical electron is the eigenstate of the QED Hamiltonian. As discussed in
the introduction, the expansion of it is the QED eigenfunction on the complete set jni
ofH0 eigenstates produces the Fock state expansion. It is particularly advantageous to
carry out this procedure using light-cone quantization since the vacuum is trivial, the
Fock state representation is boost invariant, and the light-cone fractions xi = k+i =P

+

are positive: 0 < xi � 1,
P

i xi = 1. We also employ light-cone gauge A+ = 0 so
that the gauge boson polarizations are physical. Thus each Fock-state wavefunction
hnjphysical electroni of the physical electron with total spin projection Jz = �1

2
is

represented by the function  Jz

n (xi; ~k?i; �i), where

ki = (k+i ; k
�
i ;
~k?i) =

0
@xiP+;

~k2?i +m2
i

xiP+
; ~k?i

1
A (20)

speci�es the momentum of each constituent and �i speci�es its light-cone helicity in
the z direction. We adopt a non-zero boson mass � for the sake of generality.

The two-particle Fock state for an electron with Jz = +1
2
has four possible spin

combinations:

���	"
two particle(P

+ = 1; ~P? = ~0?)
E

(21)

=
Z d2~k?dx

16�3
q
x(1� x

"
 
"
+ 1

2
+1
(x;~k?)

����+1

2
+ 1 ; x ; ~k?

�

+ "
+ 1

2
�1(x;

~k?)
����+1

2
� 1 ; x ; ~k?

�

+ "� 1

2
+1
(x;~k?)

�����12 + 1 ; x ; ~k?

�

+ "� 1

2
�1(x;

~k?)
�����12 � 1 ; x ; ~k?

� #
:

The wavefunctions can be evaluated explicitly in QED perturbation theory using the
rules given by Brodsky and Lepage [4] and Brodsky and Drell [31]:

8>>>>>>><
>>>>>>>:

 
"
+ 1

2
+1
(x;~k?) = �

p
2 (�k

1+ik2)

x(1�x) ' ;

 
"
+ 1

2
�1(x;

~k?) = �
p
2 (+k

1+ik2)
1�x ' ;

 
"
� 1

2
+1
(x;~k?) = �

p
2(M � m

x
)' ;

 
"
� 1

2
�1(x;

~k?) = 0 ;

(22)
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where

' = '(x;~k?) =
e=
p
1� x

M2 � (~k2? +m2)=x� (~k2? + �2)=(1� x)
: (23)

Similarly,

���	#
two particle(P

+ = 1; ~P? = ~0?)
E

(24)

=
Z d2~k?dx

16�3
q
x(1� x

"
 
#
+ 1

2
+1
(x;~k?)

����+1

2
+ 1 ; x ; ~k?

�

+ #
+ 1

2
�1(x;

~k?)
����+1

2
� 1 ; x ; ~k?

�

+ #� 1

2
+1
(x;~k?)

�����12 + 1 ; x ; ~k?

�

+ #� 1

2
�1(x;

~k?)
�����12 � 1 ; x ; ~k?

� #
;

where 8>>>>>>><
>>>>>>>:

 
#
+ 1

2
+1
(x;~k?) = 0 ;

 
#
+ 1

2
�1(x;

~k?) = �
p
2(M � m

x
)' ;

 
#
� 1

2
+1
(x;~k?) = �

p
2 (�k

1+ik2)

1�x ' ;

 
#
� 1

2
�1(x;

~k?) = �
p
2 (+k

1+ik2)

x(1�x) ' :

(25)

The coeÆcients of ' in Eqs. (22) and (25) are the matrix elements of u(k+;k�;~k
?
)p

k+
 �

�� u(P
+;P�; ~P

?
)p

P+
which are the numerators of the wavefunctions corresponding to each

constituent spin sz con�guration. The two boson polarization vectors in light-cone

gauge are �� = (�+ = 0 ; �� = ~�
?
�~k
?

2k+
;~�?) where ~� = ~�?";# = �(1=

p
2)(bx � iby). The

polarizations also satisfy the Lorentz condition k � � = 0.

Note that each Fock state con�guration satis�es the spin sum rule: Jz = Sz
f +

szb + lz = +1
2
. The sign of the helicity of the electron is retained by the leading

photon at x = 1 � x ! 1. Note that in the non-relativistic limit, the transverse

motion of the constituents can be neglected, and we have only the
���+1

2

E
!
����1

2
+ 1

E
con�guration which is the non-relativistic quantum state for the spin-half system
composed of a fermion and a spin-1 boson constituents. The fermion constituent has
spin projection in the opposite direction to the spin Jz of the whole system. However,
for ultra-relativistic binding in which the transversal motions of the constituents are
large compared to the fermion masses, the

���+1
2

E
!
���+1

2
+ 1

E
and

���+1
2

E
!
���+1

2
� 1

E
con�gurations dominate over the

���+1
2

E
!

����1
2
+ 1

E
con�guration. In this case the

fermion constituent has spin projection parallel to Jz.

We can see how the angular momentum sum rule is satis�ed for the wavefunc-
tions Eqs. (21) and (24) of the QED model system. In Table 1 we list the fermion

12



constituent's light-cone spin projection szf =
1
2
�f , the boson constituent spin projec-

tion szb = �b, and the relative orbital angular momentum lz for each contributing
con�guration of the QED model system wavefunction. Table 1 is derived by calculat-

Table 1. Spin Decomposition of the Jze = +1=2 Electron

Fermion Boson Orbital Ang.

Con�guration Spin s
z

f
Spin s

z

b
Mom. l

z

��+ 1

2

�
!

��+ 1

2
+ 1
�

+
1

2
+1 �1

��+ 1

2

�
!

��
�

1

2
+ 1
�

�

1

2
+1 0

��+ 1

2

�
!

��+ 1

2
� 1
�

+ 1

2
�1 +1

ing the matrix elements of the light-cone helicity operator +5 [43] and the relative
orbital angular momentum operator �i(k1 @

@k2
� k2 @

@k1
) [37, 44, 45] in the light-cone

representation. Each con�guration satis�es the spin sum rule: Jz = szf + szb + lz.
The electron in QED also has a \bare" one-particle component:

j	";#
one particlei =

p
Z Æ(1� x) Æ(~k? = ~0?) Æsz

f
� 1

2

; (26)

where Z is the wavefunction normalization of the one-particle state. If we regulate
the theory in the ultraviolet and infrared, Z is �nite.

We �rst will evaluate the Dirac and Pauli form factors F1(q
2) and F2(q

2). Using
Eqs. (6) and (21) we have to order e2

F1(q
2) =

D
	"(p+ = 1; ~P? = ~q?))j	"(p+ = 1; ~P? = ~0?)

E

= Z +
Z d2~k?dx

16�3

h
 
" �
+ 1

2
+1
(x;~k0?) 

"
+ 1

2
+1
(x;~k?) (27)

+ " �
+ 1

2
�1(x;

~k0?) 
"
+ 1

2
�1(x;

~k?) +  
" �
� 1

2
+1
(x;~k0?) 

"
� 1

2
+1
(x;~k?)

i
;

where
~k0? = ~k? + (1� x)~q? : (28)

Ultraviolet regularization is assumed. For example, we can assume a cuto� in the

invariant mass of the constituents: M2 =
P

i

~k2
?i

+m2
i

xi
< �2:

At zero momentum transfer

F1(0) = Z +
Z d2~k?dx

16�3

h
 
" �
+ 1

2
+1
(x;~k?) 

"
+ 1

2
+1
(x;~k?) (29)

+ " �
+ 1

2
�1(x;

~k?) 
"
+ 1

2
�1(x;

~k?) +  
" �
� 1

2
+1
(x;~k?) 

"
� 1

2
+1
(x;~k?)

i
:
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We can simulate a composite model of two particles by choosing the coupling strength
e(�) such that F1(0) = 1 is satis�ed. The one-loop model can be further generalized by
applying spectral Pauli-Villars integration over the constituent masses. The resulting
form of light-cone wavefunctions provides a template for parameterizing the structure
of relativistic composite systems and their matrix elements in hadronic physics.

The Pauli form factor is obtained from the spin-ip matrix element of the J+

current. From Eqs. (7), (21), and (24) we have

F2(q
2) =

�2M
(q1 � iq2)

D
	"(P+ = 1; ~P? = ~q?))j	#(P+ = 1; ~P? = ~0?)

E

=
�2M

(q1 � iq2)

Z d2~k?dx

16�3

h
 
" �
+ 1

2
�1(x;

~k0?) 
#
+ 1

2
�1(x;

~k?)

+ " �� 1

2
+1
(x;~k0?) 

#
� 1

2
+1
(x;~k?)

i

= 4M
Z d2~k?dx

16�3
(m�Mx)

x
'(x;~k0?)

�'(x;~k?)

= 4Me2
Z d2~k?dx

16�3
(m� xM)

x(1� x)

� 1�
M2 � (~k

?
+(1�x)~q

?
)2+m2

x
� (~k

?
+(1�x)~q

?
)2+�2

1�x

�

� 1�
M2 � ~k2

?
+m2

x
� ~k2

?
+�2

1�x

� : (30)

Using the Feynman parameterization, we can also express Eq. (30) in a form in which
the q2 = �~q2? dependence is more explicit as

F2(q
2) =

Me2

4�2

Z 1

0
d�

Z 1

0
dx

m� xM
�(1� �) 1�x

x
~q2? �M2 + m2

x
+ �2

1�x

: (31)

The anomalous moment is obtained in the limit of zero momentum transfer:

F2(0) = 4Me2
Z d2~k?dx

16�3
(m� xM)

x(1� x)
1�

M2 � ~k2
?
+m2

x
� ~k2

?
+�2

1�x

�2

=
Me2

4�2

Z 1

0
dx

m� xM
�M2 + m2

x
+ �2

1�x

; (32)

which is the result of Brodsky and Drell.[31] For zero photon mass and M = m,
it gives the correct order � Schwinger value ae = F2(0) = �=2� for the electron
anomalous magnetic moment for QED.
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As seen from Eqs. (14) and (15), the matrix elements of the double plus compo-
nents of the energy-momentum tensor are suÆcient to derive the fermion and boson
constituents' form factors Af;g(q

2) and Bf;g(q
2) of graviton coupling to matter. In

particular, we shall verify A(0) = Af(0) + Ab(0) = 1 and B(0) = 0:
The individual contributions of the fermion and boson �elds to the energy-momentum

form factors in QED are given by

Af(q
2) =

D
	"(P+ = 1; ~P? = ~q?)

