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Abstract

Within the framework of light-cone quantisation we derive the complete and ex-

act overlap representation of skewed parton distributions for unpolarised and po-

larised quarks and gluons. Symmetry properties and phenomenological applica-

tions are discussed.
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1 Introduction

Quark and gluon �elds are the basic objects of Quantum Chromodynamics (QCD), the

theory of strong interactions. On the other hand, the objects observable in experiment

are hadrons, which are built up from quarks and gluons. There is still no analytical

description of the mechanism of con�nement which relates hadron properties to the quark
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and gluon degrees of freedom. In hard scattering processes, instead, we parameterise the

non-perturbative information in terms of hadronic matrix elements of quark and gluon �eld

operators. Universality of the matrix elements assures that once they have been measured

in a hard process, the results can be plugged into the calculation of observables for other

hard processes.

In the description of inclusive and exclusive hard processes the hadronic matrix elements

of quark and gluon �elds generally are of two distinct types:

� In inclusive hard processes the hadron state expectation values, i.e., diagonal matrix

elements, of bi-local combinations of �eld operators at a light-like distance are con-

veniently expressed in terms of parton distribution functions (PDFs) [1]. At leading

order in a twist expansion the PDFs acquire a simple intuitive interpretation in the

context of light-cone (LC) quantisation, provided a light-cone gauge, for instance

A+ = 0, is used. In that case, the PDFs give the probability to �nd a parton in-

side a hadron, carrying the plus-component fraction x of the hadron's momentum p.

Projections on de�nite helicity or transverse spin eigenstates of the partons reveal

information on their preferences to be aligned or anti-aligned relative to the spin of

the parent hadron. The polarised quark PDFs, like the helicity distribution �q(x)

or the transverse spin distribution Æq(x), thus have an interpretation as di�erences

of probabilities.

� The other type of hadronic matrix elements of quark and gluon �elds is involved in

the description of hadron form factors at large momentum transfers. They are de�ned

from matrix elements of local combinations of quark �eld operators. In contrast to

the above mentioned matrix elements of the inclusive processes, the matrix elements

involved in the de�nition of form factors are non-diagonal in initial and �nal state,

which are characterised by di�erent momenta.

The interest in the connection between hard inclusive and exclusive reactions has re-

cently been renewed in the context of the so-called skewed parton distributions (SPDs) [2,

3, 4] which have been shown to play a decisive role in the understanding of deeply virtual

exclusive reactions, Compton scattering [4, 5] and electroproduction of mesons [6]. The

SPDs, de�ned as non-diagonal hadronic matrix elements of bi-local products of quark and

gluon �eld operators, are functions of the momentum fraction variable �x, the skewedness

parameter �, and the squared momentum transfer t (see Sect. 2 for de�nitions). They

represent generalisations of the two types of hadronic matrix elements mentioned above

and are, in so far, hybrid objects which combine properties of ordinary PDFs and of form

factors. In fact, the close connection of these quantities becomes manifest in reduction

formulas: PDFs are the forward limits of the SPDs, while form factors are moments of

them.

In a recent publication [7] we have obtained a representation of quark SPDs in the

regions � < j�xj < 1 in terms of light-cone wave function (LCWF) overlaps. This repre-

sentation can be viewed as a generalisation of the famous Drell-Yan formula [8] for elec-

tromagnetic form factors. It also includes the LCWF representation of the PDFs [9] as a
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limiting case. The purpose of the present article is to present the derivation of the overlap

representation for SPDs in detail within the framework of the light-cone (LC) quantisation.

We will generalise our previous result [7] to the entire kinematical region, �1 < �x < 1, and

extend it to the gluonic sector.

The paper is organised as follows: In Sect. 2 we recall a few basic facts of LC quantisa-

tion, discuss the Fock state decomposition of hadronic states, and introduce the relevant

kinematical de�nitions. The derivation of the overlap representation for the unpolarised

quark SPDs is presented in some detail in Sect. 3. The case of polarised quark SPDs and

the extension to the case of gluons is discussed in Sect. 4. Sect. 5 is devoted to the discus-

sion of general properties of the overlap representation, and Sect. 6 to phenomenological

applications. We conclude the article with a summary (Sect. 7). In an appendix we will

present some useful formulas in order to facilitate the comparison with other conventions

in the de�nition of SPDs.

2 Fock state decomposition

In this Section, after giving some necessary de�nitions for �eld operators and parton states,

we discuss the Fock state decomposition of a hadronic state, a crucial step towards an

overlap representation of SPDs. We will use the component notation z� = [z+; z�; z?] for

any four-vector z with the LC components z� = (z0 � z3)=
p
2 and the transverse part

z? = (z1; z2). We will work in the framework of LC quantisation in the A+ = 0 gauge.

At given light-cone time, say z+ = 0, the independent dynamical �elds are the so-called

\good" LC components of the �elds, namely � c
q � P+ 

c
q for quarks of 
avour q and colour c

(where the projectors acting on the Dirac �eld  c
q are de�ned by P� = 1

2

�
�) and the

transverse components of the gluon potential A c
� (where � 2 f1; 2g is a transverse index

and c again denotes colour). The independent dynamical �elds have Fourier expansions in

momentum space (see e.g. [9], Appendix II)

� c
q (z

�; z?) =

Z
dk+ d2k?

k+ 16�3
�(k+)

X
��

bq(w) u+(w) exp
�
� i k+z� + ik? � z?)

�

+ d yq (w) v+(w) exp
�
+ i k+z� � ik? � z?)

� �
(1)

for the free quark �eld, and (� 2 f1; 2g)

A c
�(z

�; z?) =

Z
dk+ d2k?

k+ 16�3
�(k+)

X
��

a (w) ��(w) exp
�
� i k+z� + ik? � z?

�

+ a y(w) ���(w) exp
�
+ i k+z� � ik? � z?

��
: (2)
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for the free gluon �eld, where �(k+) denotes the usual step function. We use a collective

notation for the dependence on the plus and transverse parton momentum components,

the helicity, and the colour in the form

w = (k+;k?; �; c) : (3)

The operators b and dy are the annihilator of the \good" component of the quark �elds and

the creator of the \good" component of the anti�elds, respectively, and u+(w) � P+ u(w)

and v+(w) � P+ v(w) are the projections of the usual quark and antiquark spinors. a and a
y

are the annihilation and creation operators for transverse gluons, and ��(w) is a transverse

component of the gluon polarisation vector. The operators ful�l the anticommutation

relations n
bq0(w

0); b yq (w)
o

=
n
dq0(w

0); d yq (w)
o

= 16�3 k+ Æ(k0+ � k+) Æ(2) (k0? � k?) Æq0q Æ�0� Æc0c ; (4)

and the gluon operators a and ay satisfy the commutation relationh
a (w0); a y(w)

i
= 16�3 k+ Æ(k0+ � k+) Æ(2) (k0? � k?) Æ�0� Æc0c : (5)

Key ingredient in our derivation of the overlap representation is the Fock state decom-

position [9], i.e., the replacement of a hadron state by a superposition of partonic Fock

states containing free quanta of the \good" LC components of (anti)quark and gluon �elds.

Single-parton, quark, antiquark or gluon, momentum eigenstates are created by by, dy and

ay acting on the perturbative vacuum,1

jq;wi = byq(w) j0i ;
j�q;wi = dyq(w) j0i ;
jg;wi = ay(w) j0i ; (6)

and the (anti)commutation relations (4) and (5) translate into the normalisation of these

states,

hs0;w0js;wi = 16�3 k+ Æ(k0+ � k+) Æ(2) (k0? � k?) Æs0s Æ�0� Æc0c (7)

for partons s, s0 of any kind. A hadronic state characterised by the momentum p and

helicity � is written as

jH; p; �i =
X
N;�

Z
[dx]N [d

2k?]N 	�
N;�(r) jN; �; k1; : : : ; kNi ; (8)

where 	�
N;�(r) is the momentum LCWF of the N -parton Fock state jN; �; k1; : : : ; kNi. The

index � labels its parton composition, and the helicity and colour of each parton.

1We assume a `trivial' perturbative vacuum, i.e., b j0i = d j0i = a j0i = 0, and ignore possible problems
arising from zero modes, which are beyond the scope of this investigation.
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Apart from their discrete quantum numbers (
avour, helicity, colour) the partons are

characterised by their momenta ki =
h
k+i ; k�i ; k?i

i
. The LCWFs, on the other hand,

do not depend on the momentum of the hadron, but only on the momentum coordinates of

the partons relative to the hadron momentum. In other words, the centre of mass motion

can be separated from the relative motion of the partons [10]. The arguments of the

LCWF, namely xi � k+i =p
+ and the transverse momenta k?i, can most easily be identi�ed

in reference frames where the hadron has zero transverse momentum. We call such frames

\hadron-frames" and use again a collective notation

ri = (xi;k?i) (9)

and 	�
N;�(r) = 	�

N;�(r1; : : : ; rN) for the arguments of the LCWFs.2 An N -parton state is

de�ned as

jN; �; k1; : : : ; kNi =
1q
fN;�

Y
i

b yqi(wi)p
xi

Y
j

d yqj(wj)p
xj

Y
l

a y(wl)p
xl

j0i : (10)

Owing to the (anti)commutation relations (4) and (5) the states jN; �; k1; : : : ; kNi are com-
pletely (anti)symmetric under exchange of the momenta ki of gluons (quarks) with identical

discrete quantum numbers.3 Without loss of generality we can thus take the wave func-

tions 	�
N;�(r) to have the same (anti)symmetry under permutations of the corresponding

momenta ri. The normalisation constant fN;� in (10) contains a factor n! for each subset

of n partons whose discrete quantum numbers are identical, so that one has

	��
N;�0(r

0)	�
N;�(r) hN 0; � 0; k01; : : : ; k

0
N 0 jN; �; k1; : : : ; kNi

= j	�
N;�(r)j2 ÆN 0N Æ�0�

NY
i=1

16�3 k+i Æ(k
0+
i � k+i ) Æ

(2) (k0?i � k?i) : (11)

The Kronecker symbol Æ�0� implies that one does not introduce di�erent labels � for states

whose assignment of discrete quantum numbers for the individual partons only di�ers by

a permutation. Finally, the hadron states are normalised as

hH; p0; �0 jH; p; �i = 16�3 p+ Æ(p0+ � p+) Æ(2) (p0? � p?) Æ�0� ; (12)

with X
N;�

Z
[dx]N [d

2k?]N j	�
N;�(r)j2 = 1 : (13)

The integration measures in Eqs. (8) and (13) are de�ned by

[dx]N �
NY
i=1

dxi Æ

 
1�

NX
i=1

xi

!
; (14)

[d2k?]N � 1

(16�3)N�1

NY
i=1

d2k?i Æ
(2)

 
NX
i=1

k?i � p?

