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Abstract

The temperature rise in targets struck by high-energy electrons can be calculated using
the EGS4 code[1] simply by scoring the energy-deposition density in small cylindrical
volumes centered upon, and divided along, the direction of the beam. The temperature
rise per pulse, ∆Tp (◦C/pulse), is then obtained for each volume using the specific heat of
the material, and the time dependence of the heat flow can be calculated using conventional
heat-transfer principles. Most typically the beam size is accounted for in a straight-forward
way by sampling the incident coordinates, but this involves yet another statistical process
that can result in a significant increase in computation time in order to reduce the variance,
particularly for thick targets at very high energies. In this paper an off-line convolution
method is presented in which the symmetry of the geometry and the Gaussian shape of the
beam is used, along with a set of EGS4 runs made with a δ-function (i.e., pencil) beam,
to quickly obtain the temperature rise on the pulse for beams of any size. Examples are
given for studies that have recently been performed at SLAC in the design of the Next
Linear Collider.

1 Introduction

There are three important quantities which must be determined when designing targets capable
of handling large temperature-rise excursions. Namely, the temperature rise on the pulse, the
maximum stress at the central core and the steady-state temperature. The latter two, however,
are derivable from the temperature rise per pulse, ∆Tp (◦C/pulse), and this, in turn, is obtained
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from the energy-deposition density (i.e., fractional energy-loss per unit volume), dE/E0dV , as
follows[2] [3] [4] :

∆Tp = C
NE0

ρCp

1

E0

dE

dV
, (1)

where

ρ = material density (g/cm3),

Cp = heat capacity ≈ 6.0

A
(cal/g◦C),

N = electrons/pulse,

E0 = incident beam energy (MeV),

A = atomic weight (g/mole),

C = 1.6× 10−13/4.184 (cal/MeV). .

The maximum radial stress (r=0) in a pulse, σr (psi), is then obtained with

σr =
αEy∆Tp

2(1− νp)
, (2)

where

νp = Poisson ratio (0.25 to 0.30),

α = coefficient of thermal expansion (◦C−1),

Ey = Young′s modulus (psi) .

The steady state temperature profile, T (r), is given by equating the heat input, Q̇, inside a
cylinder of radius r to the heat conduction through the surface of the cylinder.

Q̇ = νNE0C
∫ r

0

1

E0

dE

dV
2πr dr = kT 2πr

dT

dr
, (3)

where

ν = pulse repetition rate (sec−1),

kT = thermal conductivity coefficient (cal sec−1 cm−1 ◦C−1) .

Therefore, one only needs to determine dE/E0dV using the EGS4 code.

2 Accounting for the Radial Extent of the Beam

The straight-forward method of accounting for the beam size with EGS4 is to sample the incident
coordinates (XI , YI) over an appropriate distribution, such as a Gaussian, just prior to each call
to SUBROUTINE SHOWER. However, several problems arise from this direct method. First of all,
at high energies (multi-GeV) and for thick targets (many radiation lengths), a large amount
of computer time is spent just tracking the particles in the shower to the very low energies
required in determining the energy-deposition density itself. A limit must then be imposed on
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the number of incident particles that can be sampled, for any given beam size, and the end
result is that the radial distribution for the temperature rise contains large fluctuations.

Secondly, the calculation has to be run over and over again for each of the beam-spot sizes
of interest. Clearly, the time is better spent performing EGS4 calculations with good statistics,
using a δ(XI)δ(YI) (i.e., pencil beam) input, and subsequently performing convolution-type
integrations for each of the beam sizes of interest.

The convolution method that we have developed applies to round Gaussian beams—i.e., σx =
σy = σ. It was developed by Ecklund and Nelson in 1981 [5] and subsequently used in the thesis
by Donahue [6] .