��� T++
f (0)

2(P+)2

���	"(P+ = 1; ~P? = ~0?)
E

=
Z d2~k?dx

16�3
x
h
 
" �
+ 1

2
+1
(x;~k0?) 

"
+ 1

2
+1
(x;~k?) (33)

+ " �
+ 1

2
�1(x;

~k0?) 
"
+ 1

2
�1(x;

~k?) +  
" �
� 1

2
+1
(x;~k0?) 

"
� 1

2
+1
(x;~k?)

i
;

where ~k0? is given in Eq. (28), and

Ab(q
2) =

D
	"(P+ = 1; ~P? = ~q?)

��� T++
b (0)

2(P+)2

���	"(P+ = 1; ~P? = ~0?)
E

=
Z d2~k?dx

16�3
(1� x)

h
 
" �
+ 1

2
+1
(x;~k00?) 

"
+ 1

2
+1
(x;~k?) (34)

+ " �
+ 1

2
�1(x;

~k00?) 
"
+ 1

2
�1(x;

~k?) +  
" �
� 1

2
+1
(x;~k00?) 

"
� 1

2
+1
(x;~k?)

i
;

where
~k00? = ~k? � x~q? : (35)

Note that
Af(0) + Ab(0) = F1(0) = 1 ; (36)

which corresponds to the momentum sum rule.
The fermion and boson contributions to the spin-ip matter form factor are

Bf(q
2) =

�2M
(q1 � iq2)

D
	"(P+ = 1; ~P? = ~q?)

��� T++
f (0)

2(P+)2

���	#(P+ = 1; ~P? = ~0?)
E

=
�2M

(q1 � iq2)

Z d2~k?dx

16�3
x
h
 
" �
+ 1

2
�1(x;

~k0?) 
#
+ 1

2
�1(x;

~k?)

+ " �� 1

2
+1
(x;~k0?) 

#
� 1

2
+1
(x;~k?)

i

= 4M
Z d2~k?dx

16�3
(m�Mx)'(x;~k0?)

�'(x;~k?)

= 4Me2
Z d2~k?dx

16�3
(m� xM)

(1� x)

� 1�
M2 � (~k

?
+(1�x)~q

?
)2+m2

x
� (~k

?
+(1�x)~q

?
)2+�2

1�x

�
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� 1�
M2 � ~k2

?
+m2

x
� ~k2

?
+�2

1�x

�

=
Me2

4�2

Z 1

0
d�

Z 1

0
dx

x(m� xM)

�(1� �) 1�x
x
~q2? �M2 + m2

x
+ �2

1�x

; (37)

and

Bb(q
2) =

�2M
(q1 � iq2)

D
	"(P+ = 1; ~P? = ~q?)

��� T++
b (0)

2(P+)2

���	#(P+ = 1; ~P? = ~0?)
E

=
�2M

(q1 � iq2)

Z d2~k?dx

16�3
(1� x)

�
h
 
" �
+ 1

2
�1(x;

~k0?) 
#
+ 1

2
�1(x;

~k?) +  
" �
� 1

2
+1
(x;~k0?) 

#
� 1

2
+1
(x;~k?)

i

= �4M
Z d2~k?dx

16�3
(m�Mx)'(x;~k0?)

�'(x;~k?)

= �4Me2
Z d2~k?dx

16�3
(m� xM)

(1� x)

� 1

[M2 � ((~k? � x~q?)2 +m2)=x� ((~k? � x~q?)2 + �2)=(1� x)]

� 1

[M2 � (~k2? +m2)=x� (~k2? + �2)=(1� x)]

= �Me2

4�2

Z 1

0
d�

Z 1

0
dx

x(m� xM)

�(1� �) x
1�x ~q

2
? �M2 + m2

x
+ �2

1�x

: (38)

The total contribution for general momentum transfer is

B(q2) = Bf(q
2) +Bb(q

2)

= 4Me2
Z d2~k?dx

16�3
(m� xM)

(1� x)

�f 1

[M2 � ((~k? + (1� x)~q?)2 +m2)=x� ((~k? + (1� x)~q?)2 + �2)=(1� x)]

� 1

[M2 � ((~k? � x~q?)2 +m2)=x� ((~k? � x~q?)2 + �2)=(1� x)]
g

� 1

[M2 � (~k2? +m2)=x� (~k2? + �2)=(1� x)]

=
Me2

4�2

Z 1

0
d�

Z 1

0
dx x(m� xM) (39)

�
� 1

�(1� �) 1�x
x
~q2? �M2 + m2

x
+ �2

1�x

� 1

�(1� �) x
1�x ~q

2
? �M2 + m2

x
+ �2

1�x

�
:
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This is the analog of the Pauli form factor for a physical electron scattering in a
gravitational �eld and in general is not zero. However at zero momentum transfer

B(0) = Bf(0) +Bb(0) = 0: (40)

This result agree with the conclusions of Okun and Kobzarev [38], Ji [35] and Teryaev.[42]
The helicity-ip electromagnetic and gravitational form factors for the uctuations

of the electron at one-loop are illustrated in Fig. 1. The cancelation of the sum of
graviton couplings B(q2) to the constituents at q2 = 0 is evident.

5 The Anomalous Gravitomagnetic Moment for

Composite Systems

A remarkable property of gravitational interactions is that the anomalous gravito-
magnetic moment B(0) = 0 vanishes identically for each contributing Fock state of a
composite system.[8] In order to calculate B(0) by using Eq. (15), we need to con-
sider a non-forward amplitude. The internal momentum variables for the �nal state
wavefunction are given by Eqs. (11) and (12). The subscripts of xi and ~k?i label con-
stituent particles, the superscripts of q1?, k

1
?, and k

2
? label the Lorentz indices, and

the subscript a in  a indicates the contributing Fock state. The essential ingredient
is the Lorentz property of the light-cone wavefunctions.

It is important to identify the n�1 independent relative momenta of the n-particle
Fock state.

�B(0)
2M

= lim
q1
?
!0

@

@q1?

*
P + q; "

�����T
++(0)

2(P+)2

�����P; #
+

(41)

= lim
q1
?
!0

@

@q1?

*
	"(P+ = 1; ~P? = ~q?))

�����T
++(0)

2(P+)2

�����	#(P+ = 1; ~P? = ~0?)

+

= lim
q1
?
!0

@

@q1?

X
a

Z n�1Y
k=1

d2~k?kdxk
16�3

�  "�a
�
x1; x2; � � � ; xn�1; (1� x1 � x2 � � � � � xn�1);

~k0?1;
~k0?2; � � � ; ~k0?n�1; (�~k0?1 � ~k0?2 � � � � � ~k0?n�1)

�

�
h n�1X
i=1

xi + (1� x1 � x2 � � � � � xn�1)
i

�  #a
�
x1; x2; � � � ; xn�1; (1� x1 � x2 � � � � � xn�1);

~k?1; ~k?2; � � � ; ~k?n�1; (�~k?1 � ~k?2 � � � � � ~k?n�1)
�
:

Using integration by parts,

�Ba(0)

2M
= (42)
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Figure 1: Helicity-ip electromagnetic and gravitational form factors for space-like
q2 = �Q2 < 0 from the quantum uctuations of a fermion at one-loop order in units
of �=� for QED and g2=4�2 for the Yukawa theory. The fermion constituent mass
is taken as mf = M . The boson constituent is massless. (a) Helicity-ip Pauli form
factor F2(q

2) in QED. Notice that F2(0) = 1=2. (b) Helicity-ip form factor Bb(q
2) of

the graviton coupling to the boson (photon) constituent of the electron at one-loop
order in QED. Notice that Bb(0) = �1=3. (c) Helicity-ip fermion form factor Bf(q

2)
of the graviton coupling to the fermion constituent at one-loop order in QED. Notice
that Bf (0) = 1=3, and thus Bf (0) + Bb(0) = 0: (d) Helicity-ip Pauli form factor
F2(q

2) in the Yukawa theory. Notice that in this case F2(0) = 3=4. (e) Helicity-ip
form factor Bb(q

2) of the graviton coupling to the boson at one-loop order in the
Yukawa theory. Notice that Bb(0) = �5=12. (f) Helicity-ip fermion form factor
Bf (q

2) of the graviton coupling to the fermion constituent at one-loop order in the
Yukawa theory. Notice that Bf (0) = 5=12, and thus Bf(0) +Bb(0) = 0:
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=
Z n�1Y

k=1

d2~k?kdxk
16�3

 "�a

�
x1; x2; � � � ; xn�1; (1� x1 � x2 � � � � � xn�1);

~k?1; ~k?2; � � � ; ~k?n�1; (�~k?1 � ~k?2 � � � � � ~k?n�1)
�

�
"
n�1X
i=1

xi
�
(�1 + xi)

@

@k1?i
+

n�1X
j 6=i

xj
@

@k1?j

�

+(1� x1 � x2 � � � � � xn�1)
n�1X
j=1

xj
@

@k1?j

#

�  #a
�
x1; x2; � � � ; xn�1; (1� x1 � x2 � � � � � xn�1);

~k?1; ~k?2; � � � ; ~k?n�1; (�~k?1 � ~k?2 � � � � � ~k?n�1)
�

=
Z n�1Y

k=1

d2~k?kdxk
16�3

 "�a

�
x1; x2; � � � ; xn�1; (1� x1 � x2 � � � � � xn�1);

~k?1; ~k?2; � � � ; ~k?n�1; (�~k?1 � ~k?2 � � � � � ~k?n�1)
�

�
h n�1X
i=1

�
� 1 +

n�1X
j=1

xj + (1� x1 � x2 � � � � � xn�1)
�
xi

@

@k1?i

i

�  #a
�
x1; x2; � � � ; xn�1; (1� x1 � x2 � � � � � xn�1);

~k?1; ~k?2; � � � ; ~k?n�1; (�~k?1 � ~k?2 � � � � � ~k?n�1)
�

= 0 :

Thus the contribution Ba(0) to the total anomalous gravitomagnetic moment B(0)
vanishes separately from each contributing Fock state a.