!
: (15)

2This notation resembles the de�nition of the w in (3), but refers now to the relative momentum
coordinates.

3Notice that this is di�erent from the notation of quantum mechanics, used e.g. in [7], where
js1; w1; s2; w2i is de�ned as a direct product js1; w1i
js2; w2i and therefore di�erent from �js2; w2; s1; w1i.
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We remark that the parton states (10) do not refer to a speci�c hadron, rather they are

characterised by a set � of 
avour, helicity and colour quantum numbers. Their coupling

to a colour singlet hadron with de�nite quantum numbers such as isospin is incorporated in

the LCWFs 	�
N;�(r). Many of them are zero, and several of the non-zero ones are related

to each other. The three-quark (valence) Fock state of the nucleon, for instance, has only

one independent LCWF for all con�gurations where the quark helicities add up to the

helicity of the nucleon [11]. For higher Fock states there are in general several independent

LCWFs.

An alternative and frequently used method is to use parton states that are colour

neutral and already have the appropriate quantum numbers of the hadron. These parton

states are linear combinations of our states (10). The LCWFs in this method correspond

to the independent ones of our coupling scheme, up to a normalisation factor. The label

� is restricted correspondingly. As we will see below, our method has advantages in the

central region, �� < �x < �, while it is equivalent in the other regions of �x.

Since hadrons are not massless, we need to specify the helicity states appearing in

the Fock state decomposition (8). To this end we brie
y review its construction. One

introduces the wave functions 	�
N;�(r) by �rst writing down (8) for a state with p? = 0,

i.e., in a \hadron frame". There, helicity states jH; p; �i are de�ned in the usual way, the

spin direction being aligned or antialigned with the hadron momentum. One then obtains

the Fock state decomposition for a hadron with nonzero p? by applying to the states on

both sides of (8) a \transverse boost" (see e.g. [9]), i.e., a transformation that leaves the

plus component of any four-vector z unchanged. It involves the parameters b+ and b? and

reads

h
z+ ; z� ; z?

i
�!

"
z+ ; z� � z? � b?

b+
+
z+ b 2

?

2 (b+)2
; z? �

z+

b+
b?

#
: (16)

This transformation relates the parton momenta in the frame where p? 6= 0 with those,

ri, in the hadron frame. It also speci�es the spin state of the hadron. One easily sees that

its covariant spin vector reads

�

m

"
p+ ;

p2
? �m2

2p+
; p?

#
(17)

and, as remarked in [7], is a linear combination of the four-vectors p and [ 0 ; 1 ; 0? ]. In the

limitm = 0, the light-cone helicity states so de�ned coincide with the usual helicity states.

With �nite m they do not: for p? 6= 0 they are not eigenstates of the angular momentum

operator along their direction of motion, unless one goes to the in�nite-momentum frame

[12]. Explicit spinor representations can e.g. be found in [9].4

Let us now take a look at the hadron momenta involved in the de�nitions of SPDs.

The initial and �nal hadron states are characterised by the momenta p and p 0. In order to

4The spinors given by Brodsky and Lepage [9] are equivalent to those proposed by Kogut and Soper
[12] if one takes into account the di�erence in the conventions for light-cone coordinates and in the repre-
sentations of the Dirac matrices.
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parameterise them we de�ne the average momentum

�p =
1

2
(p+ p 0) ; (18)

choose the three-momentum �p to be along the e 3-axis (see Fig. 1), and write in light-cone

components

p =

"
(1 + �)�p+ ;

m2 +�2
?=4

2(1 + �) �p+
; ��?

2

#
;

p 0 =

"
(1� �) �p+ ;

m2 +�2
?=4

2(1� �) �p+
; +

�?

2

#
(19)

with the transverse vector �?, the plus momentum �p+, and the skewedness parameter

� =
(p� p 0)+

(p+ p 0)+
; (20)

which describes the change in plus momentum. The momentum transfer takes the form

� = p 0 � p =

"
�2� �p+ ;

�(m2 +�2
?=4)

(1� �2)�p+
; �?

#
; (21)

and with the parameterisation (19) its square reads

t = �2 = �4 �2m2 +�2
?

1� �2
: (22)

Notice that the positivity of �2
? implies a minimal value

�t0 = 4�2m2

1� �2
(23)

for �t at given �, which translates into a maximum allowed � at given t. As shown in

Fig. 1(a) the parton emitted by the hadron has the momentum k, and the one absorbed

has momentum k0. The average parton momentum �k is de�ned as (k + k0)=2, in analogy

to (18), and correspondingly a momentum fraction �x = �k+=�p+ is introduced. This is Ji's

variable x [3].

In an alternative parametrisation of the hadron momenta frequently found in the lit-

erature (see for instance [4]), the three-momentum of the incoming proton is chosen to lie

along the e 3-axis. In Fig. 1 the two di�erent choices are illustrated. We will present our

results formulated in terms of the alternative set of kinematical variables in the Appendix.
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p

~e3

p = p�
�

2
p0
= p+

�

2

k = k �
�

2
k0
= k +

�

2

(a)

p

~e3

p = p�
�

2
p0
= p+

�

2

k = k �
�

2
k0
= k +

�

2

(b)

Figure 1: Illustration of two common choices to �x the longitudinal direction in the de�-

nition of the non-diagonal hadronic matrix element which de�nes skewed parton distribu-

tions. The 
ow of momenta is indicated on the lines.

3 The unpolarised skewed quark distribution

We now turn to the derivation of the overlap representation for leading-twist SPDs. For

de�niteness let us consider the case of unpolarised quarks inside protons. Thus, we investi-

gate the proton matrix element of the plus component of a 
avour-diagonal bi-local quark

�eld operator summed over colour. The generalisation to other hadrons is straightforward.

Following Ji [3], we de�ne the SPDs Hq(�x; �; t) and Eq(�x; �; t) for a quark of 
avour q by

Hq
�0� � 1

2
p
1� �2

X
c

Z
dz�

2�
ei �x �p+z� hp 0; �0j c

q (��z=2) 
+  c
q (�z=2) jp; �i

=
u(p 0; �0)
+u(p; �)

2�p+
p
1� �2

Hq(�x; �; t) +
u(p 0; �0)i�+���u(p; �)

4m �p+
p
1� �2

Eq(�x; �; t) (24)

where �, �0 denote the proton helicities, and �z is a shorthand notation for [0; z�; 0?].

The link operator normally needed to render the de�nition (24) gauge-invariant does not

appear because we choose the gauge A+ = 0, which together with an integration path along

the minus direction reduces the link operator to unity. With the phase conventions of the

Brodsky-Lepage light-cone spinors [9] we �nd for the di�erent proton helicity combinations

Hq
++ = Hq

�� = Hq � �2

1� �2
Eq ;

Hq
�+ = �(Hq

+�)
� = �

p
t0 � t

2m

1p
1� �2

Eq (25)

with t0 de�ned in Eq. (23) and a phase factor reading

� =
�1 + i�2

j�?j
(26)
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for proton momenta of the form (19). In a general reference frame �� in Eq. (26) is to be

replaced with ���(�+=�p+) �p�. EvaluatingHq
�0� for both proton helicity 
ip and non-
ip,

one obtains the usual SPDs for quark 
avour q, Hq and Eq. We remark in passing that

the LCWFs for proton helicity states with opposite helicity are related through a re
ection

about the x-z plane [11].

A key point in our derivation of an overlap formula is the well-known observation that

the bi-local quark �eld operator in the de�nition (24) can be written as a density operator

in terms of the \good" LC components (see e.g. [13])

 c
q (��z=2) 
+  c

q (�z=2) =
p
2 � c y

q (��z=2)� c
q (�z=2): (27)

Inserting the momentum space expansion (1) of the �elds, one obtains for the Fourier

transform occurring in (24)

X
c

Z
dz�

2�
ei �x �p+z�  c

q (��z=2) 
+  c
q (�z=2)

= 2

Z
dk0+ d2k0?
k0+ 16�3

�(k0+)

Z
dk+ d2k?

k+ 16�3
�(k+)

X
�;�0;c;c0

Æc0c

n
Æ(2�x�p+ � k0+ � k+) byq(w

0) bq(w) u
y
+(w

0) u+(w)

+ Æ(2�x�p+ + k0+ + k+) dq(w
0) dyq(w) v

y
+(w

0) v+(w)

+ Æ(2�x�p+ + k0+ � k+) dq(w
0) bq(w) v

y
+(w

0) u+(w)

+ Æ(2�x�p+ � k0+ + k+) byq(w
0) dyq(w) u

y
+(w

0) v+(w)
o
; (28)

a form that readily allows one to interpret the SPDs in the parton picture [14]. Which

of the four terms in (28) contributes to the matrix element in (24) is determined by the

positivity conditions k+ � 0 and k0+ � 0 for the parton momenta, together with momentum

conservation, which imposes k+ � k0+ = p+ � p0+ = 2��p+. For de�niteness we consider

the case � > 0 in the following, which is relevant for the applications of the SPDs in hard

processes that have so far been considered in the literature. In the region � < �x < 1 the

SPDs describe the emission of a quark from the nucleon with momentum fraction �x + �

and its reabsorption with �x � �. In the region �1 < �x < �� one has the emission of an

antiquark from the nucleon with momentum fraction �(�x + �) and its reabsorption with

�(�x � �). In the third region �� < �x < �, however, the nucleon emits a quark-antiquark

pair. We will discuss the three cases separately; �rst we focus on the region � < �x < 1 (see

Fig.2). The last term in (28), going with by(w0) dy(w) and describing the absorption of a

quark-antiquark pair, does not contribute for � > 0.

We remark in passing that one can de�ne distributions H �q(x; �; t) � �Hq(�x; �; t)
and E �q(x; �; t) � �Eq(�x; �; t), which in the region � < �x < 1 describe the emission

and reabsorption of antiquarks and may thus be called \skewed antiquark distributions".

We will not need this here, and instead work with the distributions Hq and Eq and their

di�erent interpretation in the three �x intervals just discussed.
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p = p�
�

2
p0 = p+

�

2

k = k �
�

2
k0 = k +

�

2

N N

x+ � x� �

1 + � 1� �

N+1 N�1

x+ � �(x� �)

1 + � 1� �

N N

�(x+ �) �(x� �)

1 + � 1� �

� <
x <

1

�� < x < �

�1 <
x <

��

Figure 2: Overlap representations for SPDs in di�erent kinematic regions for the case

� > 0. The 
ow of momenta is indicated on the lines. Top (bottom) right: the region

� < �x < 1 (�1 < �x < ��), where the SPDs are given by N ! N overlaps. Middle right:

the central region �� < �x < �, where N + 1! N � 1 overlaps are relevant.