3 Gaussian Convolution of Pencil Beams

The general form of a one-dimensional Gaussian distribution is

f(x) =
1√
2πσ

∫ ∞

−∞
e−

(x−x)

2σ2 dx . (4)

If we assume that the energy-deposition density of the pencil beam is given by

W0(r) ≡ 1

E0

dE

dV
, (5)

then the convoluted energy-deposition density is

Wσ(r) = f ∗W0 =
∫

f(x)W0(x) dx . (6)

For a two-dimensional Gaussian distribution in radial coordinates (x = r cos θ, y = r sin θ),

Wσ(r) =
1

2πσ2

∫ ∞

0
dr

∫ 2π

0
dθ re−(

r2+r2−2rr cos(θ−θ))

2σ2 W0(r)

=
1

2πσ2

∫ ∞

0
rdr e

−(r−r)2

2σ2 W0(r)
∫ 2π

0
dθ e−

rr
σ2 (1−cos θ) , (7)

where we have taken θ = 0 without loss of generality.

Since the EGS4 output is in the form of a histogram averaged over radial bins, we have

Wσ(i) ≡
∫ ri+1

ri

Wσ(r) r dr . (8)

The convoluted distribution with the same binning is then

Wσ(i) =
∑
j

MijWσ(j) , (9)

where

Mij =
1

πσ2(r2
i+1 − r2

i )

∫ ri+1

ri

∫ rj+1

rj

rdr rdr e
−(r−r)2

2σ2

∫ 2π

0
e−

rr
σ2 (1−cos θ) dθ . (10)

The integral over θ can be reduced to a modified Bessel function, I0. The double integration
is done numerically, taking special care (along i = j) to provide the quadrature routine with an
integrand that is not ill-behaved over the bin in question. The above equation assumes that the
energy-deposition density does not vary significantly over the width of each bin.
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4 Computer Codes for Offline Convolution

The following computer codes have been written in order to demonstrate the convolution tech-
nique presented in this paper.

• EGS4 User Code to create energy-deposition density data for small radial bins at various
depths into the target. The code can be run with a pencil beam input, σ = 0.0. in order
to generate the Wσ(j) required by the off-line convolution scheme. It can also be run with
a Gaussian incident beam, e.g., σ = 10 or σ = 100 microns.

• A program that creates the Gaussian convolution matrix elements, Mij, for a given set of
beam σ, and a second program to check the

∑
j Mij = 1.0 for any i-bin.

• A program to convolute Wσ(j) and Mij and produce a new output file for plotting the new
dE/E0dV (left ordinate) and the corresponding temperature rise, ∆Tp (◦C/pulse) (right
ordinate).

A common element with all of these codes is that they must have the same radial binning
structure. In our example case (see Appendix 1), the target consists of 17 cylinders with radii
of 1, 3, 5, 7, 10, 30, . . . , 3000, 5000, 7000 10000 microns.

These codes are of a general enough nature to be of use in a variety of temperature-rise (and
other) problems and can be downloaded from SLAC1.

4.1 EGS4 User Code to determine energy-deposition density, Wσ(j)

A general-purpose EGS4 User Code, called ucRTZ temp.mortran, has recently been written at
SLAC for a cylinder-slab geometry, with input read in from a .data file. This code is similar to
the DOSRZ code by the National Research Council of Canada, which comes with the standard
distribution of EGS4, but it is tailored for more general use other than dosimetry. For the
problem of interest in this paper, another User Code was cloned from ucRTZ temp.mortran and
given the name ucRTZ temp spot.mortran, the only real difference being the addition of the
capability of sampling the incident beam-spot size from a Gaussian distribution. Associated
with this code is the input file ucRTZ temp spot.data, an example of which is provided in
Appendix 1.

In the section below entitled Verification of Convolution Method we will use ucRTZ temp to
generate 10 computer runs, each with 1000 incident electrons, using two modes:

• Pencil-beam mode: With σ = 0.0 to create an output histogram, from the concatenation
of ten runs, to be used as input for the convolution code.

• Direct-sampling mode: With σ set to either 10 or 100 microns to create an output his-
togram, again a concatenation of ten runs, that can be compared with the results of the
convolution (at 10 and 100 microns).