6 The Perturbative Model as a Template for a

Composite System

The spin structure of perturbative theory provides a template for the numerator struc-
ture of the light-cone wavefunctions even for composite systems since the equations
which couple di�erent Fock components mimic the perturbative form. For example,
the structure of the electron's Fock state in perturbative QED shows that it is nat-
ural to have a negative contribution from relative orbital angular momentum which
balances the Sz of its photon constituents. We can thus expect a large orbital contri-
bution to the proton's Jz since gluons carry roughly half of the proton's momentum,
thus providing insight into the \spin crisis" in QCD.

We can generalize the perturbative model by using the structure of the one-loop
QED (and Yukawa) calculations with general values for general values of the external
mass M , internal fermion mass m, and boson mass �, to represent a spin-1

2
system

composed of a fermion and a spin-1 or spin-0 boson. Such a model describes an e�ec-
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tively composite system with no bare one-particle Fock state. We can also generalize
the functional form of the momentum space wavefunction '(x;~k?) by introducing a
spectrum of vector bosons satisfying the generalized Pauli-Villars spectral conditionsZ

d�2�2N�(�2) = 0; N = 0; 1; � � � : (43)

For example, we can simulate a proton as a bound state of a quark and diquark
[46], using spin-0, spin-1 diquarks, or a linear superposition of the two states. The
model can be made to match the power-law fall-o� of the hadron form factors pre-
dicted in perturbative QCD by the choice of sum rule conditions on the Pauli-Villars
spectra.[47, 48] The light-cone framework of the model resembles that of the covari-
ant parton model of Landsho�, Polkinghorne and Short [49, 50], in which the power
behavior of the spectral integral at high masses corresponds to the Regge behavior
of the deep inelastic structure functions. Although the model is based on just two
Fock constituents, it is relativistic and satis�es self-consistency conditions such as
in the point-like limit where R2M2 ! 0, the anomalous moment vanishes.[34] The
light-cone formalism also properly incorporates Wigner boosts. Thus this model of
composite systems can serve as a useful theoretical laboratory to interrelate hadronic
properties and check the consistency of formulae proposed for the study of hadron
substructure.

In the case of Yukawa theory at one loop, the non-relativistic fermion's spin pro-
jection is aligned with the total Jz, and it is anti-aligned in the ultra-relativistic limit.
The distinct features of spin structure in the non-relativistic and ultra-relativistic lim-
its reveals the importance of relativistic e�ects and supports the viewpoint [43, 51, 52]
that the proton \spin puzzle" can be understood as due to the relativistic motion of
quarks inside the nucleon. In particular, the spin projection of the relativistic con-
stituent quark tends to be anti-aligned with the proton spin in a quark-diquark bound
state if the diquark has spin 0. The state with orbital angular momentum lz = �1 in
fact dominates over the states with lz = 0: Thus the empirical fact that �q is small in
the proton has a natural description in the light-cone Fock representation of hadrons.

7 Light-cone Representation of Deeply Virtual

Compton Scattering

The virtual Compton scattering process d�
dt
(�p! p) for large initial photon virtual-

ity q2 = �Q2 (see Fig. 2) has extraordinary sensitivity to fundamental features of the
proton's structure. Even though the �nal state photon is on-shell, the deeply virtual
process probes the elementary quark structure of the proton near the light cone as an
e�ective local current. In contrast to deep inelastic scattering, which measures only
the absorptive part of the forward virtual Compton amplitude ImT�p!�p, deeply
virtual Compton scattering allows the measurement of the phase and spin structure
of proton matrix elements for general momentum transfer squared t. In addition, the
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interference of the virtual Compton amplitude and Bethe-Heitler wide angle scatter-
ing Bremsstrahlung amplitude where the photon is emitted from the lepton line leads
to an electron-positron asymmetry in the e�p! e�p cross section which is propor-
tional to the real part of the Compton amplitude.[53] The deeply virtual Compton
amplitude �p! p is related by crossing to another important process � ! hadron
pairs at �xed invariant mass which can be measured in electron-photon collisions.[54]
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Figure 2: The virtual Compton amplitude �(q)pI ! (q0)pF .

To leading order in 1=Q, the deeply virtual Compton scattering amplitude factor-
izes as the convolution in x of the amplitude t�� for hard Compton scattering on a
quark line with the generalized Compton form factors H(x; t; �); E(x; t; �), ~H(x; t; �);
and ~E(x; t; �) of the target proton.[55, 56, 57, 58] [59, 60, 61, 62, 63, 64, 65] Here x
is the light-cone momentum fraction of the struck quark, and � = Q2=2P � q plays
the role of the Bjorken variable. The square of the four-momentum transfer from the
proton is given by

t = �2 = 2P �� = �(�
2M2 + ~�2

?)

(1� �) ; (44)

where � is the di�erence of initial and �nal momenta of the proton (P = P 0+�). The
form factor H(x; t; �) describes the proton response when the helicity of the proton
is unchanged, and E(x; t; �) is for the case when the proton helicity is ipped. Two
additional functions ~H(x; t; �); and ~E(x; t; �) appear, corresponding to the dependence
of the Compton amplitude on quark helicity.

The kinematics of virtual Compton scattering �(q)p(P ) ! (q0)p(P 0) are illus-
trated in Fig. 3. We specify the frame by choosing a convenient parameterization of
the light-cone coordinates for the initial and �nal proton:

PI = (P+ ; ~P? ; P�) =

 
P+ ; ~0? ;

M2

P+

!
; (45)

PF = (P 0+ ; ~P 0
? ; P 0�) =

0
@(1� �)P+ ; �~�? ;

(M2 + ~�2
?)

(1� �)P+

1
A :

(46)
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(Our metric is speci�ed by V � = V 0�V z and V 2 = V +V ��V 2
?.) The four-momentum

transfer from the target is

� = PI � PF = (�+ ; ~�? ; ��) =

0
@�P+ ; ~�? ;

(t + ~�2
?)

�P+

1
A ;

where �2 = t. In addition, overall energy-momentum conservation requires �� =
P I
I � P�

F :
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Figure 3: Light-cone time-ordered contributions to deeply virtual Compton scattering.
Only the contributions of leading twist in 1=q2 are illustrated. These contributions
illustrate the factorization property of the leading twist amplitude.

As in the case of space-like form factors, it is convenient to choose a frame where
the incident space-like photon carries q+ = 0 and q2 = �Q2 = �~q2?:

q = (q+ ; ~q? ; q�) =

0
@0 ; ~q? ;

(~q? + ~�?)
2

�P+
+
(�M2 + ~�2

?)

(1� �)P+

1
A ; (47)
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q0 = (q0+ ; ~q 0? ; q0�) =

0
@�P+ ; (~q? + ~�?) ;

(~q? + ~�?)
2

�P+

1
A = q +�:

(48)

Thus no light-cone time-ordered amplitudes involving the splitting of the incident
photon can occur. The connection between ~�2

?, �, and t is given by Eq. (44). The
variable � is �xed from (45) and (48)

2PI � q =
(~q? + ~�?)

2

�
+
(�M2 + ~�2

?)

(1� �) : (49)

We will be interested in deeply virtual Compton scattering where q2 is large compared
to the masses and t. Then, to leading order in 1=Q2, we can take

�q2
2PI � q

= � : (50)

Thus � plays the role of the Bjorken variable in deeply virtual Compton scattering.
For a �xed value of �t, the allowed range of � is given by

0 � � � (�t)
2M2

0
@
vuut1 +

4M2

(�t) � 1

1
A : (51)

The choice of parameterization of the light-cone frame is of course arbitrary. For
example, one can also conveniently utilize a \symmetric" frame for the ingoing and
outgoing proton which has manifest �! �� symmetry.