3.1 The region � < �x < 1

The Fock state decomposition (8) leads to a representation of the matrix element Hq
�0� as

a sum over contributions from separate Fock states,

Hq
�0� =

X
N

Hq(N!N)
�0� ; (29)

with

Hq(N!N)
�0� =

1q
2(1� �2)

X
c

X
�;�0

Z
[d~x]N [d

2~k?]N [dx̂0]N [d
2k̂0?]N 	��0

N;�0(r̂
0)	�

N;�(~r)

�
Z
dz�

2�
ei �x �p+z� hN; � 0; k01 : : : k0N j � c y

q (��z=2)� c
q (�z=2) jN; �; k1; : : : ; kNi : (30)
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One can now express the N -parton states and the bi-local quark �eld operator � c y
q � c

q in

terms of the creation and annihilation operators, see Eqs. (10) and (28), and evaluate the

resulting vacuum matrix element using the (anti)commutation relations (4) and (5).

One obtains a product of two anticommutators involving the creation and annihilation

operators from � c y
q � c

q , which can be rewritten as a matrix element of the �eld operators

for the active quarks, and a product of N �1 (anti)commutators for the spectator partons,

which is conveniently expressed through one-parton matrix elements as in (7). The quan-

tum numbers for the active quarks and for the spectators have to match, see Eq. (7), and

Eqs. (38) and (40) below, so that the Fock state labels � and � 0 are constrained to be the

same.

For identical partons in the Fock state the non-zero (anti)commutators generate a num-

ber of terms corresponding to the di�erent possibilities to associate the partons in the initial

and �nal states. These terms are, however, all the same because of the (anti)symmetry

of the wave functions under permutations of the momenta ri for identical particles. The

number of these terms equals the product
q
fN;�0fN;� of normalisation factors from the

parton states times the multiplicity of the active parton. Thus, we end up with only one

term, a situation which allows us to number the spectators in one speci�c way. We thus

arrive at the following replacement of the matrix element appearing in (30)

hN; � 0; k01 : : : k0N j � c y
q (��z=2)� c

q (�z=2) jN; �; k1; : : : ; kNi

=
NX
j=1

hs0j;w0
jj � c y

q (��z=2)� c
q (�z=2) jsj;wjiq

x̂01 : : : x̂
0
N

q
~x1 : : : ~xN

NY
i=1

i6=j

hs0i;w0
ijsi;wii : (31)

We now have to comment on the involved parton momenta. The parton states are charac-

terised by their momenta and helicities, wi. We denote momenta of partons belonging to

the incoming hadron with unprimed, and the momenta of partons belonging to the outgo-

ing hadron with primed variables. The LCWFs, on the other hand, depend on the relative

momentum coordinates with respect to the parent hadron, ri. As mentioned above, the

identi�cation of the arguments of the LCWFs is most easily done when hadron frames are

chosen as frames of reference. We introduce the names \hadron-in" and \hadron-out" for

frames where the incoming and outgoing hadron has zero transverse momentum, respec-

tively. For the sake of clarity, we will here and in the following pedantically label quantities

in the hadron-in (hadron-out) frame with an additional tilde (hat). We further use the

name \average-frame" for a system where the hadron momenta are parameterised in the

form of Eqs. (19). In order to achieve a formulation symmetric in incoming and outgoing

quantities it is useful to de�ne as auxiliary variables the averages of incoming and outgoing

parton momenta in the average frame

�ki =
1

2
(ki + k0i) ; �xi =

�k+i
�p+

; (32)
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which satisfy
NX
i=1

�xi =
1

�p+

NX
i=1

�k+
i = 1 ;

NX
i=1

�k?i = �p? = 0? : (33)

The parton emitted and later reabsorbed from the hadron is called the \active" parton

and labelled with index j; all other partons i 6= j play the role of \spectators". The active

parton carries a fraction �xj + � of the average plus-momentum �p+ when it is taken out

of the proton, and a fraction �xj � � when it is reinserted. The transverse momentum of

the active parton is k?j = �k?j ��?=2 before, and k0?j =
�k?j +�?=2 after the partonic

scattering process.

The arguments of the LCWF for the incoming hadron are obtained through a transverse

boost (16) with parameters b+ = (1 + �) �p+ and b? = ��?=2, which leads from the

average-frame to the hadron-in frame. Likewise, a transverse boost with parameters b+ =

(1� �) �p+ and b? = +�?=2 leads from the average-frame to the hadron-out frame. From

momentum conservation and the spectator condition

k0i =
�ki = ki ; for i 6= j ; (34)

one obtains that the LCWF arguments for the incoming hadron (i.e., the momenta of

the partons belonging to the incoming hadron in the hadron-in frame) are related to the

momenta in the average-frame by

~xi =
�xi

1 + �
; ~k?i = �k?i +

�xi

1 + �

�?

2
; for i 6= j ;

~xj =
�xj + �

1 + �
; ~k?j = �k?j �

1� �xj

1 + �

�?

2
: (35)

Likewise, the LCWF arguments for the outgoing hadron (i.e., the momenta of the partons

belonging to the outgoing hadron in the hadron-out frame) are related to the momenta in

the average-frame by

x̂0i =
�xi

1� �
; k̂0?i =

�k?i �
�xi

1� �

�?

2
; for i 6= j ;

x̂0j =
�xj � �

1� �
; k̂0?j =

�k?j +
1� �xj

1� �

�?

2
: (36)

Using this we can express the single-particle state normalisation (7) through the LCWF

arguments

hs0i;w0
ijsi;wii = 16�3 x̂0i Æ

 
x̂0i � ~xi

1 + �

1� �

!

� Æ(2)
 
k̂0?i � ~k?i +

~xi

1� �
�?

!
Æ�0

i
�
i
Æs0

i
s
i
Æc0

i
c
i
; (37)

where the relations (35) and (36) have been used to express the variables wi and w0
i in

terms of hadron frame quantities (with tilde and hat, respectively) and thus in terms of

12



the variables occurring in the integration measures. Now we use the expansion (28) of the

density operator, of which only the term with the quark operators by(w0) b(w) contributes to

the matrix element here. Combined with the use of the de�nition of the single-quark state

(6) and the anticommutation relation for the quark creation and annihilation operators

this yields

X
c

Z
dz�

2�
ei �x �p+z� hs0j;w0

jj� c y
q (��z=2)� c

q (�z=2) jsj;wji

=
1

�p+
Æ(�x� �xj) u

y
+(w

0
j) u+(wj) Æsjq Æs0jsj Æc0jcj : (38)

The argument of the Æ-function is simpli�ed with the help of (32). Thus we arrive at

Hq(N!N)
�0� =

1

�p+
q
2(1� �2)

s
1� �

1 + �

1�N X
�;�0

NX
j=1

Z
[d~x]N [d

2~k?]N dx̂0j d
2k̂0?j

� Æ

0
@x̂0j � 1 +

X
i6=j

~xi
1 + �

1� �

1
A Æ(2)

0
@k̂0?j +X

i6=j

 
~k?i � ~xi

1 + �

1� �
�?

!1
A

� Æ(�x� �xj) u
y
+(w

0
j) u+(wj) Æsjq Æs0jsjÆc0jcj

NY
i=1
i6=j

Æs0
i
s
i
Æ�0

i
�
i
Æc0

i
c
i

� 	��0

N;�0(r̂
0)	�

N;�(~r)q
x̂0j~xj

: (39)

Note that the Æ-functions shown explicitly, together with the ones in the integration mea-

sures [d~x]N [d
2~k?]N , provide the relation given in (36) for the active quark momentum

variables x̂0j and k̂0?j. The integrations over x̂0j and k̂0?j can be carried out, and in the

following the primed variables (with hat) are used as a shorthand de�ned by (36). The

equality of 
avours (s0j and sj) and colours (c
0
j and cj) is assured by the Kronecker symbols

in Eq. (39), and the spinor product evaluates to

u
y
+(w

0
j) u+(wj) =

1p
2
�u(w0

j) 

+ u(wj) =

q
2 (1� �2) x̂0j ~xj �p

+ Æ�0
j
�
j
: (40)

The Kronecker-Æ for the helicities in (40) could have been anticipated from the Dirac

structure of the operator  c
q


+ c
q in (24). De�ning right- and left-handed projections of

the �elds, � c
q;R=L � PR=L P+ 

c
q , with PR=L = (1� 
5)=2 and using P�
5 = 
5P� it is easy

to see that

 c
q


+ c
q =

p
2 � c y

q (PR + PL)�
c
q =

p
2
�
�
c y
q R�

c
q R + �

c y
q L�

c
q L

�
: (41)

Since for massless quarks chirality and helicity are identical, the helicities on both quark

lines have to be the same.
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To present our �nal result in a symmetric way we rewrite the integration measure in

terms of the average quantities with the help of (36)

[d~x]N =

 
1

1 + �

!N�1

[d�x]N ; [d2~k?]N = [d2�k?]N ; (42)

and arrive at the overlap representation of the quark SPD in the region � < �x < 1:

Hq(N!N)
�0� =

q
1� �

1�Nq
1 + �

1�N X
�=�0

X
j

Æsjq

�
Z
[d�x]N [d

2�k?]N Æ (�x� �xj) 	
��0

N;�0(r̂
0)	�

N;�(~r) ; (43)

with the arguments ~r (r̂0) of the LCWF for the incoming (outgoing) proton being related

to the integration variables �xi and �k?i by (35) and (36), respectively. Summation over N

leads to the full expression of Hq
�0� in the region � < �x < 1. Alternatively, as we discussed

in Sect. 2, one could use N -parton Fock states that are coupled to be colourless and carry

the quantum numbers of the hadron. Normalising these states in analogy to Eq. (11) and

denoting the associated LCWFs by e	N;~�, one would obtain an overlap e	�
N; ~�0

e	N;~� summed

over ~� = ~� 0, just as in (43). This simple structure is owed to the constraint � = � 0 in (43)

and will no longer appear in the region �� < �x < �, see Eq. (55).

3.2 The region �1 < �x < ��

For active antiquarks the derivation of the overlap representation of the SPDs goes in full

analogy to the one we have just given. Di�erences appear when the Fourier decomposition

(28) is used to yield the analogue of Eq. (38), since it is now the term with d(w0) dy(w)

that contributes. Exchanging the order of the annihilation and creation operator gives an

overall minus sign, and the Æ-function in the analogue of Eq. (38) now gives the constraint

�xj = ��x. The �nal result for the region �1 < �x < �� is

Hq(N!N)
�0� = �

q
1� �

1�Nq
1 + �

1�N X
�=�0

X
j

Æ�sjq

�
Z
[d�x]N [d

2�k?]N Æ (�x + �xj) 	
��0

N;�0(r̂
0)	�

N;�(~r) ; (44)

with the LCWF arguments ~r and r̂0 given by (35) and (36), respectively

3.3 The region �� < �x < �

Let us now consider the kinematical range �� < �x < �. As mentioned above, we restrict

ourselves to the case � > 0. Therefore, the quark SPDs in this region describe the emission

of a quark-antiquark pair from the initial proton. In the Fock state decompositions of the

initial and �nal protons we thus have to consider only terms where the initial state has the

14



same parton content as the �nal state plus one additional quark-antiquark pair. We thus

have

Hq
�0� =

X
N

Hq(N+1!N�1)
�0� (45)

as opposed to (29). This particular type of overlap was recently identi�ed in [15] in the

context of transition form factors between heavy and light mesons.

