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2D SIMULATION OF HIGH-EFFICIENCY CROSS-FIELD RF POWER
SOURCES�

Valery A. Dolgashev, Sami G. Tantawiy, SLAC, Stanford, CA 94309, USA
1 INTRODUCTION

In a cross field device[1] such as magnetron or cross field
amplifier electrons move in crossed magnetic and electric
fields. Due to synchronism between electron drift velocity
and phase velocity of RF wave, the wave bunches the beam,
electron spokes are formed and the bunched electrons are
decelerated by the RF field. Such devices have high effi-
ciency (up to 90%), high output power and relatively low
cost. Electrical design of the cross-field devices is diffi-
cult. The problem is 2D (or 3D) and highly nonlinear. It
has complex geometry and strong space charge effects. Re-
cently, increased performance of computers and availabil-
ity of Particle-In-Cell (PIC) codes[2, 3], have made possi-
ble the design of relatively low efficiency devices such as
relativistic magnetrons or cross field amplifiers [4]. Sim-
ulation of high efficiency (� 90%) devices is difficult due
to the long transient process of starting oscillations. Use
of PIC codes for design of such devices is not practical. In
this report we describe a frequency domain method that de-
veloped for simulating high efficiency cross-field devices.
In the method, we consider steady-state interaction of par-
ticles with the modes of RF cavity at dominant frequency.
Self-consistency of the solution is reached by iterations un-
til power balance is achieved.

2 PHYSICAL MODEL

Cross-field devices consist of a cathode and a surround-
ing anode. The structure is a cavity with a set of resonant
eigenmodes. Macroparticles are emitted from the cathode
and moved by forces of electromagnetic fields. The elec-
tromagnetic fields are determined by applied external elec-
tric potential between anode and cathode, oscillating field
of cavity modes, and space charge fields. We use geom-
etry with arbitrary piece-wise planarboundaries. In order
to solve the electrostatic and electrodynamic problems, we
apply methods that do not require mesh generation. Inter-
action with magnetic field is determined by uniform mag-
netic fieldHz which is parallel toz-axis and orthogonal
to the plane of simulation. There are several assumptions
that we use to simplify the problem. These assumptions are
based on the working regime of the devices that we want to
simulate. Devices will have low current density, are non-
relativistic, and have resonant systems with a relatively low
density of the cavity modes. Hence, we can neglect mag-
netic fields due to space charge and cavity modes. We can
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also use cavity modes with eigen-frequencies close to the
working frequency.

2.1 Basic equations
We are solving a steady state problem of electron beam
flow in self-consistent electromagnetic fields. Total fields
are superposition of static electric~E0 and magnetic~H0

fields, and “oscillating” electric~E(!) and magnetic~H(!)
fields as

~E(t) = ~E0+<ef~E(!)ej!tg; ~H(t) = ~H0+<ef ~H(!)ej!tg:

Here! is angular frequency,t is time. We separate the elec-
trodynamic problem into two parts. The first part – electro-
static potential� is generated by “external” anode-cathode
potential and by the static component of the space-charge
electric fields. The second part – the dynamic electromag-
netic fields have a harmonicej!t time (t) dependence.

2.2 Static fields
We find the static electric field from~E0 = �r�, using the
Poisson equation:

r
2� = �

�

�0
; (1)

wherer is the gradient operator,� is volume charge den-
sity averaged over oscillation periodT = 2�=!. �0 is the
electric permittivity of the vacuum.

2.3 Oscillating fields
To solve the second part of the problem, we write the time
harmonicMaxwell equationsas

r� ~E = �j!�0 ~H; r� ~H = j!�0 ~E + ~J! : (2)

Here ~J! is electric current density,�0 is the magnetic per-
meability of vacuum. Oscillating fields inside a cavity are
expanded in terms of the cavity eigenmodes (~Es, ~Hs) and
thefast oscillatingelectric potential'! as

~E =
X
s

As
~Es �r'!; ~H =

X
s

Bs
~Hs: (3)

Heres is mode index,As andBs are the eigenmode am-
plitudes. Using the expansion (3) we get thePoisson equa-
tion for the potential:

r
2' =

r � ~J!

j!�0
= �

�!

�0
; (4)

where�! is the oscillating space-charge density. Ampli-
tudes of the electric field expansion are given by

As =
!

j(!2 � !2
s)

R
V

~J! ~E
�

sdV

�0
R
V
~Es

~E�

sdV
: (5)

Here!s is the mode eigen-frequency of the mode ,V is the
cavity volume.



2.4 Equation of motion
Equation of motion for an electron in crossed-fields is

d~p

dt
= qe ~E(t) + �0~v �Hz; (6)

where~p is the relativistic momentum,qe is the charge, and
~v is the velocity of the electron. Current density induced by
the electron motion is~J = qe~v�(~r); where~r is the position
vector of the electron, and� is theKronecker delta function.