Recently, Markus Diehl, Dae Sung Hwang and I [30] have shown how the deeply
virtual Compton amplitude can be evaluated explicitly in the Fock state represen-
tation using the matrix elements of the currents and the boost properties of the
light-cone wavefunctions. For the n ! n diagonal term (�n = 0), the arguments of

the �nal-state hadron wavefunction are x1��
1�� ,

~k?1� 1�x1
1��

~�? for the struck quark and
xi
1�� ,

~k?i +
xi
1��

~�? for the n� 1 spectators. We thus obtain formulae for the diagonal

(parton-number-conserving) contribution to the generalized form factors for deeply
virtual Compton amplitude in the domain[63, 64, 66] � � x1 � 1:

q
1� �f1 (n!n)(x1; t; �) �

�2

4
p
1� � f2 (n!n)(x1; t; �)

=
X
n; �

nY
i=1

Z 1

0
dxi(i6=1)

Z
d2~k?i

2(2�)3
Æ

0
@1� nX

j=1

xj

1
A Æ(2)

0
@ nX
j=1

~k?j

1
A

� " �(n) (x
0
i;
~k0?i; �i)  

"
(n)(xi;

~k?i; �i)(
q
1� �)1�n; (52)
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where 8<
:
x01 =

x1��
1�� ;

~k0?1 =
~k?1 � 1�x1

1��
~�? for the struck quark,

x0i =
xi
1�� ;

~k0?i =
~k?i +

xi
1��

~�? for the (n� 1) spectators.
(54)

A sum over all possible helicities �i is understood. If quark masses are neglected, the
currents conserve helicity. We also can check that

Pn
i=1 x

0
i = 1,

Pn
i=1

~k0?i = ~0?.
For the n+1! n�1 o�-diagonal term (�n = �2), let us consider the case where

partons 1 and n + 1 of the initial wavefunction annihilate into the current leaving
n � 1 spectators. Then xn+1 = � � x1, ~k?n+1 = ~�? � ~k?1. The remaining n � 1
partons have total momentum ((1 � �)P+;�~�?). The �nal wavefunction then has

arguments x0i =
xi
1�� and ~k0?i =

~k?i +
xi
1��

~�?. We thus obtain the formulae for the
o�-diagonal matrix element of the Compton amplitude in the domain 0 � x1 � �:
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� " �(n�1)(x
0
i;
~k0?i; �i)  

#
(n+1)(fx1; xi; xn+1 = � � x1g;

f~k?1; ~k?i; ~k?n+1 = ~�? � ~k?1g; f�1; �i; �n+1 = ��1g); (56)

where i = 2; 3; � � � ; n label the n� 1 spectator partons which appear in the �nal-state
hadron wavefunction with

x0i =
xi

1� � ;
~k0?i =

~k?i +
xi

1� �
~�? : (57)

We can again check that the arguments of the �nal-state wavefunction satisfy
Pn

i=2 x
0
i =

1,
Pn

i=2
~k0?i = ~0?.

The above representation is the general form for the generalized form factors of
the deeply virtual Compton amplitude for any composite system. Thus given the
light-cone Fock state wavefunctions of the eigensolutions of the light-cone Hamilto-
nian, we can compute the amplitude for virtual Compton scattering including all spin
correlations. The formulae are accurate to leading order in 1=Q2. Radiative correc-
tions to the quark Compton amplitude of order �s(Q

2) from diagrams in which a
hard gluon interacts between the two photons have also been neglected.

8 Electroweak Matrix Elements and Light-Cone

Wavefunctions

Another remarkable advantage of the light-cone formalism is that exclusive semilep-
tonic B-decay amplitudes such as B ! A`� can be evaluated exactly.[67] The time-
like decay matrix elements require the computation of the diagonal matrix element
n ! n where parton number is conserved, and the o�-diagonal n + 1 ! n � 1
convolution where the current operator annihilates a qq0 pair in the initial B wave-
function. See Fig. 4. This term is a consequence of the fact that the time-like
decay q2 = (p` + p�)

2 > 0 requires a positive light-cone momentum fraction q+ > 0.
Conversely for space-like currents, one can choose q+ = 0, as in the Drell-Yan-West
representation of the space-like electromagnetic form factors. However, as can be seen
from the explicit analysis of the form factor in a perturbative model, the o�-diagonal
convolution can yield a nonzero q+=q+ limiting form as q+ ! 0. This extra term
appears speci�cally in the case of \bad" currents such as J� in which the coupling
to qq uctuations in the light-cone wavefunctions are favored. In e�ect, the q+ ! 0
limit generates Æ(x) contributions as residues of the n+1! n�1 contributions. The
necessity for such \zero mode" Æ(x) terms has been noted by Chang, Root and Yan
[68], Burkardt [69], and Ji and Choi.[70]

The o�-diagonal n + 1 ! n � 1 contributions give a new perspective for the
physics of B-decays. A semileptonic decay involves not only matrix elements where
a quark changes avor, but also a contribution where the leptonic pair is created
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Figure 4: Exact representation of electroweak decays and time-like form factors in
the light-cone Fock representation.

from the annihilation of a qq0 pair within the Fock states of the initial B wavefunc-
tion. The semileptonic decay thus can occur from the annihilation of a nonvalence
quark-antiquark pair in the initial hadron. This feature will carry over to exclusive
hadronic B-decays, such as B0 ! ��D+. In this case the pion can be produced from
the coalescence of a du pair emerging from the initial higher particle number Fock
wavefunction of the B. The D meson is then formed from the remaining quarks after
the internal exchange of a W boson.

In principle, a precise evaluation of the hadronic matrix elements needed for B-
decays and other exclusive electroweak decay amplitudes requires knowledge of all of
the light-cone Fock wavefunctions of the initial and �nal state hadrons. In the case
of model gauge theories such as QCD(1+1) [71] or collinear QCD [72] in one-space
and one-time dimensions, the complete evaluation of the light-cone wavefunction is
possible for each baryon or meson bound-state using the DLCQ method. It would be
interesting to use such solutions as a model for physical B-decays.
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9 Applications of Light-Cone Factorization to Hard

QCD Processes

Factorization theorems for hard exclusive, semi-exclusive, and di�ractive processes
allow a rigorous separation of soft non-perturbative dynamics of the bound state
hadrons from the hard dynamics of a perturbatively-calculable quark-gluon scattering
amplitude.

The light-cone formalism provides a physical factorization scheme which conve-
niently separates and factorizes soft non-perturbative physics from hard perturbative
dynamics in both exclusive and inclusive reactions.[73, 74] In hard inclusive reactions
all intermediate states are divided according toM2

n < �2 andM2
n > �2 domains. The

lower mass regime is associated with the quark and gluon distributions de�ned from
the absolute squares of the LC wavefunctions in the light cone factorization scheme.
In the high invariant mass regime, intrinsic transverse momenta can be ignored, so
that the structure of the process at leading power has the form of hard scattering on
collinear quark and gluon constituents, as in the parton model. The attachment of
gluons from the LC wavefunction to a propagator in a hard subprocess is power-law
suppressed in LC gauge, so that the minimal quark-gluon particle-number subpro-
cesses dominate. It is then straightforward to derive the DGLAP equations from
the evolution of the distributions with log�2. The anomaly contribution to singlet
helicity structure function g1(x;Q) can be explicitly identi�ed in the LC factorization
scheme as due to the �g ! qq fusion process. The anomaly contribution would be
zero if the gluon is on shell. However, if the o�-shellness of the state is larger than
the quark pair mass, one obtains the usual anomaly contribution.[75]

In exclusive amplitudes, the LC wavefunctions are the interpolating functions
between the quark and gluon states and the hadronic states. In an exclusive ampli-
tude involving a hard scale Q2 all intermediate states can be divided according to
M2

n < �2 < Q2 and M2
n < �2 invariant mass domains. The high invariant mass

contributions to the amplitude has the structure of a hard scattering process TH in
which the hadrons are replaced by their respective (collinear) quarks and gluons. In
light-cone gauge only the minimal Fock states contribute to the leading power-law
fall-o� of the exclusive amplitude. The wavefunctions in the lower invariant mass do-
main can be integrated up to the invariant mass cuto� �. Final-state and initial state
corrections from gluon attachments to lines connected to the color-singlet distribution
amplitudes cancel at leading twist.

Given the solution for the hadronic wavefunctions  (�)
n with M2

n < �2, one can
construct the wavefunction in the hard regime withM2

n > �2 using projection oper-
ator techniques.[76] The construction can be done perturbatively in QCD since only
high invariant mass, far o�-shell matrix elements are involved. One can use this
method to derive the physical properties of the LC wavefunctions and their matrix

elements at high invariant mass. Since M2
n =

Pn
i=1

�
k2
?
+m2

x

�
i

, this method also al-

lows the derivation of the asymptotic behavior of light-cone wavefunctions at large k?,
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which in turn leads to predictions for the fall-o� of form factors and other exclusive
matrix elements at large momentum transfer, such as the quark counting rules for
predicting the nominal power-law fall-o� of two-body scattering amplitudes at �xed
�cm.[7] The phenomenological successes of these rules can be understood within QCD
if the coupling �V (Q) freezes in a range of relatively small momentum transfer.[77]

The key non-perturbative input for exclusive processes is the gauge and frame
independent hadron distribution amplitude [74, 73] de�ned as the integral of the
valence (lowest particle number) Fock wavefunction; e.g. for the pion

��(xi;�) �
Z
d2k?  