Starting from the de�nition (24) of SPDs for quarks of 
avour q and replacing the

hadronic states by their Fock state decomposition (8), the contribution of theN+1! N�1
transition to the matrix element Hq

�0� is found to be

Hq(N+1!N�1)
�0� =

1q
2(1� �2)

X
c

X
�;�0

Z
[d~x]N+1[d

2~k?]N+1 [dx̂
0]N�1[d

2k̂0?]N�1

� 	��0

N�1;�0(r̂
0)	�

N+1;�(~r)

Z
dz�

2�
ei �x �p+z�

�
D
N � 1; � 0; k01 : : : k

0
N�1

��� � c y
q (��z=2)� c

q (�z=2)
���N + 1; �; k1; : : : ; kN+1

E
: (46)

Using again the (anti)commutation relations for the creation and annihilation operators

the partonic matrix element can be replaced byD
N � 1; � 0; k01 : : : k

0
N�1

��� � c y
q (��z=2)� c

q (�z=2)
���N + 1; �; k1; : : : ; kN+1

E

=
N+1X
j;j0=1

1q
njnj0

h0j� c y
q (��z=2)� c

q (�z=2) jsj; wj; sj0; wj0iq
x̂01 : : : x̂

0
N�1

q
~x1 : : : ~xN+1

N+1Y
i=1

i6=j;j0

hs0i;w0
ijsi;wii ; (47)

where we label the active quark-antiquark pair with indices j for the quark and j 0 for the

antiquark, and write jsj; wj; sj0; wj0i = bysj (wj) d
y
sj0
(wj0) j0i for the corresponding two-parton

state. The sum over � and � 0 now runs over combinations where 
avour, helicity (and

colour) of all spectators match. nj (nj0) is the number of (anti)quarks in the initial proton

wave function 	�
N+1;�(r) with the same discrete quantum numbers as the active (anti)quark.

These factors appear since the product
q
fN+1;� fN�1;�0 of normalisation factors from the

parton states (10) is not equal to the number of possibilities to associate the partons in

the initial and �nal proton, in contrast to the situation in the regions discussed so far.

To simplify the notation we use the same numbering for the spectator partons in the

LCWFs of the initial and �nal state proton. Thus the N�1 partons in the outgoing proton
are numbered not as i = 1; : : : ; N � 1, but as i = 1; : : : ; N +1 with j and j 0 omitted. From

the spectator momenta ki and k
0
i (i 6= j; j 0) we again form the auxiliary variables de�ned

in Eq. (32). For j and j 0 we introduce

�kj =
1

2
(kj � kj0) ; �xj =

�k+j

�p+
; (48)
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which is half the relative momentum (and momentum fraction) between the active quark

and antiquark. It can as well be viewed as the average of kj and the reversed momentum kj0

(i.e., �kj0), in complete analogy with the de�nitions (32). From momentum conservation

and the spectator condition

k0i =
�ki = ki ; for i 6= j; j 0 (49)

we now obtain that the LCWF arguments for the incoming hadron are related to the parton

momenta in the average-frame by

~xi =
�xi

1 + �
; ~k?i = �k?i +

�xi

1 + �

�?

2
; for i 6= j; j 0 ;

~xj =
�xj + �

1 + �
; ~k?j = �k?j � 1� �xj

1 + �

�?

2
;

~xj0 = � �xj � �

1 + �
; ~k?j0 = ��k?j �

1 + �xj

1 + �

�?

2
; (50)

and that the LCWF arguments for the outgoing hadron are given by

x̂0i =
�xi

1� �
; k̂0?i =

�k?i �
�xi

1� �

�?

2
; for i 6= j; j 0 : (51)

The relations (50) and (51) can be used to write hs0;w0js;wi again as in Eq. (37), and

for the evaluation of the matrix element of the active quark-antiquark pair we insert the

expansion (28) of the density operator, now keeping only the term with d(w0) b(w). We

then use the de�nition of the two-parton state given after (47), and the anticommutation

relations (4) to write

X
c

Z
dz�

2�
ei �x �p+z� h0j� c y

q (��z=2)� c
q (�z=2) jsj; wj; sj0; wj0i

=
1

�p+
Æ(�x� �xj) v

y
+(wj0) u+(wj) Æ�sj0sj Æsjq Æcj0cj : (52)

Putting the pieces together we arrive at

Hq(N+1!N�1)
�0� =

1

�p+
q
2(1� �2)

s
1� �

1 + �

1�N X
�;�0

N+1X
j;j0=1

1q
njnj0

�
Z
[d~x]N+1[d

2~k?]N+1 16�
3 Æ

0
B@1� 1 + �

1� �

N+1X
i=1

i6=j;j0

~xi

1
CA Æ(2)

0
B@ �?

1 + �
�

N+1X
i=1

i6=j;j0

~k?i

1
CA

� Æ(�x� �xj) v
y
+(wj0) u+(wj) Æ�sj0sj Æsjq Æcj0cj

N+1Y
i=1

i6=j;j0

Æs0
i
s
i
Æ�0

i
�
i
Æc0

i
c
i

� 	��0

N�1;�0(r̂
0)	�

N+1;�(~r)q
~xj~xj0

: (53)
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The spinor product occurring is

v
y
+(wj0) u+(wj) =

1p
2
�v(wj0) 


+ u(wj) =
q
2 ~xj ~xj0 (1 + �) �p+ Æ�j0��j

: (54)

The integrations over ~xj0 and ~k?j0 can be carried out, and by rewriting the remaining

integrations in terms of the auxiliary variables we arrive at the overlap representation of

Hq
�0� in the region �� < �x < � for the N + 1! N � 1 transition:

Hq(N+1!N�1)
�0� =

q
1� �

2�Nq
1 + �

�N X
�;�0

N+1X
j;j0=1

1q
njnj0

Æ�sj0sj Æsjq Æ�j0��j
Æcj0cj

�
N+1Y
i=1

i6=j;j0

Æ�0
i
�
i
Æs0

i
s
i
Æc0

i
c
i

Z
d�xj

N+1Y
i=1

i6=j;j0

d�xi Æ

0
B@1� � �

N+1X
i=1

i6=j;j0

�xi

1
CA

�
Z
d2�k?j

N+1Y
i=1

i6=j;j0

d2�k?i (16�
3)1�N Æ(2)

0
B@�?

2
�

N+1X
i=1

i6=j;j0

�k?i

1
CA

� Æ (�x� �xj) 	
��0

N�1;�0(r̂
0)	�

N+1;�(~r) ; (55)

The arguments ~r and r̂0 of the wave functions are given in terms of �xi and �k?i by (50)

and (51), and nj, nj0 are de�ned after Eq. (46). As was to be expected, the operatorP
c
� c
q 


+ c
q in (24) projects out colour singlet q�q pairs with total helicity zero in the initial

proton LCWF.

At this point we see the advantage of our method to start from the parton states (10).

If one uses colour neutral parton states with the quantum numbers of the hadron under

investigation, one has in general to rearrange their colour coupling to ensure that the active

q�q pair is in a colour singlet state, and a combinatorial factor di�erent from 1=
p
njnj0 will

then appear in (55). Although such a procedure should be possible using appropriate group

theoretical methods (see e.g. [16]), we have not pursued this point here.

4 Quark polarisation and gluons

4.1 The polarised skewed quark distribution

We now turn to the polarised skewed quark distributions, fHq(�x; �; t) and eEq(�x; �; t), de�ned

by the Fourier transform of the axial vector matrix element

fHq
�0� � 1

2
p
1� �2

X
c

Z
dz�

2�
ei �x �p+z� hp 0; �0j c

q (��z=2) 
+
5  c
q (�z=2) jp; �i

=
u(p 0; �0)
+
5u(p; �)

2�p+
p
1� �2

fHq(�x; �; t) +
u(p 0; �0)�+
5u(p; �)

4m �p+
p
1� �2

eEq(�x; �; t) : (56)

17



For the di�erent proton helicity combinations we now �nd

fHq
++ = � fHq

�� = fHq � �2

1� �2
eEq ;

fHq
�+ = (fHq

+�)
� = �

p
t0 � t

2m

�p
1� �2

eEq : (57)

The derivation of an overlap formula goes along the same lines as for the unpolarised quark

SPDs. We just need the appropriate conversion of the quark �eld operators into a density

of LC �elds. Expressing the axial vector operator in terms of the left- and right-handed

projections we obtain

 c
q


+
5 
c
q =

p
2 � c y

q 
5�
c
q =

p
2
�
�
c y
q R�

c
q R � �

c y
q L�

c
q L

�
: (58)

Compared to (41) the di�erence of density operators for left- and right-handed projections

now appears. Repeating all steps in the derivation of (43) one �nds the overlap represen-

tation of the contribution of the N particle Fock state to the SPD for a polarised quark of


avour q in the region � < �x < 1

fHq(N!N)
�0� =

q
1� �

1�Nq
1 + �

1�N X
�=�0

X
j

sign(�j) Æsjq

�
Z
[d�x]N [d

2�k?]N Æ (�x� �xj) 	
��0

N;�0(r̂
0)	�

N;�(~r) ; (59)

where the arguments of the LCWFs are again given by the relations (35) and (36). The

only di�erence between the RHS of (59) and the RHS of (43) is the sign-function of the

helicity of the active quark. Summation over all Fock states as in (29) leads to the �nal

result. In the region �1 < �x < �� one has

fHq(N!N)
�0� =

q
1� �

1�Nq
1 + �

1�N X
�=�0

X
j

sign(�j) Æ�sjq

�
Z
[d�x]N [d

2�k?]N Æ (�x + �xj) 	
��0

N;�0(r̂
0)	�

N;�(~r) : (60)

In contrast to Eq. (44) there is no global minus sign here, because sign(�j) refers to

the antiquark helicity, which is minus the chirality selected by the operator (58). The

non-diagonal overlap fHq(N+1!N�1)
�0� in the central region is identical to (55) except for an

additional factor sign(�j), as appears in (59), where �j refers to the helicity of the active

quark.