1The files are kept in /afs/slac.stanford.edu/public/groups/egs4/Convolution and can be obtained
using anonymous ftp—i.e., ftp ftp.slac.stanford.edu followed by cd groups/egs4/Convolutions).
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4.2 Programs to create (and check) matrix elements, Mij

After getting the basic set of histogram data—i.e., ten separate runs of the User Code with
different random number seeds—the next step is to create a set of matrices for each of the values
of σ required in the problem. To facilitate this a program called RTZ mat.mortran was created,
documentation for which is contained within the code itself. Another code, RTZ matck.mortran,
has also been created to check that the

∑
j Mij = 1.0 for any i-bin.

4.3 Program to convolute Wσ(j) and Mij

The program that performs the actual convolution is called RTZ temp spot.mortran. As de-
scribed above, it requires the following two input files:

• RTZ temp spot.data

• RTZ mat.data

The first file is a concatenation of EGS4 runs, ten in our example case, each created with the
code ucRTZ temp spot.mortran and its input data file ucRTZ temp spot.data. The second file
is a concatenation of the matrix output from one or more runs of RTZ mat.mortran for each σ
of interest. In our case, σ = 3.16, 10, 20, 30, 50, 100, 500, 1000, 2000 and 3000 microns. Note,
however, that we will only make us of σ = 10 and 100 microns in our verification of the method,
which is presented next.

5 Verification of Convolution Method

If a beam-spot size is directly sampled prior to each SHOWER call in EGS4 a lot of computer
time is required in order to get adequate statistics, especially at high-energies, low cut-offs,
and for thick materials. Hence, the reason for developing the convolution method in the first
place. Nevertheless, the direct-sampling method itself provides us with a way to verify that the
convolution technique works, provided that we limit the check to reasonably low-energy incident
beams (note: a 1-GeV shower takes 100 times less time than does a 100-GeV shower).

Using the ucRTZ temp spot User Code, we have done this verification for an 8-r.l. thick
copper target (1-cm radius) struck by 1-GeV electron beams. The target is broken up along
Z into eight cylindrical slabs, each cylinder composed of 17 subcylinders, as indicated ear-
lier (see Appendix 1). Accordingly, this same radial structure was also employed with the
RTZ temp spot.mortran and and RTZ mat.mortran codes.

The results are shown in Figures 1 and 2 for beam sizes of 10 and 100 microns, respectively.
The convoluted results (solid curves) are seen to be in excellant agreement with the directly-
sampled results (histograms), at both the front (0-1 r.l.) and back (7-8 r.l.) of the target,
thereby demonstrating that the convolution method works.
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Figure 1: Comparision of direct-sampling (histogram) and convolution (solid curve) methods
for a 1-GeV beam striking an 8-radiation length Cu cylinder: σx = σy = 10 microns.

Figure 2: Comparision of direct-sampling (histogram) and convolution (solid curve) methods
for a 1-GeV beam striking an 8-radiation length Cu cylinder: σx = σy = 100 microns.
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6 Temperature-Rise Examples from the NLC

The beam parameters for the Next Linear Collider (NLC)[7] create a very serious problem with
respect to the pulse temperature-rise in objects that the beam may inadvertantly strike. To
illustrate this problem using the codes described in this paper, we considered a pencil-beam
energy of 500 GeV impinging upon a 10-r.l. long Cu cylinder having a radius of 1 cm. The
energy-deposition density and the corresponding pulse temperature rise are shown as a function
of radius in Figures 3 through 5, for the beginning, middle and end of the target, respectively.

Figure 3: Energy-deposition density and temperature rise as a function of radius at the beginning
of the target (∆z = 0-1 r.l.)

A full beam of 1012 electrons/pulse was used in these calculations and one sees that even in
the first layer of the target (Figure 3), where the shower has yet to develop fully, the temperature
rise on the pulse exceeds 20-million ◦C/p for the case of the pencil beam (histogram). In order to
get the temperature down to something more reasonable, say 100 ◦C/p, the convolution curves
tell us that the beam would have to be larger than 500 microns.

As the shower develops in the target, multiple scattering also leads to a lateral spread of
the energy-deposition density. In Figures 4 and 5 we see that, indeed, the multiple scattering
has some effect on reducing the temperature rise for incident beams with small emittance, but
the shower multiplication is just too strong for large beams (e.g., 500 microns), resulting in
temperatures several orders of magnitude higher deep in the shower, relative to what they were
near the surface.
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Figure 4: Energy-deposition density and temperature rise as a function of radius in the middle
of the target (∆z = 4-5 r.l.)