(�)
qq=�(xi;

~k?i; �) (58)

where the global cuto� � is identi�ed with the resolution Q. The distribution ampli-
tude controls leading-twist exclusive amplitudes at high momentum transfer, and it
can be related to the gauge-invariant Bethe-Salpeter wavefunction at equal light-cone
time. The logarithmic evolution of hadron distribution amplitudes �H(xi; Q) can be
derived from the perturbatively-computable tail of the valence light-cone wavefunc-
tion in the high transverse momentum regime.[74, 73] The conformal basis for the
evolution of the three-quark distribution amplitudes for the baryons [78] has recently
been obtained by V. Braun et al.[16]

Thus at high transverse momentum an exclusive amplitudes factorizes into a con-
volution of a hard quark-gluon subprocess amplitudes TH with the hadron distribution
amplitudes �(xi;�).[4] The TH satisfy the dimensional counting rules. The logarith-
mic evolution of hadron distribution amplitudes �H(xi; Q) can be derived from the
perturbatively-computable tail of the valence light-cone wavefunction in the high
transverse momentum regime.[76]

The existence of an exact formalism provides a basis for systematic approxima-
tions and a control over neglected terms. For example, one can analyze exclusive
semi-leptonic B-decays which involve hard internal momentum transfer using a per-
turbative QCD formalism[79, 80] patterned after the analysis of form factors at large
momentum transfer.[76] The hard-scattering analysis again proceeds by writing each
hadronic wavefunction as a sum of soft and hard contributions

 n =  soft
n (M2

n < �2) +  hard
n (M2

n > �2); (59)

whereM2
n is the invariant mass of the partons in the n-particle Fock state and � is

the separation scale. The high internal momentum contributions to the wavefunction
 hard
n can be calculated systematically from QCD perturbation theory by iterating the

gluon exchange kernel. The contributions from high momentum transfer exchange to
the B-decay amplitude can then be written as a convolution of a hard-scattering
quark-gluon scattering amplitude TH with the distribution amplitudes �(xi;�), the
valence wavefunctions obtained by integrating the constituent momenta up to the
separation scale Mn < � < Q. Furthermore in processes such as B ! �D where
the pion is e�ectively produced as a rapidly-moving small Fock state with a small
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color-dipole interactions, �nal state interactions are suppressed by color transparency.
This is the basis for the perturbative hard-scattering analyses.[79, 81, 82, 80] In the
exact analysis, one can identify the hard PQCD contribution as well as the soft
contribution from the convolution of the light-cone wavefunctions. Furthermore, the
hard-scattering contribution can be systematically improved.

10 Non-Perturbative Solutions of Light-Cone Quan-

tized QCD

It is clearly important not only to compute the spectrum of hadrons and gluonic
states, but also to determine the wavefunction of each QCD bound state in terms of
its fundamental quark and gluon degrees of freedom. If we could obtain such nonper-
turbative solutions of QCD, then we could compute the quark and gluon structure
functions and distribution amplitudes which control hard-scattering inclusive and
exclusive reactions as well as calculate the matrix elements of currents which under-
lie electroweak form factors and the weak decay amplitudes of the light and heavy
hadrons. The light-cone wavefunctions also determine the multi-parton correlations
which control the distribution of particles in the proton fragmentation region as well
as dynamical higher twist e�ects. Thus one can analyze not only the deep inelastic
structure functions but also the fragmentation of the spectator system. Knowledge
of hadron wavefunctions would also open a window to a deeper understanding of the
physics of QCD at the amplitude level, illuminating exotic e�ects of the theory such
as color transparency, intrinsic heavy quark e�ects, hidden color, di�ractive processes,
and the QCD van der Waals interactions.

Is there any hope of computing light-cone wavefunctions from �rst principles?
In the discretized light-cone quantization method (DLCQ),[83] periodic boundary
conditions are introduced in b? and x� so that the momenta k?i = n?�=L? and
x+i = ni=K are discrete. A global cuto� in invariant mass of the partons in the
Fock expansion is also introduced. Solving the quantum �eld theory then reduces to
the problem of diagonalizing the �nite-dimensional hermitian matrix HLC on a �nite
discrete Fock basis. The DLCQ method has now become a standard tool for solving
both the spectrum and light-cone wavefunctions of one-space one-time theories {
virtually any 1 + 1 quantum �eld theory, including \reduced QCD" (which has both
quark and gluonic degrees of freedom) can be completely solved using DLCQ.[84, 85,
72] The method yields not only the bound-state and continuum spectrum, but also
the light-cone wavefunction for each eigensolution. The solutions for the model 1+1
theories can provide an important theoretical laboratory for testing approximations
and QCD-based models.

In the case of theories in 3+1 dimensions, Hiller, McCartor, and I [48, 86] have re-
cently shown that the use of covariant Pauli-Villars regularization with DLCQ allows
one to obtain the spectrum and light-cone wavefunctions of simpli�ed theories, such
as (3+1) Yukawa theory. Dalley et al. have shown how one can use DLCQ in one
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space-one time, with a transverse lattice to solve mesonic and gluonic states in 3 + 1
QCD.[87] The spectrum obtained for gluonium states is in remarkable agreement with
lattice gauge theory results, but with a huge reduction of numerical e�ort. Hiller and
I [88] have shown how one can use DLCQ to compute the electron magnetic moment
in QED without resort to perturbation theory. Light-cone gauge A+ = 0 allows one
to utilize only the physical degrees of freedom of the gluon �eld to appear. How-
ever, light-cone quantization in Feynman gauge has a number of attractive features,
including manifest covariance and a straightforward passage to the Coulomb limit in
the case of static quarks.[89]

One can also formulate DLCQ so that supersymmetry is exactly preserved in
the discrete approximation, thus combining the power of DLCQ with the beauty of
supersymmetry.[90, 91, 92] The \SDLCQ" method has been applied to several inter-
esting supersymmetric theories, to the analysis of zero modes, vacuum degeneracy,
massless states, mass gaps, and theories in higher dimensions, and even tests of the
Maldacena conjecture.[90]

Broken supersymmetry is interesting in DLCQ, since it may serve as a method
for regulating non-Abelian theories.[86] Another remarkable advantage of light-cone
quantization is that the vacuum state j 0i of the full QCD Hamiltonian coincides
with the free vacuum. For example, as discussed by Bassetto,[93] the computation
of the spectrum of QCD(1 + 1) in equal time quantization requires constructing
the full spectrum of non perturbative contributions (instantons). However, light-
cone methods with infrared regularization give the correct result without any need
for vacuum-related contributions. The role of instantons and such phenomena in
light-cone quantized QCD(3 + 1) is presumably more complicated and may reside in
zero modes; [94] e.g., zero modes are evidently necessary to represent theories with
spontaneous symmetry breaking.[95]

Light-cone wavefunctions thus are the natural quantities to encode hadron proper-
ties and to bridge the gap between empirical constraints and theoretical predictions for
the bound state solutions. We can thus envision a program to construct the hadronic
light cone Fock wavefunctions  n(xi; k?i; �i) using not only data but constraints such
as:

(1) Since the state is far o� shell at large invariant mass M, one can derive
rigorous limits on the x ! 1, high k?, and highM2

n behavior of the wavefunctions
in the perturbative domain.

(2) Ladder relations connecting state of di�erent particle number follow from
the QCD equation of motion and lead to Regge behavior of the quark and gluon
distributions at x! 0. QED provides a constraint at NC ! 0:

(3) One can obtain guides to the exact behavior of LC wavefunctions in QCD
from analytic or DLCQ solutions to toy models such as \reduced" QCD(1 + 1):

(4) QCD sum rules, lattice gauge theory moments, and QCD inspired models
such as the bag model, chiral theories, provide important constraints. An important
question is how the light-cone wavefunctions incorporate chiral constraints such as
soliton (Skyrmion) behavior for baryons and other consequences of the chiral limit.
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However it has been shown that the anomaly contribution for the �0 !  decay
amplitude is satis�ed by the light-cone Fock formalism in the limit where the mass
of the pion is light compared to its size.[139]

(5) Since the LC formalism is valid at all scales, one can utilize empirical con-
straints such as the measurements of magnetic moments, axial couplings, form factors,
and distribution amplitudes.

(6) In the nonrelativistic limit, the light-cone and many-body Schr�odinger theory
formalisms must match.

11 Self-Resolved Di�ractive Reactions and Light

Cone Wavefunctions

Di�ractive multi-jet production in heavy nuclei provides a novel way to measure the
shape of the LC Fock state wavefunctions and test color transparency. For example,
consider the reaction [96, 97, 98] �A! Jet1+Jet2+A0 at high energy where the nu-
cleus A0 is left intact in its ground state. The transverse momenta of the jets balance
so that ~k?i+~k?2 = ~q? < R�1

A : The light-cone longitudinal momentum fractions also
need to add to x1+x2 � 1 so that �pL < R�1

A . The process can then occur coherently
in the nucleus. Because of color transparency, the valence wavefunction of the pion
with small impact separation, will penetrate the nucleus with minimal interactions,
di�racting into jet pairs.[96] The x1 = x, x2 = 1� x dependence of the di-jet distri-
butions will thus reect the shape of the pion valence light-cone wavefunction in x;
similarly, the ~k?1�~k?2 relative transverse momenta of the jets gives key information
on the derivative of the underlying shape of the valence pion wavefunction.[97, 98, 99]
The di�ractive nuclear amplitude extrapolated to t = 0 should be linear in nuclear
number A if color transparency is correct. The integrated di�ractive rate should then
scale as A2=R2

A � A4=3. Preliminary results on a di�ractive dissociation experiment of
this type E791 at Fermilab using 500 GeV incident pions on nuclear targets.[13] appear
to be consistent with color transparency.[13] The momentum fraction distribution of
the jets is consistent with a valence light-cone wavefunction of the pion consistent
with the shape of the asymptotic distribution amplitude, �asympt

� (x) =
p
3f�x(1� x).

Data from CLEO [100] for the � ! �0 transition form factor also favor a form
for the pion distribution amplitude close to the asymptotic solution [74, 73] to the
perturbative QCD evolution equation.