4.2 The unpolarised skewed gluon distribution

The unpolarised skewed gluon distributions Hg(�x; �; t) and Eg(�x; �; t) are de�ned from the

Fourier transform of a hadronic matrix element involving two gluon �eld strength tensors

18



at a light-like distance:

Hg
�0� � �g?�0�

�p+
p
1� �2

X
c

Z
dz�

2�
ei�x �p+z� hp0; �0jG+�0

c (��z=2)G+�
c (�z=2) jp; �i

=
u(p0; �0)
+u(p; �)

2�p+
p
1� �2

Hg(�x; �; t) +
u(p0; �0)i�+���u(p; �)

4m �p+
p
1� �2

Eg(�x; �; t) (61)

with the transverse metric tensor g�
0�

? , which has g11? = g22? = �1 as only non-zero ele-

ments. Again the link operator is not displayed. Notice that in the A+ = 0 gauge the

relation G+�
c = @+A�

c provides a simple transition from �eld strengths to potentials. The

normalisation in Eq. (61) is chosen such that in the forward limit the SPD Hg is related

to the ordinary gluon distribution g(x) (for the de�nition see [17]) by

Hg(�x; � = 0; t = 0) = �x g(�x) : (62)

The derivation of an overlap formula proceeds in close analogy to the one for the quark

SPDs. There is only one technical point we have to comment on. From the expansion

(2) of the transverse components of the gluon �eld operators in momentum space, one

encounters a combination of polarisation vectors for the active gluons, which in the region

� < �x < 1 reads

���
0

(w0
j) �

�(wj) ; (63)

and is to be contracted with g?�0�. In a frame where the active on-shell gluon in the

incoming hadron has no transverse momentum, its polarisation vector is purely transverse

and does not depend on its momentum:

�(k+j ;k?j = 0; �j) = [ 0 ; 0 ; ~�?(�j) ] ; (64)

where ~�?(�) = (��;�i)=p2. A transverse boost from this frame to the hadron-in frame

leaves the transverse components unchanged. This is because the plus component of the

polarisation vector in the starting frame is zero. The plus component itself remains zero

by virtue of the de�nition of a transverse boost. The transformation produces a non-zero

minus component which we do not have to specify, since the polarisation vector will be

contracted with a transverse tensor. A similar argument can be given for the polarisation

vector of the reabsorbed gluon, starting in a frame where its momentum has no transverse

component and applying an appropriate transverse boost. Explicitly, we get

���
0

(w0
j) �

�(wj) = �1

2

�
g�

0�
? � sign(�j) i "

�0�
?

�
Æ�0

j
�
j
� 1

2
t�

0�
? Æ�0

j
��

j

+\non-transverse" ; (65)

where "12? = �"21? = 1, t 11? = �t 22? = 1, and t 12? = t 21? = i�j, while all other components

of these tensors are zero. The term \non-transverse" stands for a matrix with vanishing

matrix elements in the transverse sub-space. Neither this matrix nor t�
0�
? contribute when
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contracted with transverse tensors g?�0� and "?�0�, which occur in the de�nition of the

unpolarised and polarised skewed gluon distributions.

The �nal result for the overlap representation for the unpolarised gluon SPD in the

region � < �x < 1 is

Hg(N!N)
�0� =

q
�x2 � �2

q
1� �

1�Nq
1 + �

1�N X
�=�0

X
j

Æsjg

�
Z
[d�x]N [d

2�k?]N Æ (�x� �xj) 	
��0

N;�0(r̂
0)	�

N;�(~r) ; (66)

where the sum over j runs over all gluons, and the arguments, ~r and r̂0 of the LCWFs are

related to the auxiliary variables �xi and �k?i by the relations (35) and (36).

For the region �1 < �x < �� the gluon SPDs can be readily obtained from (66) with the

observation that Hg and Eg are even functions in �x, since the gluon is its own antiparticle.

In the region �� < �x < � the gluon SPDs describe the emission of two gluons

from the initial proton. In the Fock state decomposition, therefore, we have to consider

N + 1 ! N � 1 transitions, where the initial state has the same parton content as the

�nal state plus two additional gluons. In the derivation of an overlap representation one

encounters a combination of polarisation vectors, which can be evaluated exactly along the

lines discussed above as

��
0

(wj0) �
�(wj) =

1

2

�
g�

0�
? � sign(�j) i "

�0�
?

�
Æ�j0��j

+
1

2
t�

0�
? Æ�j0�j

+\non-transverse" : (67)

Accordingly, the overlap representation of Hg
�0� in the region �� < �x < � for the N + 1!

N � 1 transition becomes

Hg(N+1!N�1)
�0� = �

q
�2 � �x2

q
1� �

2�Nq
1 + �

�N

�
X
�;�0

N+1X
j;j0=1

j 6=j0

1q
njnj0

Æsj0sj Æsjg Æ�j0��j
Æ�cj0cj

N+1Y
i=1

i6=j;j0

Æs0
i
s
i
Æ�0

i
�
i
Æc0

i
c
i

�
Z
d�xj

N+1Y
i=1

i6=j;j0

d�xi Æ

0
B@N+1X

i=1
i6=j;j0

�xi � (1� �)

1
CA

�
Z
d2�k?j

N+1Y
i=1

i6=j;j0

d2�k?i (16�
3)1�N Æ(2)

0
B@N+1X

i=1
i6=j;j0

�k?i �
�?

2

1
CA

� Æ (�x� �xj) 	
��0

N�1;�0(r̂
0)	�

N+1;�(~r) ; (68)

where both j and j 0 run over all gluons. The sum over � and � 0 runs over combinations

where 
avour and colour of all spectators match. The arguments ~r and r̂0 of the wave

functions are given in terms of �xi and �k?i by (50) and (51).
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We �nally remark that compared with the quark SPDs, the overlap representation for

the case of gluons has an extra factor of
q
j�x2 � �2j in all regions of �x.

4.3 The polarised skewed gluon distribution

The polarised gluon SPDs fHg(�x; �; t) and eEg(�x; �; t) are de�ned from

fHg
�0� � i "?�0�

�p+
p
1� �2

X
c

Z
dz�

2�
ei�x �p+z� hp 0; �0jG+�0

c (��z=2)G+�
c (�z=2) jp; �i

=
u(p 0; �0)
+
5u(p; �)

2�p+
p
1� �2

fHg(�x; �; t) +
u(p 0; �0)�+
5u(p; �)

4m �p+
p
1� �2

eEg(x; �; t) : (69)

In the forward limit one has

fHg(�x; � = 0; t = 0) = �x�g(�x) ; (70)

with the ordinary polarised gluon distribution �g(x). Repeating all steps of the derivation

presented in Sect. 4.2 we obtain the overlap representation of the polarised gluon SPDs.

From the combinations of polarisation vectors in Eqs. (65) and (67) the antisymmetric

tensor "?�0� now picks up only terms proportional to sign(�j). Thus, the overlap repre-

sentation of polarised gluon SPDs in the region � < �x < 1 is given by (66) and in the

region �� < �x < � by (68), both completed by a factor sign(�j) as in (59) and (60),

and by an additional overall change of sign, which originates from contracting (65) and

(67) with i"?�0�. The SPDs
fHg and eEg are odd functions in �x, from which their overlap

representation in the region �1 < �x < �� is readily deduced.

4.4 Parton helicity changing distributions

Apart from the unpolarised and polarised skewed distributions discussed so far, there are

also twist-two skewed distributions that change the helicity of the active parton [18]. The

corresponding quark distributions are constructed from the operator
P

c
� c
q �

+i
5  
c
q , and

one of them becomes the ordinary quark transversity distribution Æq(x) in the forward

limit. For the gluons there are skewed distributions involving a helicity transfer by two

units, going with the tensor t�
0�
? in Eq. (65). They appear in deeply virtual Compton

scattering at the �s level [18, 19].

Our methods can be applied in a straightforward manner to obtain overlap represen-

tations for these SPDs for the entire interval �1 < �x < 1. In the regions � < �x < 1

and �1 < �x < �� one no longer has to sum over � = � 0 and j, as in Eq. (43) and its

counterparts, but double sums over �, � 0 and j, j 0. For a given state � one must choose

� 0 so as to obtain matching of the quantum numbers for all spectators, and for the active

parton after its helicity has been changed. Furthermore, a combinatorial factor 1=
p
njnj0

appears, where nj (nj0) is the number of partons in the LCWF of the initial (�nal) proton

that have the same discrete quantum numbers as the active parton j (j 0).

21



Notice also that the two active gluons of the skewed gluon distribution in the central

region 0 < �x < � now have the same helicity and colour. As a consequence, the combina-

torial factor 1=
p
njnj0 in the overlap formula is to be replaced with 1=

q
nj(nj � 1), where

nj is the number of gluons in the incoming LCWF with the same helicity and colour as

the active gluon j.

5 General properties of SPDs

Let us now discuss general properties of the overlap representations for the matrix elements

H��0 and
fH��0 . Through Eqs. (25) and (57) they provide linear combinations of the SPDs

H, E and fH, eE, respectively. Evaluating H��0 for both proton helicity 
ip and non-
ip,

one then obtains H, E, fH, eE separately for each quark 
avour q and for gluons. At this

point we can make a remark on the proton helicity 
ip combinations H��� and
fH���. The

overlap condition � = � 0 in the regions � < �x < 1 and �1 < �x < �� implies that all parton
helicities in the initial and �nal state have to match, so that they cannot add up to the

overall proton helicity in at least one of the wave functions 	�� or 	�. The same holds in

the the region �� < �x < � as one can see from (55) and (68). It follows that in at least one

of them the orbital angular momentum carried by the partons contributes to the proton

helicity. That Eq and Eg involve parton orbital angular momentum in an essential way is

also re
ected in Ji's angular momentum sum rule [14].

In the forward limit the overlaps are solely given by the contributions from N ! N

transitions which now describe the full interval �1 < �x < 1. As is evident from Eqs. (35)

and (36) the arguments of both wave functions are now identical, and their respective

overlaps (43) and (59) for unpolarised and polarised quarks reduce to the representations

of the ordinary parton distribution functions in terms of LCWFs [9]. With the help of (25)

and (57) we see that our overlap representations respect the reduction formulas [3, 4]

q(�x) =
X
N

q(N)(�x) = Hq(�x; 0; 0) ;

�q(�x) =
X
N

�q(N)(�x) = fHq(�x; 0; 0) : (71)

Likewise, the overlap representations (44) and (60) reduce in the forward limit to the rep-

resentations of the ordinary, unpolarised and polarised, antiquark distributions. Analogous

reduction formulas hold for gluons, see (62) and (70).