3 NUMERICAL METHODS

We created several separate program modules to simulate a
cross-field device. First is anRF field solverthat calculates
eigenmodes and eigen-frequencies in the cavity; second is
thePoisson solverthat finds electric fields due to external
potential, static space charge, and oscillating space charge;
and third, thetracking modulethat performs tracking of
electrons through electromagnetic fields. For simulation,
we consider an arbitrary, piecewise bounded 2D geometry.

3.1 Planar geometry
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Figure 1:Planar geometry.

The geometry is cylindrical (uniform in thez-direction)
as illustrated on Fig. 1. It consists of planar sidewalls and
apertures. The geometry in thex; y plane can be described
by a set of pointszs = (xs; ys), wheres = 1; 2:::; N 0; here
N 0 is the total number of sidewalls and apertures. Periodic
boundary conditions are applied to the apertures. The pe-
riodic boundary allows us to use only part of the structure
and significantly reduce simulation time. In the particular
case shown in Fig. 1 the geometry hasN 0 = 19 sidewalls,
two apertures (ports) with starting pointsp = 1; 15, and
the cathode and anode determined bys = 16; 17; 18; 19; 1
ands = 2; 3; :::; 15 respectively.

3.2 RF field solver
The description of the RF solver that is used in this method
is published in [5]. Here we briefly outline its properties.
We use the scattering matrix approach [6] to calculate the
dispersion parameters of the periodic 2D structure, it’s res-
onant frequencies, and the corresponding fields. The fields
are described by functional expansion. Boundary contour
mode-matching is applied in a piecewise bounded 2D re-
gion is applied to obtain the scattering matrix and field am-
plitudes [7]. The Galerkin method is used for the mode-
matching procedure. The geometry is divided into regions,
and electromagnetic fields in each region are expanded in

series of plane waves or (for low frequencies)Bessel func-
tions. Scattering matrices from the regions are combined
using the generalized scattering matrix technique. Reso-
nant and periodic boundary conditions [6] are used to ob-
tain resonant frequencies, dispersion parameters, and cor-
responding fields. We calculate the electric fields on a polar
grid (only in the region of field-particle interaction), in or-
der to speed up calculation of fields for the macroparticle
tracking. To obtain field at the macroparticle position we
use 2D spline interpolation.

3.3 Poisson solver
We use an efficient method for solving the Poisson equa-
tion for electric fields in a 2-D, arbitrarily shaped geometry.
The solution is based on the method of moments. Point-
matching in a piecewise bounded 2D region is applied to
obtain the charge density on the boundary. The boundary’s
charge density determines the fields and potentials through-
out the interior region. We use a complex representation
of the fields and potentials in the solution [8]. We apply
periodic boundary conditions to simulate the fields in the
periodic structure.

Formulation We solve equation (1) in 2D. In the 2D
case it is advantageous to represent the position and field
vector’s(x; y) components by a single complex represen-
tation. We will work with functions of a complex variable
z = x+ jy. The field strengtheE can be written in terms of
the scalar potential� = �(z) as

eE(z) = �
d��

dz
: (7)

Here� represents the complex conjugate. An effective line
chargeq (point charge in 2D geometry) has the complex
potential� = (q=�0) log z. We approximate the charge dis-
tribution on the boundary of the region as a sum of “step”
functions. We divide each element(sidewall and aperture)
of the boundary intoNb straight pieces or “charged lines”
with uniform charge density� along the piece. Auniformly
charged straight wallwith beginning and end coordinates
z1 andz2, respectively, will produce a complex potential at
the pointzw

�(zw) =

Z
L

�

�0
log(z � zw)dz; (8)

whereL is the contour along the line. Equation (8) is inte-
grated analytically.

Field strength of the charged wall We obtain the
electric field of thecharged lineby substituting (8) into (7):

eE(zw)�0
�

=

�
jz1 � z2j

z1 � z2
log

�
zw � z1

zw � z2

��
�

: (9)

The value of the function is undefined on the line’s contour.
However, for us, the fields inside the region are of interest.
Therefore, the direction of the field (for positive charge)



on the line’s contour is chosen to be directed inward. Also
singularities at pointsz1 andz2 can affect the field’s cal-
culation. Macroparticles with finite dimensions are used to
avoid this singularity.

Periodic boundary condition We assume that the po-
tential and field strength are repeated on the period’s aper-
tures (Fig. 1). Letz01 2 Y 0

1
andz0

2
2 Y 0

2
. If we shift the

region to the right so it coincides with the next period, the
coordinatez0

1
will be transformed into coordinatez0

2
. The

periodic boundary condition becomes

�(z0
1
) = �(z0

2
);

@�(z0
1
)

@n
= �

@�(z0
2
)

@n
: (10)

We assume the Dirichlet condition on the sidewalls (except
for the apertures) as

�(�0) = �(�0); � = �0 + Y 0

1
+ Y 0

2
: (11)

Integral equations For periodic boundary conditions
(10) and (11) surface charge density� must satisfy the cou-
pled integral equations8>>>>>><
>>>>>>:

R
�
log(zw � z)�(z)dz = �0�(zw); zw 2 �0;R

�
log(z0

1
� z)�(z)dz =

R
�
log(z0

2
� z)�(z)dz;R

�

n
@ log(z0

1
�z)

@np

o
�

�(z)dz + ��(z0
1
) =

= �

R
�

n
@ log(z0

2
�z)

@np
dz
o
�

�(z)dz � ��(z2);

z 2 �; z0
1
2 Y 0

1
; z0

2
2 Y 0

2
;

9>>>>>>=
>>>>>>;
;

(12)
in which @ log(zw�z)

@np
denotes the normal derivative of

log(zw � z) at the pointzw assumingz is fixed; � =
�0 + Y 0

1 + Y 0

2 ; coordinatesz1 and z2 are the same as in
(10); and�(zw) is the external potential.

Numerical approximation We solve the integral
equation numerically, by approximating the source densi-
ties by step-functions [9]. Thus we divide the given bound-
ary� intoN� intervals and assume that the simple source
density� has a constant value within each interval. Then
denoting these constant values by�i, i = 1; 2; :::;N�, we
approximate� andE by

b�(zw) = N�X
i=1

�i�0

Z
i

log(zw � z)dz; and (13)

bE(zw) = N�X
i=1

�i

�0

Z
i

�
d log(zw � z)

dzw

�
�

dz; (14)

where
R
i
denotes integration over thei-th interval of�. We

substitute (13) and (14) into (12) to obtain numerical ap-
proximation for periodic solution. The unknowns (in the
system obtained) are the charge density on the intervals�i,
the potential and the electric field on the periodic aperture.
All coefficients in the system are calculated analytically.
For practical geometries, the matrix of coefficients is well

defined and there is no difficulty in solving the system di-
rectly. For macroparticle tracking, the electric field calcu-
lated on polar grid and then interpolated at the macroparti-
cle position (same as for RF fields).

3.4 Tracking
We find a macroparticle trajectory by using the 4th order
Runge-Kutta method for integrating the equation of mo-
tion (6) in polar coordinates. Then, we integrate the com-
plex electric field of the cavity modes along the trajectory to
find coefficients for the cavity’s eigenmodes (5). We mon-
itor energy conservation in order to verify accuracy of cal-
culation. For that purpose we use total energy that consists
of kinetic energy of the macroparticle and integral of static
(due to external potential and static space charge) and os-
cillating (due to cavity modes and oscillating space charge)
electric fields along the trajectory. Initial charge and ve-
locity~v are determined by a space-charge-limited-emission
model and a relaxation scheme.

3.5 Algorithm
We start simulation by calculating dispersion the curve for
the spatial period of the device (using theRF field solver).
Then, we calculate electric fields for the eigenmodes. Next,
(using thePoisson solver) we calculate electric field due to
external potential. Next, we start iterations usingTrack-
ing moduleto find the macroparticle trajectories, field inte-
grals along the trajectories, and electric fields due to space
charge. Next, we update the static and oscillating fields and
start new iteration.

4 SUMMARY

We have written a C++ computer code that uses meth-
ods, described above. Accuracy of resonant frequency
calculation byRF field solverfor typical geometries is
� 0:1%. We tested performance ofPoisson solverand
Tracking moduleon diode geometries (without magnetic
field). We calculated diode current with typical accuracy
2-3% in comparison with analytical solution. Testing of
the code on cross- field devices is under way.

5 REFERENCES
[1] G. B. Collins, “Microwave Magnetrons,” Boston tech. pub., Inc.,

1964.
[2] B.Goplenat al, “User-configurable MAGIC Code for Electromag-

netic PIC Calculations,”Comp. Phys. Comm., vol.87, pp. 54-86,
1995.

[3] K. R. Eppley, “Numerical Simulation Of Cross Field
Amplifiers,”SLAC-PUB-5183, 1990.

[4] X. Chen, at al, “2D/3D magnetron modeling,”2ndInt. Conf. On Cross
Field Devices and Appl., Boston, MA, USA, 17-19 June, 1998.

[5] V.A. Dolgashev, S.G. Tantawi, “Method for Efficient Analysis of
Waveguide Components and Cavities for RF Sources,” EPAC’2000,
26-30 June 2000, Austria Center, Vienna.

[6] V. A. Dolgashev, “Calculation of Impedance for Multiple Waveg-
uide Junction Using Scattering Matrix Formulation,” presented at
ICAP’98, Monterrey, CA, USA, 14-18 Sept., 1998.

[7] J. M. Reiter and F. Arndt, IEEE Trans. Microwave Theory Tech.,
vol. 43, pp. 796-801, Apr. 1995.

[8] R. B. Beth, “Complex Representation and Computation of Two-
Dimensional Magnetic Fields”, Journal of Applied Physics, Vol. 37,
Number 7, June, 1966.

[9] L. M. Delves and J. Walsh, “Numerical Solution of Integral Equa-
tions,” Clarendon Press, Oxford, 1974.