The di�ractive dissociation of a hadron or nucleus can also occur via the Coulomb
dissociation of a beam particle on an electron beam (e.g. at HERA or eRHIC) or on
the strong Coulomb �eld of a heavy nucleus (e.g. at RHIC or nuclear collisions at
the LHC).[99] The amplitude for Coulomb exchange at small momentum transfer is
proportional to the �rst derivative

P
i ei

@
~kTi
 of the light-cone wavefunction, summed

over the charged constituents. The Coulomb exchange reactions fall o� less fast at
high transverse momentum compared to pomeron exchange reactions since the light-
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cone wavefunction is e�ective di�erentiated twice in two-gluon exchange reactions.
It will also be interesting to study di�ractive tri-jet production using proton beams

pA ! Jet1 + Jet2 + Jet3 + A0 to determine the fundamental shape of the 3-quark
structure of the valence light-cone wavefunction of the nucleon at small transverse
separation.[97] For example, consider the Coulomb dissociation of a high energy pro-
ton at HERA. The proton can dissociate into three jets corresponding to the three-
quark structure of the valence light-cone wavefunction. We can demand that the
produced hadrons all fall outside an opening angle � in the proton's fragmentation re-
gion. E�ectively all of the light-cone momentum

P
j xj ' 1 of the proton's fragments

will thus be produced outside an \exclusion cone". This then limits the invariant
mass of the contributing Fock state M2

n > �2 = P+2 sin2 �=4 from below, so that
perturbative QCD counting rules can predict the fall-o� in the jet system invariant
mass M. At large invariant mass one expects the three-quark valence Fock state
of the proton to dominate. The segmentation of the forward detector in azimuthal
angle � can be used to identify structure and correlations associated with the three-
quark light-cone wavefunction.[99] An interesting possibility is that the distribution
amplitude of the �(1232) for Jz = 1=2; 3=2 is close to the asymptotic form x1x2x3,
but that the proton distribution amplitude is more complex. This ansatz can also be
motivated by assuming a quark-diquark structure of the baryon wavefunctions. The
di�erences in shapes of the distribution amplitudes could explain why the p ! �
transition form factor appears to fall faster at large Q2 than the elastic p ! p and
the other p ! N� transition form factors.[101] One can use also measure the dijet
structure of real and virtual photons beams �A ! Jet1 + Jet2 + A0 to measure the
shape of the light-cone wavefunction for transversely-polarized and longitudinally-
polarized virtual photons. Such experiments will open up a direct window on the
amplitude structure of hadrons at short distances. The light-cone formalism is also
applicable to the description of nuclei in terms of their nucleonic and mesonic degrees
of freedom.[102, 103] Self-resolving di�ractive jet reactions in high energy electron-
nucleus collisions and hadron-nucleus collisions at moderate momentum transfers can
thus be used to resolve the light-cone wavefunctions of nuclei.

12 Dynamical Correlations and Higher-Twist

E�ects in QCD

It is an empirical fact that conventional leading twist contributions cannot account
for the measured ep ! eX and ed ! eX structure functions at x >� 0.4 and Q2 <� 5
GeV2. Fits to the data [104, 105] require an additional component which scales as
1=Q2 relative to the leading twist contributions and rises rapidly with x. The excess
contribution can be parameterized in the form

F2p;n(x;Q
2) = F 0

2p;n(x;Q
2)

"
1 +

c
p;n
HT (x)

Q2

#
(60)
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Figure 5: Higher-twist coeÆcients CHT (x) [in GeV2 units] for inelastic lepton scat-
tering on proton target (solid points) and the di�erence Cp

HT (x)�Cn
HT (x) for proton

minus neutron targets (open circles).[104, 105] The data compilation is taken from
Souder.[108]

where F 0
2p;n is the leading twist contribution. The functional dependence of the higher-

twist term C
p;n
HT (x) for proton and proton-neutron targets is shown in Fig. 5. A rough

�t is

c
p
HT (x)

�=
�
0:3 GeV

1� x

�2
cnHT (x)

�= 2cpHT (x) ; (61)

i.e.: the higher-twist e�ect relative to the leading twist contribution for the neutron
is stronger than that of the proton.

A possible source of higher-twist e�ects in PQCD is \renormalons".[106, 107] This
contribution to the deep inelastic lepton-hadron cross section reects a divergent
�n0 n! growth of the PQCD series for hard radiative corrections to deep inelastic
scattering evolution at high orders in �ns (Q

2). The factorial growth arises from the
integration over the QCD running coupling; i.e., the summation of the reducible
multi-bubble loop-diagrams in the gluon propagator. The net e�ect is to correct
the leading twist predictions by a power-law suppressed 1=Q2(1 � x) contribution.
Alternatively, one can proceed using the BLM method [109]: one �rst identi�es the
conformal coeÆcients[21] of the PQCD series; by de�nition these are independent of
the ��function and are hence devoid of the �n0 n! growth. The scale of the running
coupling is set by requiring that all of the �-dependence resides in �s(Q

�2): The
resulting scale (Q�2) / (1 � x)Q2 can also be understood as the mean value of the
argument of the running coupling �s(k

2) in the Feynman loop integration.
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However, the renormalon contribution cannot account for the observed higher-
twist contribution shown in Fig. 5 since it is proportional to the leading-twist predic-
tion, i.e.: cpHTren(x) = cnHTren(x): Thus it is apparent from the data that there must
be a dynamical origin for the observed CHT (x)=Q

2 contribution. In fact, dynami-
cal higher-twist terms naturally arise from multi-parton correlations. For example,
if the electron recoils against 1, 2, or 3 quarks, one obtains a series of higher-twist
contributions of ascending order in 1=Q2.

�T �
(1� x)3
Q2)

eq ! eq

�L �
(1� x)
(Q2)3

eqq ! eqq (62)

�T �
1

(1� x)

 
1

Q2

!3

eqqq ! eqqq

where the extra 1=Q2 fall-o� reects the form factor squared of the (qq) or (qqq)
systems, and the enhancement at x! 1 reects the fact that the (qq) and (qqq) com-
posites carry increasing fractions of the proton light-cone momentum. The dominance
of �L for eqq ! eqq reects the bosonic coupling of the composite di-quark. Each of
the contributions satisfy Bloom-Gilman duality [110] at �xed W 2. The multi-parton
subprocesses are suppressed by powers of 1=Q2 but enhanced at large x since more
of the momentum of the target proton is fed into the hard subprocess; i.e., there are
fewer spectators to stop. The general rule is

F2(x;Q
2) / (1� x)2nspect�1+2�h

Qnactive�4
(63)

where n is the number of partons or other quanta participating in the hard subprocess
and �h is the di�erence in helicity between the active partons and the target.[111]

It is well-known that higher-twist, power-law suppressed corrections to hard inclu-
sive cross sections can be a signature of correlation e�ects involving two or more va-
lence quarks of a hadron. For example, the lepton angular dependence of the leading-
twist PQCD prediction for Drell Yan lepton pair production d�(�A ! `+`�X)=d

is 1 + cos2 �cm. The data[112, 113] however shows the onset of sin2 �cm dependence
at large xF . This signals the presence of multiparton-induced subprocesses such as
(qq)q ! �(Q2)q ! `+`�q.[114] See Fig. 6. Such reactions produce longitudinally-
polarized virtual photons with a sin2 �cm lepton pair angular dependence in contrast
to the transversally polarized Drell-Yan pairs produced from the qq ! �(Q2)! `+`�

subprocess. The penalty for utilizing the two correlated partons in the pion wave-
function is an extra suppression factor 1=R2Q2(1�xF )2 where R is the characteristic
interquark transverse separation between the valence quarks in the incoming meson.
The origin of the 1=R2Q2 scaling is similar to that of the photon to meson transition
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Figure 6: Higher-twist contribution to lepton pair production in �N scattering. The
dynamics at large xF requires both constituents of the projectile meson to be involved
in the hard subprocess. [115]

form factor in the exclusive reaction ` ! `(qq)! �0.[4] The scale 1=R can be related
to the pion decay constant f� which normalizes the pion distribution amplitude.[4]
At �xed Q2 the higher-twist process can actually dominate as xF ! 1 since all of
the incoming momentum of the pion is transferred to the subprocess. The correlated
subprocess (qq)q ! �(Q2)q ! `+`�q also leads to the prediction of sin2 � cos 2� and
sin 2� cos � terms in the angular distribution[115], e�ects which are clearly apparent
in the data. [112, 113]

Another important example of dynamical higher-twist e�ects is the reaction �A!
J= X which is observed to produce longitudinally-polarized J= 0s at large xF .[116]
Again this e�ect can be attributed to highly correlated multi-parton subprocesses
such as qqg ! ccqq where both valence quarks of the incident pion must be involved
in the hard subprocess in order to produce the charmed quark pair with nearly all
of the incident momentum of the incoming meson.[117] Similarly, charm production
at threshold requires that all of the momentum of the target nucleon be transferred
to the charm quarks. In the p ! ccp reaction near threshold, all the partons have
to transfer their energy to the charm quarks within their reaction time 1=mc, and
must be within this transverse distance from the cc and from each other. Hence
only compact Fock states of the target nucleon or nucleus with a radius equal to
the Compton wavelength of the heavy quark, can contribute to charm production
at threshold. Equivalently we can interpret the multi-connected charm quarks as
intrinsic charm Fock states which are kinematically favored to have large momentum
fractions.[118] The experimental evidence for intrinsic charm is discussed by Harris,
Smith, and Vogt.[119]

Near-threshold charm production also probes the x ' 1 con�gurations in the tar-
get wavefunction; the spectator partons carry a vanishing fraction x ' 0 of the target
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momentum. This implies that the production rate behaves near x! 1 approximately
as (1� x)2ns�1 where ns is the number of spectators required to stop. Including spin
factors, we can identify three di�erent gluonic components of the photoproduction
cross-section:

� The usual one-gluon (1� x)4 distribution for leading twist photon-gluon fusion
g ! cc, which leaves two quarks spectators;

� Two correlated gluons emitted from the proton with a net distribution
(1� x)2=R2M2 for gg! cc, leaving one quark spectator;

� Three correlated gluons emitted from the proton with a net distribution
(1� x)0=R4M4 for ggg! cc, leaving no quark spectators.