The SPDs are related to form factors by sum rules like [3]

F
q
1 (t) =

Z 1

�1
d�xHq(�x; �; t) ; F

q
2 (t) =

Z 1

�1
d�xEq(�x; �; t) : (72)

Due to Lorentz invariance these relations hold in any reference frame, and are thus inde-

pendent of �. To evaluate the wave function overlap it is convenient to choose a frame

where � = 0 (we will henceforth call such frames \symmetric"). Taking the �rst moment

of our overlap representations, we �nd the usual Drell-Yan formulae for form factors [8].
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Symmetric frames are special because the central region disappears and the LCWF argu-

ments have a purely transverse shift while ~xi = x̂0i = �xi, see (35) and (36). In a frame with

� = 0 the contribution of quarks of 
avour q to the Dirac form factor is thus related to

Hq
++ = Hq (see (25)) by

F
q
1 (t) =

X
N

F
q(N)
1 (t) =

Z 1

�1
d�x Hq(�x; 0; t)

=
X
N;�

X
j

Æsjq

Z
[d�x]N [d

2�k?]N 	�+
N;�(r̂

0)	+
N;�(~r) : (73)

The Pauli form factor is related to Hq
�+ and thus to Eq by

F
q
2 (t) =

X
N

F
q(N)
2 (t) =

Z 1

�1
d�x Eq(�x; 0; t)

=
2m

�
p�t

X
N;�

X
j

Æsjq

Z
[d�x]N [d

2�k?]N 	��
N;�(r̂

0)	+
N;�(~r) : (74)

An expression analogous to (73) relates the axial vector form factor to fHq at � = 0. Notice

that the pseudoscalar form factor cannot be represented in the same way, because the

corresponding SPD eEq is multiplied in (57) with a factor that vanishes for � = 0.

Wide angle Compton scattering and electroproduction of mesons can also be described

in symmetric frames, and it can be shown [7, 20, 21] that the soft physics in these processes

is encoded in new form factors representing the 1=�x-moments of � = 0 SPDs. Examples

are

R
q
V (t) =

X
N

R
q(N)
V (t) =

Z 1

�1

d�x

�x
Hq(�x; 0; t) ;

R
q
A(t) =

X
N

R
q(N)
A (t) =

Z 1

�1

d�x

�x
sign(�x)fHq(�x; 0; t) : (75)

Given the relative minus sign between the overlap representations (43) and (44) for Hq

in the regions � < �x < 1 and �1 < �x < ��, active quarks and antiquarks contribute

with opposite signs in F
q
1 (t) but with the same sign in R

q
V (t). This re
ects the di�erent

charge conjugation properties of these form factors. Because there is no relative minus sign

between the corresponding representations (59) and (60) for fHq, a factor sign(�x) explicitly

appears in the expression for the Compton form factor R
q
A(t), where active quarks and

antiquarks contribute again with the same sign.

Except in frames where � = 0, the sum rules (72) for form factors can obviously be

satis�ed only if the contributions from � < �x < 1, �1 < �x < ��, and from the central

region �� < �x < �, are taken into account. The neglect of any one leads to contradictions.

That the contribution from the central region may be substantial, even dominant, can be

seen from examples discussed by Isgur and Llewellyn Smith [22]. These authors evaluated

overlap contributions only from the region � < �x < 1 in in�nite momentum frames that
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are obtained from the Breit frame by either a transverse or a longitudinal boost. Only the

�rst choice corresponds to a symmetric frame, while in the second frame �? is zero and �

is given by � ' 1 + 2m2=t at large invariant momentum transfer. Thus, not surprisingly

after our discussion, Isgur and Llewellyn Smith arrived at apparently frame dependent

results for the form factors. The missing contributions from the central region resolve this

discrepancy. An explanation of this discrepancy, which is in line with ours, has already

been given by Sawicki within a covariant approach [23].

The �-independence of the sum rules (72) is a remarkable consequence of Lorentz in-

variance. More generally, higher moments of SPDs are polynomials in � [14],

Z 1

�1
d�x �xn�1 Hq(�x; �; t) =

[n=2]X
i=0

h
q
ni(t) �

2i (76)

for positive integer n, where [n=2] is the largest integer smaller or equal to n=2. For the

overlap representation of the SPDs to satisfy the polynomiality conditions (76) the LCWFs

of higher Fock states must be related to those of lower Fock states in such a way that the �

dependence of the respective contributions from the N ! N and N+1! N�1 transitions
combine in a suitable way. Such relations are provided by the equations of motion. Explicit

examples constructed from �eld theoretical models exhibit this feature [23, 24], and it is

beyond the scope of this work to investigate how this works in detail.

Another important property of SPDs is their behaviour at the transition points, �x = �

and �x = ��, between the di�erent regimes in �x. If they are not continuous at these points,

one will �nd logarithmically divergent results when convoluting them with hard-scattering

kernels, for instance in deeply virtual Compton scattering. Whether their �rst derivatives

can be continuous as well is poorly understood at present, but some models such as the

meson pole contributions discussed in Sect. 6 do lead to discontinuous �rst derivatives.

The overlap representation of SPDs might give answers to these questions, but this will

necessitate again an analysis of the dynamical relations between wave functions for di�erent

Fock states in a hadron.

Taking the limit �x ! � from above, the momentum fraction x̂0j of the quark in the

�nal proton LCWF tends to zero according to Eq (36). Similarly we see from Eq. (51)

that the momentum fraction ~xj0 of the active antiquark tends to zero if one takes the limit

�x ! � from below. For �x ! �� the situation is analogous. The behaviour of SPDs at

these points is thus related to LCWFs in the limit when one parton momentum fraction

goes to zero. Recent work suggests that LCWFs need not necessarily vanish in this limit

[25]. Let us however add that even if they did vanish, one could not conclude that SPDs

are zero at �x = ��, since it is not clear that taking the limit �x ! �� in the SPDs can

be interchanged with taking the in�nite sum over the parton number N in Eqs. (29) and

(45). Remember that the limit x! 0 in the case of ordinary parton distributions involves

an in�nite number of Fock states. The parton distributions are divergent at this point,

whereas each individual Fock state gives a �nite if not vanishing contribution, assuming

that LCWFs themselves do not diverge in the limit where a parton carries zero momentum.

The symmetry of the SPDs under � ! �� [14] is manifest in the overlap representation.
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As is evident from Eqs. (35) and (36), the LCWF arguments ~r and r̂0 are interchanged

under the joint transformation � ! �� and �? ! ��?. Together with (43) this leads to

Hq(N!N)
�0� (�x; �;�?) =

h
Hq(N!N)

��0 (�x;��;��?)
i�

(77)

and to similar relations for gluons and for the matrix elements fH�0�. As a consequence

of time-reversal invariance the SPDs are real valued, and due to Lorentz covariance they

only depend on �? through its square. Thus, the insertion of (77) into (25) leads to the

required symmetry

Hq(N!N)(�x; �; t) = Hq(N!N)(�x;��; t) (78)

in the region � < �x < 1. Analogous results are obtained for the other SPDs and for the

region �1 < �x < ��. In the central region �� < �x < � the transformation � ! �� turns
the non-diagonal overlaps N + 1! N � 1 into the appropriate overlaps N � 1! N + 1.

Note that the prefactor
p
1� �

2�Np
1 + �

�N
in the overlap representation (55) and in its

counterparts for gluons and polarised SPDs can be written as
p
1� �

1�(N�1)p
1 + �

1�(N+1)

so as to exhibit their invariance under the simultaneous exchange of � $ �� and N +1$
N � 1.

We also remark that the overlap representations of the matrix elements H�� for quarks

and gluons satisfy the positivity constraint in the region � < �x < 1 derived in [26, 27]. As

we remarked in [7], Eq. (43) has the structure of a scalar product in the Hilbert space of

LCWFs. Summing over all Fock states and using Schwarz's inequality and the reduction

formulas (71), one immediately �nds a bound for the quark matrix element H��,�����Hq(�x; �; t)� �2

1� �2
Eq(�x; �; t)

����� � 1p
1� �2

q
q(x1) q(x2) ; (79)

with

x1 =
�x + �

1 + �
; x2 =

�x� �

1� �
; (80)

and from (66)

�����Hg(�x; �; t)� �2

1� �2
Eg(�x; �; t)

����� �
s
�x2 � �2

1� �2

q
g(x1) g(x2) (81)

for gluons. Without summing over N one obtains individual bounds for the contributions

from the N -particle Fock states to the respective distributions. The relations (79) and

(81) are precisely the bounds derived in [26, 27, 7], except that the contributions of Eq and

Eg to the proton helicity non-
ip transition have previously been overlooked. With this

proviso, the weaker bound on Hg obtained by Martin and Ryskin [28] follows directly from

(81). Using the scalar product structure, one can also write down the Schwarz inequality

for the proton helicity 
ip matrix elements Hq;g
��� and obtains a new bound

p
t0 � t

2m

���Eq(�x; �; t)
��� � 1p

1� �2

q
q(x1) q(x2) ; (82)
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on Eq and a similar bound on Eg. Of course there are corresponding bounds for the

region �1 < �x < �� as well. Finally, one can write down analogous bounds involving the

combinations H � fH and E � eE for quarks or gluons with a de�nite helicity, along with

the corresponding combinations q ��q or g ��g of the ordinary parton distributions.

We �nally note that, as the usual parton distributions, SPDs depend on a factorisation

scaleQ2 in a way that can be calculated in perturbation theory and is expressed in evolution

equations [2, 3, 4]. In the overlap representation, this dependence shows up in the fact that

both the LCWFs themselves and the integrals over the k? of the partons in their overlap

have to be regulated in the ultraviolet, with Q2 playing the role of characeristic momentum

scale in the regulator [9]. How such a regularisation can be implemented in detail and how

it leads to the well-known evolution equations for SPDs is beyond the scope of our study.

6 Phenomenological applications

Most of the existing phenomenological applications of the overlap representations are car-

ried through in symmetric frames and concern the electromagnetic form factors at large mo-

mentum transfer, for the proton, e.g. [7, 27, 22, 29, 30], and for the pion, e.g. [22, 31, 32].5.

Since little is known about LCWFs with nonzero orbital angular momentum, proton he-

licity 
ip is mostly ignored, and only results for the Dirac form factor F1(t) are obtained.

Attempts have also been made to model SPDs through the overlap of LCWFs, including

the limiting case of the ordinary parton distribution functions [7]. Again, the description

of proton helicity 
ip is more diÆcult and has so far been shunned. We remark that often

there is some justi�cation to neglect the contributions of the SPDs E and eE to scattering

processes. From (25) and (57) we see that they appear with prefactors �2=(1 � �)2 orp
t0 � t=(2m) that are typically small in the kinematics considered. We emphasise that at

small t E itself cannot be small compared to H: its �rst moment builds up the Pauli form

factor, which is by no means small compared to the Dirac form factor close to t = 0. Also,

the pion pole contribution to eE can be so large that this distribution cannot be neglected

in processes where it contributes [34].