Figure 5: Energy-deposition density and temperature rise as a function of radius at the end of
the target (∆z = 9-10 r.l.)
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To show the dramatic effect of shower multiplicity on beams of all sizes, we plot in Figure 6
the maximum temperature rise as a function of depth, for the pencil beam and for the convolu-
tion curves of each of the ten incident beams considered. Also shown is the melting temperature
of Cu (dashed line) and its stress limit (dotted line)[7].

Figure 6: Pulse temperature rise vs. target depth for a 500 GeV beam in Cu

From this figure it becomes clear that even beams as large as 3000 microns could damage
the copper target in a single pulse. The question then becomes: “Is there a material that is
more suitable for full beams of the order of 1012 electrons/pulse?”

To answer this question we performed a similar analysis for Al and Be, with the results
shown in Figures 7 and 8, respectively. The results show that aluminum and beryllium might
be able to withstand a single pulse of the order of 1000 and 500 microns, respectively.
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Figure 7: Pulse temperature rise vs. target depth for a 500 GeV beam in Al

Figure 8: Pulse temperature rise vs. target depth for a 500 GeV beam in Be
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7 Conclusion

Running thick-target EGS4 calculations at high energies can be costly in computer time. That
is, the higher the energy the larger the shower multiplicity, implying that more particles must
be followed until they reach their energy cutoffs. This, in turn, makes it difficult and time-
consuming to study the temperature-rise in targets, where the size of the beam must also be
incorporated into the Monte Carlo calculation in order to study real beams. Direct sampling
over the beam size simply introduces yet another statistical variance into the results, requiring
longer and longer jobs to be run.

In the study presented in this paper, we have created a convolution technique in which a
reasonable set of computer runs, using a δ-function incident beam, can be used together with a
predetermined set of beam matrices to obtain the temperature rise for a large number of beam
sizes. We have demonstrated, at 1 GeV, that the results are consistent with the more laborious
“direct sampling” approach, but the technique should be viable at any energy.

Also presented in this paper are some examples of the use of the convolution technique for
temperature-rise studies for the Next Linear Collider, where the basic problem of very-small
emittance beams of high-intensity and high-energy is shown to be formidable.
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Appendix 1

Representative example of the data-input file: ucRTZ temp spot.data

ucRTZ_temp_spot.data

1 NMED (I10)

CU MEDIA(J,1) (24A1)

0.0 0.0 ECUTin,PCUTin (Kinetic) (MeV) (2F10.0)

17 1 8 Imax,Jmax,Kmax (3I10)

0.0001 I=1 CYRAD (cm) (F10.0)

0.0003 =2

0.0005 =3

0.0007 =4

0.0010 =5

0.0030 =6

0.0050 =7

0.0070 =8

0.0100 =9

0.0300 =10

0.0500 =11

0.0700 =12

0.1000 =13

0.3000 =14

0.5000 =15

0.7000 =16

1.0000 =17=Imax

0.0 J=1=Jmax THEPL (degrees) (F10.0) (no azimuthal)

0.0 K=1 ZPL (r.l. here, hard coded to cm in program)

1.0 =2

2.0 =3

3.0 =4

4.0 =5

5.0 =6

6.0 =7

7.0 =8=Kmax

8.0 =9=Kmax+1

1 17 1 1 1 8 1 0.0 CU

blank card (required EOF)

0.0 0.0 0.0 Xin,Yin,Zin (3F10.0)

1 1 1 Iin,Jin,Kin (3I10)

0.0 0.0 1.0 Uin,Vin,Win (3F10.0)

1 1 IXX,JXX (2I10)

1000 0.0100 Ncases,Sigma (I10,F10.0) (Sigma=0.0 implies pencil beam)

1000.0 -1 0 EKEin(MeV),IQin,Isamp (F10.0,2I10)

1 2 0 0 IBRDST,IPRDST,IBRSPL,NBRSPL (4I5)

0 0 0 0 0.0 IPLC,IBCA,ILCA,IOLDTM,BLCMIN (4I5,F10.0)
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