Here x � M2=(s � m2) and M is the mass of the cc pair. The relative weight of
the multiply-connected terms is controlled by the inter-quark separation R ' 1=mc.
The extra powers of 1=M arise from the power-law fall-o� of the higher-twist hard
subprocesses.[120]

The correlations between valence quarks can also have an important e�ect in deep
inelastic scattering, particularly at large xbj = Q2=2p � q. As noted above, one expects
a sum of contributions to the deep inelastic cross section scaling nominally as

F2(x;Q
2) = A(1� x)3 +B

(1� x)2
Q4

+ C
(1� x)�1

Q8
(64)

corresponding to the subprocesses `q ! `q, `(qq) ! `(qq), and `(qqq) ! `(qqq).
However, the above classi�cation of terms in F2(x;Q

2) neglects what may be the
most signi�cant and interesting higher-twist contribution to deep inelastic scattering:
the interference contributions. Let us consider the contribution to DIS due to the
interference of the amplitude where the lepton scatters on one quark with the ampli-
tude where the lepton scatters on another quark. See Fig. 7. One might think such
contributions are assumed to be negligible since the hard subprocesses seem to lead to
di�erent non-interfering �nal states. Actually these contributions can interfere if the
struck quarks have high internal momentum in the initial state or if they exchange
large momenta in the �nal state. In either case, the apparently di�erent �nal states
can overlap. An insightful nuclear physics analog has been discussed by Drell.[121]

Let us consider the electroproduction subprocess `(qq) ! `qq where the initial
(qq) are collinear and have small invariant mass in the initial state and the qq pair
in the �nal state can have large invariant mass. The lepton can e�ectively scatter on
either quark. The nominal scaling of such twist-four contributions is

F interference
2 (x;Q2) =

X
a6=b

eaeb
(1� x)2
R2
abQ

2
(65)
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Figure 7: (a) Twist-four contribution to inelastic lepton scattering where the lepton
scatters on di�erent quarks. The interference of � and Z0 exchange contributions
leads to parity and charge-conjugation violation of the higher-twist contribution. (b-
d) The leading-order O(�s=Q2R2) perturbative QCD gluon-exchange contributions.
The higher-twist contribution to the structure function is obtained by a convolu-
tion of the nucleon light-cone wavefunctions with the �(qq) ! �(qq) multi-quark
amplitude.

where the factor of 1=R2
ab reects the inter-parton distance. The interference terms

are distinctive since, unlike renormalon contributions, they do not track with the
leading twist contributions. The growth at high x of the twist-four process reects
the fact that the `(qq)! `qq subprocess incorporates the momentum of both quarks.
This contribution must also play an important role in the physics of Bloom-Gilman
duality [110] since the interference contributions also appear in square of the transition
form factors. The interference terms can contribute to both FL and FT . There is an
extensive literature on higher-twist contributions to the structure functions coming
from such four-fermion operators.[122, 123] They are also referred to as \cat ear"
diagrams from their appearance in the virtual Compton amplitude.

Let us suppose that the proton wavefunction is symmetric in the coordinates of
the three valence quarks. If we sum over the pairs of valence quarks, we obtain a
vanishing contribution on a proton target

X
a6=b

eaeb = (
X
a

ea)
2 �

X
a

e2a = 1� (4=9 + 4=9 + 1=9) = 0: (66)
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However, for the neutron

X
a6=b

eaeb = (
X
a

ea)
2 �

X
a

e2a = 0� (4=9 + 1=9 + 1=9) = 2=3: (67)

Thus for symmetric nucleon wavefunctions the dynamical higher-twist cross terms
appear to be are zero in the proton and signi�cant for the neutron, deuteron, and
nuclei! This is a very distinctive e�ect; it particularly motivates the empirical study
of higher-twist e�ects using the deuteron and nuclear targets.

In a more realistic treatment, one needs to take into account correlation substruc-
ture. For example, suppose that we can approximate the nucleon wavefunctions as
quark di-quark composites, where the di-quark has I = 0 and J = 0: Let us also sup-
pose that the inter-quark separation Rab is smallest for the two quarks of the diquark
composite. In this case we can approximate the full sum as a sum over the quark
charges of the I = 0 ud diquark. Then

P
a6=b eaeb = eued = �2=9 for both the proton

and neutron targets. However, since it is conventional to parameterize the higher-
twist contribution as a correction to the leading twist term. Thus Cp;n(x) is predicted
to rise strongly at large x and Cn(x) will be larger than Cp(x) since the leading-twist
contribution to the neutron structure function F n

2 (x;Q
2) is signi�cantly smaller than

F
p
2 (x;Q

2). These predictions seem consistent with the empirical higher-twist contri-
butions to electroproduction extracted in the references.[104, 105] A simple test of
the I = 0 diquark higher-twist model is the absence of twist-four contributions to the
combination of structure functions F d

2 (x;Q
2)� 2F p

2 (x;Q
2)

It is also interesting to note that one can have interference between the amplitude
for lepton-quark scattering via photon exchange on one quark with the amplitude for
Z0 exchange on another quark. This implies a distinctive parity-violating higher-twist
contribution CPV

HT (x) proportional to the product of electromagnetic and weak quark
charges

P
a6=b e


ae

Z0

b . Twist-four contributions of this type have been in fact been
modeled [124] for structure function moments. However there is also the possibility
of high-x enhancement. In fact, the x-dependence of CPV

HT (x) should be similar to the
parity-conserving contribution.

We can also use Bloom-Gilman duality to predict that the parity-violating struc-
ture functions at large x should average to the contributions of the elastic and inelastic
electroproduction channels when integrated over similar ranges in W 2. In fact, the
parity-violating elastic form factors can be predicted at large momentum transfer in
perturbative QCD.[125] Such measurements will provide very interesting tests of the
applicability of PQCD to exclusive processes. Thus as emphasized by Souder [108],
the detailed measurement of the left-right asymmetry ALR in polarized elastic and
inelastic electron-proton and polarized electron nucleus scattering at large xbj can be
a powerful illuminator of quark-quark correlations and fundamental QCD physics at
the amplitude level.
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13 Higher Fock States and the Intrinsic Sea

The main features of the heavy sea quark-pair contributions of the higher particle
number Fock state states of light hadrons can be derived from perturbative QCD.
One can identify two contributions to the heavy quark sea, the \extrinsic" contribu-
tions which correspond to ordinary gluon splitting, and the \intrinsic" sea which is
multi-connected via gluons to the valence quarks. The leading 1=m2

Q contributions
to the intrinsic sea of the proton in the heavy quark expansion are proton matrix ele-
ments of the operator [126] ����G��G��G

�� which in light-cone gauge ��A� = A+ = 0
corresponds to three or four gluon exchange between the heavy-quark loop and the
proton constituents in the forward virtual Compton amplitude. The intrinsic sea is
thus sensitive to the hadronic bound-state structure.[127, 118] The maximal contribu-

tion of the intrinsic heavy quark occurs at xQ ' m?Q=
P

im? where m? =
q
m2 + k2?;

i.e. at large xQ, since this minimizes the invariant massM2
n. The measurements of

the charm structure function by the EMC experiment are consistent with intrinsic
charm at large x in the nucleon with a probability of order 0:6� 0:3%.[119] which is
consistent with recent estimates based on instanton uctuations.[126] Similarly, one
can distinguish intrinsic gluons which are associated with multi-quark interactions
and extrinsic gluon contributions associated with quark substructure.[128] One can
also use this framework to isolate the physics of the anomaly contribution to the
Ellis-Ja�e sum rule.[75] Thus neither gluons nor sea quarks are solely generated by
DGLAP evolution, and one cannot de�ne a resolution scale Q0 where the sea or gluon
degrees of freedom can be neglected.

It is usually assumed that a heavy quarkonium state such as the J= always
decays to light hadrons via the annihilation of its heavy quark constituents to gluons.
However, as Karliner and I [129] have shown, the transition J= ! �� can also occur
by the rearrangement of the cc from the J= into the j qqcci intrinsic charm Fock state
of the � or �. On the other hand, the overlap rearrangement integral in the decay
 0 ! �� will be suppressed since the intrinsic charm Fock state radial wavefunction
of the light hadrons will evidently not have nodes in its radial wavefunction. This
observation provides a natural explanation of the long-standing puzzle [130] why
the J= decays prominently to two-body pseudoscalar-vector �nal states, breaking
hadron helicity conservation, [131] whereas the  0 does not.