The overlaps are usually evaluated from soft LCWFs, representing full wave functions

with their perturbative, large k? tails removed. Typically, the transverse momentum de-

pendence of the soft LCWFs is parameterised as a Gaussian

	�
N� � exp

"
�a2N

NX
i=1

k2?i=xi

#
: (83)

The soft overlaps evaluated from such wave functions are large and dominate the form

factors at momentum transfer of the order of 10 GeV2 while the competing perturbative

QCD contributions, which may be viewed as the overlaps of the perturbative tails of the

LCWFs, provide only minor corrections of perhaps less than 10% in the case of the proton

5In LCWF based constituent quark models one also uses overlap formulas like (73) (see e.g. [33])
restricted, for obvious reasons, to the valence Fock state contributions.
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[29, 35] and about 20� 40% in the case of the pion [31, 36]. For asymptotically large t the

perturbative contributions will take the lead, and the soft overlaps merely represent power

corrections to them.6

With a few exceptions, e.g. [7, 29], overlap contributions have so far only been evaluated

for the valence Fock states. This is expected to be a reasonable approximation for form

factors at large t and for parton distributions at large �x. Higher Fock states can be taken

into account for instance by assuming that (83) holds for all Fock states with a common

transverse size parameter a = aN . This simpli�cation allows one to sum over N explicitly

and, without need for specifying the x-dependences of the LCWFs, to relate the results to

the usual parton distributions. One thus obtains a very simple model for form factors and

the underlying SPDs at � = 0, [7, 27, 37, 38] which nicely demonstrates the link between

exclusive and inclusive hard scattering reactions. For quarks of 
avour q, for instance, the

� = 0 proton SPDs read

Hq(�x; 0; t) = exp

�
1

2
a2t

1� �x

�x

�
q(�x) ;

fHq(�x; 0; t) = exp

�
1

2
a2t

1� �x

�x

�
�q(�x) ; (84)

within that model. Analogous expressions hold for gluons [21]. Taking the parton distri-

butions from one of the current analyses of deep inelastic lepton-nucleon scattering, e.g.

[39], and using a value of 1 GeV�1 for the transverse size parameter, a, one can evaluate

the form factors F1, RV and RA from the SPDs (84). Fair agreement with experiment is

obtained [7, 27, 40]. In [37] an SPD like (84) is considered as a model that is valid at a low

scale. The use of DGLAP evolution equations allows then to evaluate this SPD at larger

scales and to explore the scale dependence of the transverse size parameter. The relation

of � = 0 SPDs to the spatial distribution of partons inside hadrons is discussed in [41].

It is to be stressed that the overlap representations of the SPDs, we have given are

exact. In other words, provided all Fock state wave functions are known, the leading-twist

SPDs can be constructed from their overlaps. Although the Fock state decomposition

in principle already comprises meson pole contributions, which become manifest in the

overlap for �� < �x < �, it is not easy to built them up in a phenomenological ansatz of

the LCWFs. Thus, with regard to the prominent role of the pole terms in some processes

and in particular kinematical regions, it might be of advantage in phenomenology to add

them explicitly. An example is set by the pion pole in the case of the proton SPDs. Since

the pion couples to protons as �u
5u it contributes only to the SPD ~Eq. With regard to the

pion's isovector nature the �0-pole contribution at small t, near the pole reads [27]

~Eu
pole(x; �; t) = � ~Ed

pole(x; �; t) = �(�� � �x � �)
g�

m2
� � t

1

�
'�(�) ; (85)

where m� and g� are the pion mass and a coupling constant, respectively. '� is the pion

distribution amplitude, i.e., its valence Fock state wave function integrated over transverse

6For soft LCWFs of the Gaussian type (83) the overlap contributions to the Dirac form factor fall o�

as F
q(N)

1 / t�2(N+lg�1) where lg is the number of gluons in the Fock state.
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momentum. Its argument is the momentum fraction the quark carries with respect to the

pion momentum and is related to the variables of the SPD, �x and �, by

� =
�x + �

2�
: (86)

The calculation of the SPDs at � 6= 0 requires contributions from the central region (see

e.g. Eq. (55)). With the exception of the 
avour non-diagonal b � u SPDs appearing in

B ! � transitions [42] the full � 6= 0 SPDs have not been calculated from the overlap

representation as yet, owing to insuÆcient phenomenological experience with the required

higher Fock state wave functions. In our previous work [7] we therefore presented only

results for the SPDs in the regions � < �x < 1 and �1 < �x < ��, evaluated from LCWF of

the Gaussian type (83). The situation for the b � u SPDs is special, because one expects

the B-meson LCWFs to be strongly peaked for momentum fractions of the b-quark given

by the ratio of b-quark and B-meson mass. As a consequence, all overlap contributions

with the exception of the valence contribution from the region � < �x < 1 are suppressed

by inverse powers of the b-quark mass. Therefore the valence contribution to the region

� < �x < 1, together with theB�-resonance contribution to the central region, parameterised

in analogy to (85), makes up most of the b � u SPDs. The SPD approach thus allows a

superposition of resonance and overlap contributions without a matching procedure.

7 Summary

LCWFs provide a convenient way to describe the quark and gluon structure of hadrons in

QCD. They naturally appear in the Fock state decomposition of hadron states within the

context of LC quantisation, and they are the non-perturbative input that describes hadron

structure in many hard exclusive processes. In a di�erent class of exclusive reactions, the

nonperturbative physics is contained in more complex quantities, namely in skewed parton

distributions. In the present paper we have used the Fock state decomposition to derive

the representation of SPDs through the overlap of LCWFs, which can be seen as the more

elementary quantities. Our method can be applied to both quark and gluon distributions,

including their various spin combinations.

The overlap representation readily allows us to interpret SPDs in the physics picture

of the parton model. Usual parton distributions, being constructed from squared hadron

wave functions, represent classical probabilities to �nd a speci�ed parton within a hadron.

In contrast, skewed distributions are interference terms between the wave functions for

di�erent parton con�gurations|this is one way to see why they contain more information

on the hadron's structure than the usual distributions alone. Our derivation naturally leads

to the result that in the central region �� < �x < � of the SPDs the overlap is between wave

functions for Fock states with di�erent parton number. The overlap representation also

makes it transparent that the proton spin-
ip distributions E and ~E intrinsically involve

the orbital angular momentum carried by the partons.
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The overlap formulae directly re
ect general properties of the SPDs, in particular their

connection to the usual parton distributions and to hadronic form factors. Also, their

crossing symmetry under � ! �� is manifest. Writing SPDs as a overlap also provides

an elegant way to derive their positivity bounds in the regions � < �x < 1 and �1 < �x <

�. Other features of SPDs are less immediate in this representation: the polynomiality

property (76) and the behaviour at the points �x = �� involve the nontrivial relationship
between the wave functions for di�erent Fock states that is due to the equation of motion,

an issue we did not investigate in the present work.

Finally, the overlap representation provides us with strategies to model SPDs and their

moments in kinematical regions where only a limited number of hadron Fock states is

important. Examples studied in the literature concern form factors at large momentum

transfer in most cases, e.g. the electromagnetic ones of the pion and the proton, transition

form factors and those speci�c to wide angle Compton scattering and electroproduction of

mesons. First attempts to evaluate SPDs in the region � < �x < 1 and at � = 0 from the

overlap representation can also be found.

In this work we have been concerned with twist-two SPDs, which have a straightforward

interpretation in the framework of LC quantisation. The SPDs at twist-three level have

recently been classi�ed and investigated [43]. They appear for instance in the 1=Q power

corrections to deeply virtual Compton scattering. A representation of such distributions

in terms of LCWFs should also be possible, as has been achieved for the usual twist-three

spin-dependent structure functions in [44].
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Appendix

In this Appendix we discuss an alternative choice of kinematical variables, where the three-

momentum p of the initial proton is along the e3-axis (see Fig. 1(b)). We present our main

results in terms of this alternative set of kinematical variables. The momenta p and p0

characterising the initial and �nal hadron state can be parameterised as

p =

"
p+ ;

m2

2p+
; 0?

#
;

p 0 =

"
(1� �) p+ ;

m2 +�2
?

2(1� �)p+
; �?

#
(87)

with the skewedness parameter

� =
(p� p0)+

p+
: (88)
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The di�erence of hadron momenta takes the form

� = p 0 � p =

"
�� p+ ; �m

2 +�2
?

2(1� �)p+
; �?

#
; (89)

and with the parametrisation (87) its square reads t = �(�2m2 +�2
?)=(1� �). Positivity

of �2
? implies a minimal value �t0 = (�2m2)=(1 � �) at given �, or correspondingly, a

maximum allowed value for � at given t.

Let us �rst consider the quark SPDs de�ned in terms of the alternative set of kinematical

variables by

F
q
�0� �

1

2
p
1� �

X
c

Z
dz�

2�
ei xp

+z� hp 0; �0j � c
q (0) 


+  c
q (�z) jp; �i

=
u(p 0; �0)
+u(p; �)

2 p+
p
1� �

eF q
� (x; t) +

u(p 0; �0)i�+���u(p; �)

4mp+
p
1� �

eK q
� (x; t) (90)

for unpolarised quarks, and

G
q
�0� �

1

2
p
1� �

X
c

Z
dz�

2�
ei xp

+z� hp 0; �0j � c
q (0) 


+
5  
c
q (�z) jp; �i

=
u(p 0; �0)
+
5u(p; �)

2 p+
p
1� �

eG q
� (x; t) +

u(p 0; �0)�+
5u(p; �)

4mp+
p
1� �

eP q
� (x; t) ; (91)

which de�nes the polarised SPDs. The SPD eF q
� (x; t) is related to the previously de�ned

quark SPD by (see [4, 14])

(1 + �)Hq(�x) = eF q
�(�) (x(�x; �)) (92)

with

x(�x; �) =
�x+ �

1 + �
; �(�) =

2�

1 + �
: (93)

Analogous relations hold for eK q
� (x; t),

eG q
� (x; t) and

eP q
� (x; t). The de�nitions for the three

di�erent kinematical regions, reexpressed in terms of the alternative variables, are � < x <

1 and �1 + � < x < 0 for the regions with N ! N transitions, and 0 < x < � for the

central region. Let us �rst consider quark SPDs in the region � < x < 1. A frame where the

parametrisation (87) for the hadron momenta holds is already a hadron-in frame. Thus, the

arguments ri of the LCWFs for the incoming hadron are given by the plus components and

transverse parts of the parton momenta. To determine the arguments of the LCWF for the

outgoing hadron one applies the transverse boost (16) with the parameters b+ = (1� �)p+
and b? = �? leading to a hadron-out frame. We label quantities in the hadron-out frame

with a breve. From the spectator condition

k0i = ki ; for i 6= j (94)
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together with momentum conservation, one obtains relations between the arguments of the

LCWF for the outgoing hadron (with breve) to the ones for the incoming hadron:

�x0i =
xi

1� �
; �k0?i = k?i �

xi

1� �
�? ; for i 6= j ;

�x0j =
xj � �

1� �
; �k0?j = k?j +

1� xj

1� �
�? : (95)

The overlap representation for the unpolarised quark SPDs in the region � < x < 1 takes

the form

F
q(N!N)
�0�; � (x; t) =

q
1� �

1�N X
�=�0

X
j

Æsjq

�
Z
[dx]N [d

2k?]N Æ (x� xj) 	
��0

N;�0(�r
0)	�

N;�(r) ; (96)

and an analogous equation with the additional factor sign(�j) holds for the matrix element

G
q(N!N)
�0� involving the polarised quark SPDs . Summation over N leads to the full quark

SPDs in the region � < x < 1.