The higher Fock state of the proton j uudssi should resemble a jK�i intermediate
state, since this minimizes its invariant massM. In such a state, the strange quark
has a higher mean momentum fraction x than the s.[132, 133, 134] Similarly, the
helicity of the intrinsic strange quark in this con�guration will be anti-aligned with
the helicity of the nucleon.[132, 134] This Q$ Q asymmetry is a striking feature of
the intrinsic heavy-quark sea.
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14 Other Applications of Light-Cone Quantization

to QCD Phenomenology

There are other phenomenological consequences of the light-cone Fock expansion:
Color Transparency. A crucial feature of the light-cone formalism is the fact that

the form of the  
(�)
n=H(xi;

~k?i; �i) is invariant under longitudinal boosts; i.e., the light-
cone wavefunctions expressed in the relative coordinates xi and k?i are independent
of the total momentum P+, ~P? of the hadron. The ensemble f n=Hg of such light-
cone Fock wavefunctions is a key concept for hadronic physics, providing a conceptual
basis for representing physical hadrons (and also nuclei) in terms of their fundamental
quark and gluon degrees of freedom. Each Fock state interacts distinctly; e.g., Fock
states with small particle number and small impact separation have small color dipole
moments and can traverse a nucleus with minimal interactions. This is the basis for
the predictions for \color transparency" in hard quasi-exclusive reactions.[10]

Di�ractive vector meson photoproduction. The light-cone Fock wavefunction rep-
resentation of hadronic amplitudes allows a simple eikonal analysis of di�ractive high
energy processes, such as �(Q2)p! �p, in terms of the virtual photon and the vector
meson Fock state light-cone wavefunctions convoluted with the gp! gp near-forward
matrix element.[135] One can easily show that only small transverse size b? � 1=Q
of the vector meson distribution amplitude is involved. The hadronic interactions are
minimal, and thus the �(Q2)N ! �N reaction can occur coherently throughout a
nuclear target in reactions without absorption or shadowing. The �A! V A process
thus is a laboratory for testing QCD color transparency.[10]

Regge behavior of structure functions. The light-cone wavefunctions  n=H of a
hadron are not independent of each other, but rather are coupled via the equations
of motion. Antonuccio, Dalley and I [136] have used the constraint of �nite \me-
chanical" kinetic energy to derive \ladder relations" which interrelate the light-cone
wavefunctions of states di�ering by one or two gluons. We then use these relations to
derive the Regge behavior of both the polarized and unpolarized structure functions
at x! 0, extending Mueller's derivation of the BFKL hard QCD pomeron from the
properties of heavy quarkonium light-cone wavefunctions at large NC QCD.[137]

Structure functions at large xbj. The behavior of structure functions where one
quark has the entire momentum requires the knowledge of LC wavefunctions with
x ! 1 for the struck quark and x ! 0 for the spectators. This is a highly o�-
shell con�guration, and thus one can rigorously derive quark-counting and helicity-
retention rules for the power-law behavior of the polarized and unpolarized quark and
gluon distributions in the x! 1 endpoint domain.

DGLAP evolution at x ! 1 Usually one expects that structure functions are
strongly suppressed at large x because of the momentum lost by gluon radiation: the
predicted change of the power law behavior at large x is[138]

F2(x;Q
2)

F2(x;Q2
0)

=
x!1 (1� x)�(Q

2;Q2
0
) (68)
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where

�(q2; Q2
0) =

1

4�

Z Q2

Q2
0

d`2

`2
�s(`

2) : (69)

Because of asymptotic freedom, this implies a log logQ2 increase in the e�ective power
�(Q2; Q2

0). However, this derivation assumes that the struck quark is on its mass
shell. The o�-shell e�ect is profound, greatly reducing the PQCD radiation.[12, 139]
We can take into account the main e�ect of the struck quark virtuality by modifying
the propagator in Eq. (69):

�(Q2; Q2
0) =

1

4�

Z Q2

Q2
0

d`2

`2 + jk2f j
�s(`

2): (70)

Thus at large x, there is e�ectively no DGLAP evolution until Q2 >� jk2f j! One can also
see that DGLAP evolution at large x at �xed Q2 must be suppressed in order to have
duality at �xed W 2 = Q2(1 � xbj)=xbj between the inclusive electroproduction and
exclusive resonance contributions.[4] Thus evolution of structure functions is minimal
in this domain because the struck quark is highly virtual as x ! 1; i.e. the starting
point Q2

0 for evolution cannot be held �xed, but must be larger than a scale of order
(m2 + k2?)=(1� x).[76, 7, 140]

Materialization of far-o�-shell con�gurations. In a high energy hadronic collisions,
the highly-virtual states of a hadron can be materialized into physical hadrons simply
by the soft interaction of any of the constituents.[141] Thus a proton state with
intrinsic charm j uudcci can be materialized, producing a J= at large xF , by the
interaction of a light-quark in the target. The production occurs on the front-surface
of a target nucleus, implying an A2=3 J= production cross section at large xF ; which
is consistent with experiment, such as Fermilab experiments E772 and E866.

Comover phenomena. Light-cone wavefunctions describe not only the partons
that interact in a hard subprocess but also the associated partons freed from the pro-
jectile. The projectile partons which are comoving (i.e., which have similar rapidity)
with �nal state quarks and gluons can interact strongly producing (a) leading particle
e�ects, such as those seen in open charm hadroproduction; (b) suppression of quarko-
nium [142] in favor of open heavy hadron production, as seen in the E772 experiment;
(c) changes in color con�gurations and selection rules in quarkonium hadroproduc-
tion, as has been emphasized by Hoyer and Peigne.[143] All of these e�ects violate
the usual ideas of factorization for inclusive reactions. Further, more than one parton
from the projectile can enter the hard subprocess, producing dynamical higher-twist
contributions, as seen for example in Drell-Yan experiments.[144, 145]

Jet hadronization in light-cone QCD. One of the goals of nonperturbative analysis
in QCD is to compute jet hadronization from �rst principles. The DLCQ solutions
provide a possible method to accomplish this. By inverting the DLCQ solutions, we
can write the \bare" quark state of the free theory as j q0i =

P jni hn j q0i where now
fjnig are the exact DLCQ eigenstates of HLC , and hn j q0i are the DLCQ projec-
tions of the eigensolutions. The expansion in automatically infrared and ultraviolet
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regulated if we impose global cuto�s on the DLCQ basis: �2 < �M2
n < �2 where

�M2
n = M2

n � (�Mi)
2. It would be interesting to study jet hadronization at the

amplitude level for the existing DLCQ solutions to QCD (1+1) and collinear QCD.
Hidden Color. The deuteron form factor at high Q2 is sensitive to wavefunction

con�gurations where all six quarks overlap within an impact separation b?i < O(1=Q):
The leading power-law fall o� predicted by QCD is Fd(Q

2) = f(�s(Q
2))=(Q2)5, where,

asymptotically, f(�s(Q
2)) / �s(Q

2)5+2.[146] The derivation of the evolution equa-
tion for the deuteron distribution amplitude and its leading anomalous dimension 
is given in the references.[147] In general, the six-quark wavefunction of a deuteron
is a mixture of �ve di�erent color-singlet states. The dominant color con�guration
at large distances corresponds to the usual proton-neutron bound state. However
at small impact space separation, all �ve Fock color-singlet components eventually
acquire equal weight, i.e., the deuteron wavefunction evolves to 80% \hidden color."
[148] The relatively large normalization of the deuteron form factor observed at large
Q2 hints at sizable hidden-color contributions.[149] Hidden color components can also
play a predominant role in the reaction d ! J= pn at threshold if it is dominated
by the multi-fusion process gg ! J= .

Nuclear Structure Functions at 1 < xbj < A, beyond the kinematic domain accessi-

ble on a single nucleon target. The nuclear light-cone momentum must be transferred
to a single quark, requiring quark-quark correlations between quarks of di�erent nucle-
ons in a compact, far-o�-shell regime. Also, as noted above, the nuclear wavefunction
contains hidden-color components distinct from a convolution of separate color-singlet
nucleon wavefunctions.

Spin-Spin Correlations in Nucleon-Nucleon Scattering and the Charm

Threshold. One of the most striking anomalies in elastic proton-proton scattering is
the large spin correlation ANN observed at large angles.[150] At

p
s ' 5 GeV, the

rate for scattering with incident proton spins parallel and normal to the scattering
plane is four times larger than that for scattering with anti-parallel polarization. This
strong polarization correlation can be attributed to the onset of charm production
in the intermediate state at this energy.[151] The intermediate state juuduudcci has
odd intrinsic parity and couples to the J = S = 1 initial state, thus strongly en-
hancing scattering when the incident projectile and target protons have their spins
parallel and normal to the scattering plane. The charm threshold can also explain
the anomalous change in color transparency observed at the same energy in quasi-
elastic pp scattering. A crucial test is the observation of open charm production near
threshold with a cross section of order of 1�b.

15 Conclusions

In these lectures I have discussed how the universal, process-independent and frame-
independent light-cone Fock-state wavefunctions encode the properties of a hadron
in terms of its fundamental quark and gluon degrees of freedom. Given the proton's
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light-cone wavefunctions, one can compute not only the moments of the quark and
gluon distributions measured in deep inelastic lepton-proton scattering, but also the
multi-parton correlations which control the distribution of particles in the proton
fragmentation region and dynamical higher twist e�ects. Light-cone wavefunctions
also provide a systematic framework for evaluating exclusive hadronic matrix ele-
ments, including time-like heavy hadron decay amplitudes and form factors. The
formalism also provides a physical factorization scheme for separating hard and soft
contributions in both exclusive and inclusive hard processes. I have discussed a num-
ber of applications of light-cone Fock representation of QCD, including semileptonic
B decays, deeply virtual Compton scattering, and dynamical higher twist e�ects in
inclusive reactions. The relation of the intrinsic sea to the light-cone wavefunctions
is discussed. The physics of light-cone wavefunctions is illustrated for the quantum
uctuations of an electron. A new type of jet production reaction, \self-resolving
di�ractive interactions" can provide direct information on the light-cone wavefunc-
tions of hadrons in terms of their QCD degrees of freedom, as well as the composition
of nuclei in terms of their nucleon and mesonic degrees of freedom. I have also re-
viewed the strong progress that has been made in computing light-cone wavefunctions
directly from the QCD light-cone Hamiltonian. Even without full non-perturbative
solutions of QCD, one can envision a program to construct the light-cone wavefunc-
tions using measured moments constraints from QCD sum rules, lattice gauge theory,
hard exclusive and inclusive processes. One is guided by theoretical constraints from
perturbation theory which dictates the asymptotic form of the wavefunctions at large
invariant mass, x ! 1, and high k?. One can also use constraints from ladder rela-
tions which connect Fock states of di�erent particle number; perturbatively-motivated
numerator spin structures; conformal symmetry, guidance from toy models such as
\reduced" QCD(1 + 1); and the correspondence to Abelian theory for NC ! 0, and
the many-body Schr�odinger theory in the nonrelativistic domain.
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