The overlap representation for the quark SPDs in the region �1+� < x < 0, describing

the emission and reabsorption of an antiquark, is obtained from (96) or from its analogue

for the polarised SPDs by the replacement of the Æ-function by Æ(x � � + xj), and by a

change of sign for the unpolarised antiquark SPD. The arguments of the LCWFs are again

to be taken as speci�ed in (95).

Finally we consider the region 0 < x < �, where the SPDs describe a hadron emit-

ting a quark-antiquark pair. By combination of the spectator condition with momentum

conservation one obtains relations between the arguments of the LCWF for the outgoing

hadron to the ones of the LCWF for the incoming hadron of the form (95) for i 6= j; j 0,

and additional relations between the relative momentum coordinates of active quark and

antiquark

xj0 = �(xj � �) ; k?j0 = �k?j0 ��? : (97)

The overlap representation for unpolarised quark SPDs in the region 0 < x < � for the

N � 1! N + 1 transition now reads

F
q(N+1!N�1)
�0�; � (x; t) =

q
1� �

2�N X
�;�0

N+1X
j;j0=1

1q
njnj0

Æ�sj0sj Æsjq Æ�j0��j
Æcj0cj

�
N+1Y
i=1

i6=j;j0

Æs0
i
s
i
Æ�0

i
�
i
Æc0

i
c
i

Z
dxj

N+1Y
i=1

i6=j;j0

dxi Æ

0
B@N+1X

i=1

i6=j;j0

xi � 1 + �

1
CA

�
Z
d2k?j

N+1Y
i=1

i6=j;j0

d2k?i (16�
3)1�N Æ(2)

0
B@N+1X

i=1
i6=j;j0

k?i ��?

1
CA

� Æ (x� xj) 	��0

N�1;�0(�r
0)	�

N+1;�(r) ; (98)
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and similar for G
q(N+1!N�1)
�0�; � (x; t) with the additional factor sign(�j).

Now we turn to the gluon SPDs which are de�ned by

F
g
�0� � �g?;�0�

p+
p
1� �

X
c

Z
dz�

2�
eix p

+z� hp0; �0jG+�0

c (0)G+�
c (�z) jp; �i

=
u(p0; �0)
+u(p; �)

2 p+
p
1� �

eFg
� (x; t) +

u(p0; �0)i�+���u(p; �)

4mp+
p
1� �

eKg
�(x; t) (99)

for the unpolarised case, and

G
g
�0� � i"?�0�

p+
p
1� �

X
c

Z
dz�

2�
eix p

+z� hp0; �0jG+�
c (0)G+�

c (�z) jp; �i

=
u(p 0; �0)
+
5u(p; �)

2 p+
p
1� �

eGg
� (x; t) +

u(p 0; �0)�+
5u(p; �)

4mp+
p
1� �

ePg
� (x; t) (100)

for the polarised gluon SPDs. The SPD eF g
� (x; t) is related to the previously de�ned gluon

SPD by

(1 + �)Hg(�x) = eF g
�(�) (x(�x; �)) (101)

with the transformations (93). Analogous relations hold for eK g
� (x; t),

eG g
� (x; t) and

eP g
� (x; t).

The overlap representations for the gluon SPDs in the region � < x < 1 can be readily

obtained from the equation for quark SPDs (96) by adding a factor
q
x(x� �) for the

unpolarised, or �sign(�j)
q
x(x� �) for the polarised SPD. Likewise, one obtains the gluon

SPDs for the N +1! N �1 transitions in the region 0 < x < � from Eq. (98) by adding a

factor
q
x(� � x) in the unpolarised, or sign(�j)

q
x(� � x) in the polarised case. Note that

the unpolarised (polarised) gluon SPDs are even (odd) under the interchange x! � � x.

References

[1] D. E. Soper, Phys. Rev. D15 (1977) 1141; Phys. Rev. Lett. 43 (1979) 1847;

J. C. Collins and D. E. Soper, Nucl. Phys. B194 (1982) 445;

R. L. Ja�e, Nucl. Phys. B229 (1983) 205.

[2] D. M�uller, D. Robaschik, B. Geyer, F. M. Dittes and J. Ho�rej�si, Fortsch. Phys. 42

(1994) 101 [hep-ph/9812448].

[3] X. Ji, Phys. Rev. Lett. 78 (1997) 610 [hep-ph/9603249]; Phys. Rev. D55 (1997) 7114

[hep-ph/9609381].

[4] A. V. Radyushkin, Phys. Rev. D56 (1997) 5524 [hep-ph/9704207].

[5] X. Ji and J. Osborne, Phys. Rev. D58 (1998) 094018 [hep-ph/9801260];

J. C. Collins and A. Freund, Phys. Rev. D59 (1999) 074009 [hep-ph/9801262].

32



[6] A. V. Radyushkin, Phys. Lett. B385 (1996) 333 [hep-ph/9605431];

J. C. Collins, L. Frankfurt and M. Strikman, Phys. Rev. D56 (1997) 2982 [hep-

ph/9611433].

[7] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Eur. Phys. J. C8 (1999) 409 [hep-

ph/9811253].

[8] S. D. Drell and T. Yan, Phys. Rev. Lett. 24 (1970) 181;

G. B. West, Phys. Rev. Lett. 24 (1970) 1206.

[9] S. J. Brodsky and G. P. Lepage, in: Perturbative Quantum Chromodynamics, edited

by A. H. Mueller (World Scienti�c, Singapore 1989).

[10] P. A. Dirac, Rev. Mod. Phys. 21 (1949) 392;

H. Leutwyler and J. Stern, Annals Phys. 112 (1978) 94.

[11] Z. Dziembowski, Phys. Rev. D37, 768 (1988).

[12] J. B. Kogut and D. E. Soper, Phys. Rev. D1, 2901 (1970).

[13] R. L. Ja�e, hep-ph/9602236.

[14] X. Ji, J. Phys. G24 (1998) 1181 [hep-ph/9807358].

[15] S. J. Brodsky and D. S. Hwang, Nucl. Phys. B543 (1999) 239 [hep-ph/9806358].

[16] H. Hofestadt, S. Merk and H. R. Petry, Z. Phys. A326 (1987) 391.

[17] R. Brock et al. [CTEQ Collaboration], Rev. Mod. Phys. 67 (1995) 157.

[18] P. Hoodbhoy and X. Ji, Phys. Rev. D58, 054006 (1998) [hep-ph/9801369].

[19] M. Diehl, T. Gousset, B. Pire and J. P. Ralston, Phys. Lett. B411, 193 (1997) [hep-

ph/9706344];

A. V. Belitsky and D. M�uller, hep-ph/0005028.

[20] A. V. Radyushkin, Phys. Rev. D58 (1998) 114008 [hep-ph/9803316].

[21] H. W. Huang and P. Kroll, hep-ph/0005318, to be published in Eur. Phys. J. C.

[22] N. Isgur and C. H. Llewellyn Smith, Nucl. Phys. B317, 526 (1989).

[23] M. Sawicki, Phys. Rev. D44 (1991) 433; Phys. Rev. D46 (1992) 474.

[24] S. J. Brodsky, M. Diehl and D. S. Huang, \Light-Cone Wavefunction Representation

of Deeply Virtual Compton Scattering," SLAC-PUB-8472 (2000).

[25] F. Antonuccio, S. J. Brodsky and S. Dalley, Phys. Lett. B412 (1997) 104 [hep-

ph/9705413].

33



[26] B. Pire, J. So�er and O. Teryaev, Eur. Phys. J. C8 (1999) 103 [hep-ph/9804284].

[27] A. V. Radyushkin, Phys. Rev. D59 (1999) 014030 [hep-ph/9805342].

[28] A. D. Martin and M. G. Ryskin, Phys. Rev. D57 (1998) 6692 [hep-ph/9711371].

[29] J. Bolz and P. Kroll, Z. Phys. A356 (1996) 327 [hep-ph/9603289].

[30] C. E. Carlson and F. Gross, Phys. Rev. D36 (1987) 2060.

[31] R. Jakob and P. Kroll, Phys. Lett. B315 (1993) 463 [hep-ph/9306259]; Erratum-ibid.

B319 (1993) 545;

R. Jakob, P. Kroll and M. Raulfs, J. Phys. G22 (1996) 45 [hep-ph/9410304].

[32] L. S. Kisslinger and S. W. Wang, Nucl. Phys. B399 (1993) 63;

A. Szczepaniak, A. Radyushkin and C. Ji, Phys. Rev. D57 (1998) 2813 [hep-

ph/9708237].

[33] F. Cardarelli, E. Pace, G. Salm�e and S. Simula, Phys. Lett. B357, 267 (1995) [nucl-

th/9507037].

[34] M. Vanderhaeghen, P. A. Guichon and M. Guidal, Phys. Rev. D60, 094017 (1999)

[hep-ph/9905372].

[35] J. Bolz, R. Jakob, P. Kroll, M. Bergmann and N. G. Stefanis, Z. Phys. C66 (1995)

267 [hep-ph/9405340].

[36] V. M. Braun, A. Khodjamirian and M. Maul, Phys. Rev. D61 (2000) 073004 [hep-

ph/9907495];

N. G. Stefanis, W. Schroers and H. C. Kim, Phys. Lett. B449 (1999) 299 [hep-

ph/9807298].

[37] C. Vogt, hep-ph/0007277.

[38] V. Barone, M. Genovese, N. N. Nikolaev, E. Predazzi and B. G. Zakharov, Z. Phys.

C58, 541 (1993);

A. V. Afanasev, hep-ph/9808291.

[39] M. Gl�uck, E. Reya and A. Vogt, Eur. Phys. J. C5 (1998) 461 [hep-ph/9806404].

[40] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Phys. Lett. B460 (1999) 204 [hep-

ph/9903268].

[41] M. Burkardt, hep-ph/0005108.

[42] T. Feldmann and P. Kroll, Eur. Phys. J. C12 (2000) 99 [hep-ph/9905343].

34



[43] I. V. Anikin, B. Pire and O. V. Teryaev, hep-ph/0003203;

M. Penttinen, M. V. Polyakov, A. G. Shuvaev and M. Strikman, hep-ph/0006321;

A. V. Belitsky and D. M�uller, hep-ph/0007031;

N. Kivel, M. V. Polyakov, A. Sch�afer and O. V. Teryaev, hep-ph/0007315;

A. V. Radyushkin and C. Weiss, hep-ph/0008214.

[44] L. Mankiewicz and A. Sch�afer, Phys. Lett. B265 (1991) 167;

L. Mankiewicz and Z. Ryzak, Phys. Rev. D43 (1991) 733.

35


